
3 Energy-Momentum Tensor

The energy-momentum tensor, Tµν is defined by

Tµν =
∂L

∂(∂µφ)
∂νφ−gµνL .

We see immediately, using the definition of the canonical momentum, π(x), that T00 is the Hamil-
tonian density.

3.1 The Momentum Operator

The momentum operator for a system described by a Lagrangian density L is given by the µ = 0
components of this tensor, integrated over space (and normal ordered so that the momentum of the
vacuum is zero)

Pν =

Z

d3x : T0ν :

Now in terms of the expansion in creation and annihilation operators, we have

∂L
∂(∂µφ)

= ∂µφ = −i
Z

d3p
(2π)32Ep

pµ
(

a(p)e−ip·x−a†(p)e+ip·x
)

,

so that the operator Pi, (i = 1 · · ·3) is

Pi =

Z

d3p
(2π)32Ep

d3p′

(2π)32E ′p
d3x

(

Ep p′i +Ep′ pi
)

a†(p′)a(p)ei(p−p′).·x

=

Z

d3p
(2π)32Ep

d3p′

2E ′p
δ3(p−p′)

(

Ep p′i +Ep′ pi
)

a†(p′)a(p)ei(Ep−Ep′).·t

=

Z

d3p
(2π)32Ep

pia
†(p)a(p).

This is the number of particles with momentum p, multiplied by pi and integrated over all possible
momenta (using the Lorenz invariant integration measure) †

For space-like components, the momentum operator may be written as

Pi =
Z

d3xπ(x)∂iφ(x)

which can be seen to obey the commutation relation
[

Pµ,φ(x)
]

=−i∂µφ(x).

†We have dropped terms quadratic in the creation or annihilation operator, which can be shown to vanish.
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The momentum operator generates infinitesimal translations, and for finite transformations with
parameter aµ we have

eiPµaµ
φ(x)e−iPµaµ

= φ(x+a).

Using the Euler-Lagrange equations it can be shown that the energy-momentum tensor is “con-
served”, i.e. its divergence cancels:

∂µTµν = ∂µ ∂L
∂(∂µφ)

∂νφ+
∂L

∂(∂µφ)
∂µ∂νφ−∂νL

= ∂µ ∂L
∂(∂µφ)

∂νφ+
∂L

∂(∂µφ)
∂µ∂νφ− ∂L

∂φ
∂νφ− ∂L

∂(∂µφ)
∂ν∂µφ

=
∂L
∂φ

∂νφ+
∂L

∂(∂µφ)
∂µ∂νφ− ∂L

∂φ
∂νφ− ∂L

∂(∂µφ)
∂ν∂µφ

= 0,

where the Euler-Lagrange equations have been used in the first term in the last step. In components
we may write the zero component of this conservation law as

d
dt

T0ν−
∂

∂xi
Tiν = 0

Integrating over all space, the second term vanishes as it is the integral of a derivative (assumed to
vanish at spatial infinity) and we are left with

d
dt

Z

d3xT0ν =
d
dt

Pν = 0,

i.e, the total energy and momentum of the system are conserved (as expected)

3.2 The Angular Momentum Operator

In 3 dimensions
L = r×p

where the component Li is given in terms of components of the energy-momentum tensor by

Li = εi jk

Z

d3x : x jT 0k

We can generalise this to four dimensions (thereby including the generators of Lorentz boosts as
well as rotations) by defining a 3-rank tensor

M µνρ = (xµT νρ− xνT µρ)

and hence an antisymmetric 2-rank tensor

Mµν =
Z

d3xM µν0.
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We can see that Mi j = εi jkLk, (i, j = 1 · · ·3) are the usual angular momentum operators, whereas
M0i generate Lorentz boosts.

By expanding the fields in terms of creation and annihilation operators (as we did for the momen-
tum operators) and performing some algebra we can show that

M0i|p〉 = −pit|p〉−Ep
∂

∂pi
|p〉

Now consider the infinitesimal operator
(

1− iδviM
0i)

acting on a one-particle momentum state |p〉, where δvi is an infinitesimal boost velocity in the
direction i. δviEp = δpi, the change in momentum in the i-direction and piδvi = δE, the change in
energy. Thus we have

(

1− iδviM
0i) |p〉 = e−iδEt |p〉+δpi

∂
∂pi
|p〉 = e−iδEt |p+δp〉,

showing that the above operator is an infinitesimal boost in the direction i.

Likewise it may be shown that the operator
(

1− iεi jkδθiM jk

)

acting on |p〉 gives a state in which the momentum is rotated by a small angle δθ about the i axis.

As before, the divergencelessness of the energy-momentum tensor leads to the conservation law

∂ρM µνρ,

which in turn (after integrating over all space) gives the conservation of angular momentum

d
dt

Mµν = 0.
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