3 Energy-Momentum Tensor

The energy-momentum tensor, Ty is defined by

0L
T = Wa\)q’— Ouv L.

We see immediately, using the definition of the canonical momentum, T(X), that Tog is the Hamil-
tonian density.

3.1 TheMomentum Operator

The momentum operator for a system described by a Lagrangian density L is given by the g =0
components of this tensor, integrated over space (and normal ordered so that the momentum of the
vacuum is zero)

P\) = /d3X . TO\) .
Now in terms of the expansion in creation and annihilation operators, we have

0L
0(04g)

so that the operator Pj, (i=1---3)is
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This is the number of particles with momentum p, multiplied by p; and integrated over all possible
momenta (using the Lorenz invariant integration measure)

For space-like components, the momentum operator may be written as
P = /d3xn(x)6i(p(x)
which can be seen to obey the commutation relation

[P, @(x)] = —i0u@(x).

TWe have dropped terms quadratic in the creation or annihilation operator, which can be shown to vanish.
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The momentum operator generates infinitesimal translations, and for finite transformations with
parameter a* we have

eiPua“(p(x)e—ipuafl _ (p(x+a).

Using the Euler-Lagrange equations it can be shown that the energy-momentum tensor is “con-
served”, i.e. its divergence cancels:
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= 0,

where the Euler-Lagrange equations have been used in the first term in the last step. In components
we may write the zero component of this conservation law as

d 0
ETOV ox ITIV =0

Integrating over all space, the second term vanishes as it is the integral of a derivative (assumed to
vanish at spatial infinity) and we are left with

d [ 4 d
a/d XTOV — ap\) —0,

1.e, the total energy and momentum of the system are conserved (as expected)

3.2 TheAngular Momentum Operator

In 3 dimensions
L=rxp

where the component L; is given in terms of components of the energy-momentum tensor by
Li = sijk/d3x I T Ok

We can generalise this to four dimensions (thereby including the generators of Lorentz boosts as
well as rotations) by defining a 3-rank tensor

MWP — (xHTVP _ xVTHP)

and hence an antisymmetric 2-rank tensor

V= [dxan.
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We can see that M' = gk | (i, j=1---3) are the usual angular momentum operators, whereas
MOi generate Lorentz boosts.

By expanding the fields in terms of creation and annihilation operators (as we did for the momen-
tum operators) and performing some algebra we can show that

MOlp) = ~pitlp) ~Ep - |p)
Now consider the infinitesimal operator
(1—idviM%)
acting on a one-particle momentum state |p), where dv;j is an infinitesimal boost velocity in the

direction i. OViEp = dpj, the change in momentum in the i-direction and p;dvj = OE, the change in
energy. Thus we have

(1-idviM™) |p) = e |p) +5pi%\ p) = e °|p+3p).
showing that the above operator is an infinitesimal boost in the direction i.
Likewise it may be shown that the operator
(1 i s0imy)
acting on |p) gives a state in which the momentum is rotated by a small angle &0 about the i axis.

As before, the divergencelessness of the energy-momentum tensor leads to the conservation law
dp MWP,
which in turn (after integrating over all space) gives the conservation of angular momentum

d
—_— Hv =
it M 0.
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