
12 Electromagnetic Interactions

We have discussed the charged (complex) scalar field and the electromagnetic (photon) field but
not the interactions between them.

Interactions are introduced by “minimal coupling”, in which the partial derivative ∂µ, is replaced
by ∂µ + ieAµ when acting on a complex field φ representing a particle of electric charge e

The Lagrangian density for a charged scalar field interacting with a photon field is

L = −1
4

FµνFµν +
(

∂µ− ieAµ
)

φ† (∂µ + ieAµ
)

φ−m2φ†φ.

Note that the canonical momentum π is no longer φ̇∗ but φ̇†− iA0φ†.

The Euler Lagrange equation of motion for the photon field becomes

∂µFµν = jν,

where the electromagnetic current (ρ, j) is defined as

jµ = −ie
(

φ
(

∂µ− ieAµ
)

)φ†−φ† (∂µ + ieAµ
)

)

φ.

In components, this represents Maxwell’s equations in the presence of a current and charge density

∇ ·E = ρ

∇×B− dE
dt

= j

12.1 Feynman Rules for Scalar Electrodynamics

The interaction part of the Lagrangian density is

LI = −ieAµ (φ∗∂µφ−φ∂µφ∗)+ e2AµAµφ∗φ

The first term is cubic but unlike the φ3 theory it contains a derivative, which, in momentum space,
pulls down a factor of−ipµ where pµ is the momentum of the charge line.

In order to establish the sign (or direction of flow) consider the propagator

〈0|T φ(x)φ∗(y)|0〉 = i
Z

d4 p
(2π)4

e−ip·(x−y)

p2−m2 .
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If x0 > y0 this represents a particle flowing from y to x. Thus ∂µφ(x) gives −ipµ, where pµ is the
momentum of the charged particle flowing into the vertex. Similarly it could be the momentum of
the antiparticle flowing out of the vertex. This then gives us the Feynman rule

Aµ

p1 p2

−ie(p1 + p2)µ

The arrow on the charge line flows along the direction of charge. If the outgoing line is to be
interpreted as an ingoing antiparticle with momentum p2 then the sign of p2 is reversed in the
Feynman rule.

The other term in the interaction Lagrangian is e2AµAµφ∗φ and gives rise to the so-called “seagull”
vertex.

µ ν
2ie2gµν

The gµν is present because the Aµ’s are contracted with each other and the factor of 2 arises because
there are two ways of contracting the Aµ in the interaction term with external photon fields.

12.2 Examples of Scalar Electrodynamics

π+, π− are examples of charged scalar particles (they are also strongly interacting and the strong
interactions will dominate their scattering but in these examples we will consider only their elec-
tromagnetic interactions.)

(1) π+ + π− → π+ + π−

There are two Feynman graphs for this process
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p1

−p2

µ ν

q1

−q2

p1 q1

−p2 −q2

µ

ν

The lines marked−p2 and−q2 represent antiparticles (π−) with momenta p2 and q2 in the opposite
direction from the arrows on the charge lines.

For the first diagram we have:
Left-hand vertex: −ie(p1− p2)µ

Right-hand vertex: −ie(q1−q2)ν

Internal propagator: −igµν/(p1 + p2)2

The contribution to this diagram (omitting the energy-momentum conserving delta-function) is
therefore

M1 = ie2 (p1− p2) · (q1−q2)

(p1 + p2)2

In terms of Mandelstam variables we have

p1 · p2 = q1 ·q2 =
s
2
−m2

p1 ·q1 = p2 ·q2 = m2− t
2

p1 ·q2 = p2 ·q1 = m2− u
2

and
p2

1 = p2
2 = q2

1 = q2
2 = m2

so that
M1 = ie2 (u− t)

s

For the second diagram we have:
Upper vertex: −ie(p1 +q1)µ

Lower vertex: +ie(p2 +q2)ν

Internal propagator: −igµν/(p1−q1)
2

So this diagram contributes

M2 = −ie2 (p1 +q1) · (p2 +q2)

(p1−q1)2
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Again, writing the scalar products of the momenta in terms of Mandelstam variables this becomes

M2 = −ie2 (s−u)

t

So that the combined square-matrix-element is

|M |2 = e4
(

u− t
s
− s−u

t

)2

The cross-section is obtained by integrating over the phase-space for the outgoing pions and di-
viding by the flux-factor F . In the case of equal mass incoming particles the flux facto is given
by

F ≡ 4
√

(p1 · p2)2− p2
1 p2

2 = 2
√

s(s−4m2),

so that

σ =
e4

2
√

s(s−4m2)

Z

d3q1

(2π)32Eq1

d4q2
(2π)3 δ(q2

2−m2)θ(q0
2)(2π)4δ4(p1 + p2−q1−q2)

(

u− t
s
− s−u

t

)2

Integrating over q2 to absorb the energy-momentum conserving delta-function and writing

d3q1

2Eq1
=

1
2 dφd cosθ|q1|dEq1,

we arrive at

σ =
e4

(4π)2
√

s(s−4m2)

Z

dφd cosθ|q1|dEq1δ((p1 + p2−q1)
2−m2)

(

u− t
s
− s−u

t

)2

In the centre-of-mass frame

δ((p1 + p2−q1)
2−m2) = δ(s−2

√
sEq1)

and
t = 2m2−2Ep1Eq1 +2|p1||q1|cosθ

so that
d cosθ =

dt
2|p1||q1|

and
|p1| = |q1| =

1
2
√

s−4m2
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We end up with the differential cross-section

dσ
dt

=
e4

16π2√s(s−4m2)

Z

dφdEq1δ
(

s−2
√

sEq1

)

(

u− t
s
− s−u

t

)2

=
e4

16π
1

s(s−4m2)

(

u− t
s
− s−u

t

)2

We usually express electromagnetic cross-sections in terms of the fine-structure constant †

α =
e2

4π
≈ 1

137

dσ
dt

= πα2 1
s(s−4m2)

(

u− t
s
− s−u

t

)2

Recall that u can be replaced by 4m2− s− t.

(2) π+ π− annihilation into two photons

π+ π− → γγ

π+ and π− can annihilate, but the minimum number of photons in the final state is two in order to
be able to conserve energy and momentum.

There are three Feynman diagrams for this process

p1

−p2

εµ
1

εν
2

q1

q2

p1

−p2

εµ
2

εν
1

q2

q1

εµ
1

εν
2

Again the lines marked −p2 represent π− with momentum p2. The third graph comes form the
“seagull” interaction term.

For the first diagram we have:
Upper vertex: −ie(2p1−q1) · ε∗1(q1,λ1)

†Remember that we are using units for whichh̄ = c = 1 and also the permittivity of the vacuum ε0 = 1.
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Lower vertex: −ie(p1−q1− p2) · ε∗2(q2,λ2)
Internal propagator: i/((p1−q1)2−m2)

For the second diagram we have:
Upper vertex: −ie(2p1−q2) · ε∗2(q2,λ2)
Lower vertex: −ie(p1−q2− p2) · ε∗1(q1,λ1)
Internal propagator: i/((p1−q2)2−m2)

For the third diagram we have:
Vertex: 2ie2ε∗1(q1,λ1) · ε∗2(q2,λ2)

We need to add these contributions together and square them. We also assume that the detector
does not distinguish between left- and right- circular-polarised photons and so we sum over the
helicities λ1 and λ2. In Feynman gauge this means making the replacement

εµ
1(q1,λ)εν∗

1 (q1,λ) →−gµν

and similarly for λ2.

The algebra is cumbersome but straightforward, and nowadays is best conducted using one of sev-
eral computer packages which can handle the necessary substitutions (FORM is the most suitable
for this type of manipulation but it can also be done in MATHEMATICA, MAPLE, or REDUCE).

Expressing the scalar products of the momenta in terms of Mandelstam variables the result is (after
summing over the helicities of the final-state photons)

|M |2 = 4e2

{

1+

(

1− 2m2s
(t−m2)(u−m2)

)2}

Once again the flux factor is 2
√

s(s−4m2), so the cross-section is

σ =
4e4

2
√

s(s−4m2)

Z

d3q1

(2π)32Eq1

d4q2
(2π)3 δ(q2

2)(2π)4δ4(p1 + p2−q1−q2)

{

1+

(

1− 2m2s
(t−m2)(u−m2)

)2}

=
e4

8π2
√

s(s−4m2)

Z

dφd cosθ
|q1|

2 δ((p1 + p2−q1)
2)

{

1+

(

1− 2m2s
(t−m2)(u−m2)

)2}

In the centre-of-mass frame

t = m2−2|q1|((Ep1−|p1|cosθ)

and
δ((p1 + p2−q1)

2) = δ(s−2
√

sEq1)
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|p1|=
√

s−4m2

2
so that the differential cross-section is (using α = e2/(4π))

dσ
dt

=
4πα2

s(s−4m2)

{

1+

(

1− 2m2s
(t−m2)(u−m2)

)2}

,

and in this case u = 2m2− s− t.

(3) Compton Scattering

This is the process
π+ γ → π+ γ

There are three Feynman diagrams

p1 q1

εµ
p εν∗

q

p2 q2

p1 q1

εµ
p εν∗

q

p2 q2

εµ
p εν∗

q

Note that these graphs are the same as the ones for the process π= + π− → γγ, but turned on their
side.

The scattering matrix element is an analytic function of the Mandelstam variables s, t, which means
that they may be continued into an “unphysical region” where s is negative and t is positive. But
such an unphysical region is the physical region for the process in which an incoming particle is
exchanged for an outgoing antiparticle (or vice versa) and an outgoing particle is exchanged for
an incoming antiparticle (or vice versa). This is precisely the interchange that transforms from the
process π+ π− → γγ to the Compton-scattering process π+ γ→ π+ γ - note that the incoming π− in
the former process is replaced by an outgoing π+ in the latter process. This is known as “crossing
symmetry”.

This means that we do not have to calculate the square-matrix element again but merely interchange
the Mandelstam variables s and t. There is also a factor of 1

2 , which arises because for π+ π− → γγ
we sum over the helicities of the final-state photons, whereas for the Compton scattering process,
we sum over the helicities of the outgoing photon but average over the helicities for the incoming
photon (assuming that the incoming photon beam is unpolarised). The square matrix element,
summed over final-state photon helicities and averaged over initial state helicities is therefore

|M |2 = 2e4

{

1+

(

1− 2m2t
(s−m2)(u−m2)

)2}

.
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In the case of Compton scattering, it is usual to express the cross-section in terms of the scattering
angle of the photon in the rest-frame of the target particle (known as the “lab-frame”) , rather than
the centre-of-mass frame. In such a frame we have

p1 = (m,0,0,0)

p2 = (p,0,0, p)

q2 = (q,qsinθcosφ,qsinθsinφ,qcosθ)

where θ is the scattering angle of the photon (initially along the z-direction), and we have intro-
duced p and q as the energies of the initial and final photon respectively.

s = m2 +2mp

u = m2−2mq

t = 2m(q− p) = −2pq(1− cosθ)

The relation
(1− cosθ) = m

(

1
q
− 1

p

)

,

being the well-known formula for the wavelength shift in Compton scattering.

In terms of these quantities, the square-matrix-element becomes

|M |2 = 2e4 (1+ cos2 θ
)

.

Since one of the incoming particles is massless the flux factor is

F = 4p1 · p2

and in the lab frame this becomes
F = 4mp

The cross section is

σ =
1

4mp

Z

d3q2

(2π)32q
d4q1
(2π)3 δ(q2

1−m2)θ(q0
1)(2π)4δ4 (p1 + p2−q1−q2)2e4(1+ cos2 θ)

Note that this time we have chosen to use the integration over q1 to absorb the energy-momentum
conserving delta-function as we wish to calculate the differential cross-section w.r.t cosθ, the scat-
tering angle of the photon.

Performing the integral over q1 and writing

d3q2 = dφd cosθq2dq,

we get

σ =
e4

4π2mp

Z

dφd cosθqdqδ((p1 + p2−q)2−m2)2e4(1+ cos2 θ)
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In the lab-frame

δ((p1 + p2−q)2−M2) = δ(2mp−2q(m+ p(1− cosθ)) ,

so that the integration over q absorbs the remaining delta-function and gives a factor
1/(2(m+ p(1− cosθ))). Using (from the Compton scattering formula)

q =
mp

(m+ p(1− cosθ))

we finally end up with a differential cross-section w.r.t the lab-frame scattering angle of

dσ
d cosθ

=
πα2(1+ cos2 θ)

(m+ p(1− cosθ))2 =
πα2

m2 (1+ cos2 θ)ω2

where ω is the ratio of the outgoing to incoming photon momenta, q/p
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