
10 Inelastic Processes

So far we have been considering a theory with only one real field φ, so all particles are the same.
The two-to-two-body process is an elastic scattering process in which the outgoing particles are
the same as the incoming ones, but with different momenta.

At sufficiently high energies we could have inelastic processes in which two incoming particles
scatter into three or more final particles. Feynman graphs for such a process would be
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Alternatively, we can consider a theory with two fields: φ corresponding to a particle of mass m
and χ corresponding to a particle of mass M and an interaction Lagrangian

LI = =−g
2χφ2

which couples the fields and allows the two types of partcile to interact with each other.

The total Lagrangian density for such a system is

L =
1
2∂µφ∂µφ− 1

2m2φ2 +
1
2∂µχ∂µχ− 1

2M2χ2− g
2χφ2

The interaction vertex

χ
φ

φ

has a Feynman rule −ig (the factor of 1
2 cancels against the two ways of coupling the two φ’s in

the same way that the 1
3! cancelled in the previous φ3 case.)

Consider the scattering of two χ-particles with momenta p1, p2 into two φ particles with momenta
q1,q2. There are two Feynman diagrams for this process:

40



p1

p2

q1

q2

p1

p2

q2

q1

Note that the s-channel diagram is missing since this would require an interaction of the form φ3

or χ3, which we choose not to include in this model.

Following the Feynman rules the contributions from these two graphs are

(−ig)2 i
(p1−q1)2−m2 = (−ig)2 i

(t−m2)

and
(−ig)2 i

(p1−q2)2−m2 = (−ig)2 i
(u−m2)

Recall that the quantity u may be expressed in terms of s and t and the masses as

u = 2M2 +2m2− s− t

.

The cross-section is given by

σ =
Z

d3q1

(2π)32Eq1

d4q2
(2π)2 δ(q2

2−m2)θ(q0
2)(2π)4δ4(p1 + p2−q1−q2)

× 1
F

g4
(

1
(t−m2)

+
1

(u−m2)

)2

The flux factor F is given by

F = 4
√

(p1 · p2)2−M4 = 2
√

s(s−4M2),

where we have used
s = (p1 + p2)

2 = 2M2 +2p1 · p2

Now integrating over q2 and absorbing the energy-momentum conserving delta-function this leaves

σ =
Z

d3q1

(2π)22Eq1

1
2
√

s(s−4M2)
g4
(

1
(t−m2)

+
1

(u−m2)

)2
δ
(

(p1 + p2−q1)
2−m2)

Now move to the centre-of-mass frame for which we set the magnitude of the three-momentum of
q1 to q and the magnitude of the three momentum of p1 is p and use

qdq = Eq1dEq1
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and
t = m2 +M2−2Ep1Eq1 +2pqcosθ

so that
dt = 2pqd cosθ

This gives
d3q1

2Eq1
= dφd cosθ

q2dq
2Eq1

= dφd cosθqdEq1 = dφ
dt
4p

dEq1

The remaining delta function is now

δ((p1 + p2−q1)
2−m2) = δ(s−2

√
sEq1)

so that we can use the integration over Eq1 to absorb this delta-function giving a factor of 1/(2
√

s)
and the integration over the azimuthal φ gives a factor of 2π so we end up with

σ =
g4

32πs

Z

dt
1

p
√

s−4M2

(

1
(t−m2)

+
1

(2M2 +m2− s− t)

)2

and finally the magnitude of the incoming three-momentum in the centre-of mass frame is given
by

p =
1
2
√

s−4M2

so we end up with a differential cross-section with respect to t

dσ
dt

=
g4

16πs(s−4M2)

(

1
(t−m2)

+
1

(2M2 +m2− s− t)

)2

10.1 Decay Rates

If M > 2m then a χ particles can decay into two φ particles. The Feynman graph for such a decay
is
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There is no internal propagator, so the Feynman rules for this graph give a matrix-element

M = −ig(2π)4δ(p−q1−q2)

The calculation of the decay rate proceeds along the same lines as the calculation for scattering
cross-section. Again, in order to avoid obtaining the square of a delta function, the incoming state
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is smeared with a distribution function peaked at p, whose Fourier transform is he wavefunction
ψ(x) of the incoming χ particle. The transition probability is then

W =
Z

d4x
|ψ(x)|2

2Ep
|M |2(2π)4δ4(p−q1−q2)

The 2EP in the denominator arises from the relativistic normalisation of the incoming state.

The transition rate per unit volume is

dW
d3xdt

= dΓ×|ψ(x)|2

|ψ(x)|2 is the probability of finding the decaying particle in unit volume and dΓ is the differential
decay rate of the χ-particle into two φ-particles with momenta q1 and q2.

The total decay rate is obtained by integrating this quantity over the DLIPS for the decay products.

Γ =
1

2Ep

Z

d3q1

(2π)32Eq1

d4q2
(2π)3 δ(q2

2−m2)(2π)4δ4(p−q1−q2)|M |2

=
g2

2Ep

1
(2π)2

Z

d3q1

2Eq1
δ((p−q1)

2−m2)

Decay rates (inverse lifetimes) are not Lorentz invariant, but transform like 1/E. Lifetimes are
usually quoted in rest-frame of the decaying particle and in such a frame we replace Ep by M and
the argument of the remaining delta-function is M2−MEq1 .

Again, we have (setting the magnitude of the three-momentum of the q1 to q in the rest-frame of
the parent particle)

d3q1

2Eq1
= q2 dq

2Eq1
dΩ =

qdEq1

2 dΩ

The integration over the solid angle Ω gives a factor of 4π, so that we have

Γ =
g2

8πM

Z

dEq1qδ(M2−2MEq1)

We perform the integration over Eq1 absorbing the delta function getting a factor of (1/(2M) and
the solution Eq1 = 1

2M gives us

q =

√
M2−4m2

2 ,

so that finally we end up with

Γ =
g2

16πM2

√

M2−4m2.
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