3 Energy-Momentum Tensor

The energy-momentum tensor, $T_{\mu v}$ is defined by

$$
T_{\mu \nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)} \partial_{\nu} \phi-g_{\mu \nu} \mathcal{L}
$$

We see immediately, using the definition of the canonical momentum, $\pi(x)$, that T_{00} is the Hamiltonian density.

3.1 The Momentum Operator

The momentum operator for a system described by a Lagrangian density \mathcal{L} is given by the $\mu=0$ components of this tensor, integrated over space (and normal ordered so that the momentum of the vacuum is zero)

$$
P_{v}=\int d^{3} \mathbf{x}: T_{0 v}:
$$

Now in terms of the expansion in creation and annihilation operators, we have

$$
\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)}=\partial_{\mu} \phi=-i \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{p}} p^{\mu}\left(a(\mathbf{p}) e^{-i p \cdot x}-a^{\dagger}(\mathbf{p}) e^{+i p \cdot x}\right)
$$

so that the operator $P_{i},(i=1 \cdots 3)$ is

$$
\begin{aligned}
P_{i} & =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{p}} \frac{d^{3} \mathbf{p}^{\prime}}{(2 \pi)^{3} 2 E_{p}^{\prime}} d^{3} \mathbf{x}\left(E_{p} p_{i}^{\prime}+E_{p^{\prime}} p_{i}\right) a^{\dagger}\left(\mathbf{p}^{\prime}\right) a(\mathbf{p}) e^{i\left(p-p^{\prime}\right) \cdot x} \\
& =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{p}} \frac{d^{3} \mathbf{p}^{\prime}}{2 E_{p}^{\prime}} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right)\left(E_{p} p_{i}^{\prime}+E_{p^{\prime}} p_{i}\right) a^{\dagger}\left(\mathbf{p}^{\prime}\right) a(\mathbf{p}) e^{i\left(E_{p}-E_{p^{\prime}}\right) \cdot t} \\
& =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{p}} p_{i} a^{\dagger}(\mathbf{p}) a(\mathbf{p}) .
\end{aligned}
$$

This is the number of particles with momentum \mathbf{p}, multiplied by p_{i} and integrated over all possible momenta (using the Lorenz invariant integration measure) ${ }^{\dagger}$

For space-like components, the momentum operator may be written as

$$
P_{i}=\int d^{3} \mathbf{x} \pi(x) \partial_{i} \phi(x)
$$

which can be seen to obey the commutation relation

$$
\left[P_{\mu}, \phi(x)\right]=-i \partial_{\mu} \phi(x)
$$

[^0]The momentum operator generates infinitesimal translations, and for finite transformations with parameter a^{μ} we have

$$
e^{i P_{\mu} a^{\mu}} \phi(x) e^{-i P_{\mu} a^{\mu}}=\phi(x+a)
$$

Using the Euler-Lagrange equations it can be shown that the energy-momentum tensor is "conserved", i.e. its divergence cancels:

$$
\begin{aligned}
\partial^{\mu} T_{\mu v} & =\partial^{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)} \partial_{v} \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)} \partial^{\mu} \partial_{v} \phi-\partial_{v} \mathcal{L} \\
& =\partial^{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)} \partial_{v} \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)} \partial^{\mu} \partial_{\nu} \phi-\frac{\partial \mathcal{L}}{\partial \phi} \partial_{v} \phi-\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)} \partial_{v} \partial_{\mu} \phi \\
& =\frac{\partial \mathcal{L}}{\partial \phi} \partial_{v} \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)} \partial^{\mu} \partial_{v} \phi-\frac{\partial \mathcal{L}}{\partial \phi} \partial_{\nu} \phi-\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)} \partial_{v} \partial_{\mu} \phi \\
& =0,
\end{aligned}
$$

where the Euler-Lagrange equations have been used in the first term in the last step. In components we may write the zero component of this conservation law as

$$
\frac{d}{d t} T_{0 v}-\frac{\partial}{\partial x_{i}} T_{i v}=0
$$

Integrating over all space, the second term vanishes as it is the integral of a derivative (assumed to vanish at spatial infinity) and we are left with

$$
\frac{d}{d t} \int d^{3} \mathbf{x} T_{0 v}=\frac{d}{d t} P_{v}=0
$$

i.e, the total energy and momentum of the system are conserved (as expected)

3.2 The Angular Momentum Operator

In 3 dimensions

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}
$$

where the component L_{i} is given in terms of components of the energy-momentum tensor by

$$
L_{i}=\varepsilon_{i j k} \int d^{3} \mathbf{x}: x^{j} T^{0 k}
$$

We can generalise this to four dimensions (thereby including the generators of Lorentz boosts as well as rotations) by defining a 3-rank tensor

$$
\mathcal{M}^{\mu v \rho}=\left(x^{\mu} T^{v \rho}-x^{\nu} T^{\mu \rho}\right)
$$

and hence an antisymmetric 2-rank tensor

$$
M^{\mu \nu}=\int d^{3} \mathbf{x} \mathcal{M}^{\mu v 0}
$$

We can see that $M^{i j}=\varepsilon^{i j k} L_{k},(i, j=1 \cdots 3)$ are the usual angular momentum operators, whereas $M^{0} i$ generate Lorentz boosts.

By expanding the fields in terms of creation and annihilation operators (as we did for the momentum operators) and performing some algebra we can show that

$$
M^{0 i}|p\rangle=-p_{i} t|p\rangle-E_{p} \frac{\partial}{\partial p_{i}}|p\rangle
$$

Now consider the infinitesimal operator

$$
\left(1-i \delta v_{i} M^{0 i}\right)
$$

acting on a one-particle momentum state $|p\rangle$, where δv_{i} is an infinitesimal boost velocity in the direction i. $\delta v_{i} E_{p}=\delta p_{i}$, the change in momentum in the i-direction and $p_{i} \delta v_{i}=\delta E$, the change in energy. Thus we have

$$
\left(1-i \delta v_{i} M^{0 i}\right)|p\rangle=e^{-i \delta E t}|p\rangle+\delta p_{i} \frac{\partial}{\partial p_{i}}|p\rangle=e^{-i \delta E t}|p+\delta p\rangle
$$

showing that the above operator is an infinitesimal boost in the direction i.
Likewise it may be shown that the operator

$$
\left(1-i \varepsilon^{i j k} \delta \theta_{i} M_{j k}\right)
$$

acting on $|p\rangle$ gives a state in which the momentum is rotated by a small angle $\delta \theta$ about the i axis.
As before, the divergencelessness of the energy-momentum tensor leads to the conservation law

$$
\partial_{\rho} \mathcal{M}^{\mu \nu \rho}
$$

which in turn (after integrating over all space) gives the conservation of angular momentum

$$
\frac{d}{d t} M^{\mu v}=0
$$

[^0]: ${ }^{\dagger}$ We have dropped terms quadratic in the creation or annihilation operator, which can be shown to vanish.

