4 Green Functions - Feynman Propagators

There are two "Green functions" which will turn out to be very useful:

1. The vacuum expectation value of the commutator of two fields

$$
i \Delta(x-y) \equiv\langle 0|[\phi(x), \phi(y)]|0\rangle
$$

Using the expansion of the fields in terms of creation and annihilation operators this is

$$
\begin{aligned}
i \Delta(x-y)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{p}} \frac{d^{3} \mathbf{p}^{\prime}}{(2 \pi)^{3} 2 E_{p}^{\prime}} & \left\{e^{-i\left(p \cdot x-p^{\prime} \cdot y\right)}\langle 0|\left[a(\mathbf{p}), a^{\dagger}\left(\mathbf{p}^{\prime}\right)\right]|0\rangle\right. \\
+ & \left.e^{+i\left(p \cdot x-p^{\prime} \cdot y\right)}\langle 0|\left[a^{\dagger}(\mathbf{p}), a\left(\mathbf{p}^{\prime}\right)\right]|0\rangle\right\}
\end{aligned}
$$

having set the commutators of two creation or two annihilation operators to zero.
Using the commutation relation

$$
\left[a\left((p), a^{\dagger}\left(\mathbf{p}^{\prime}\right)\right]=(2 \pi)^{3} 2 E_{p} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right)\right.
$$

this becomes

$$
i \Delta(x-y)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{p}}\left\{e^{-i(p \cdot(x-y)}-e^{+i(p \cdot(x-y)}\right\}
$$

By changing the sign of the three-momentum in the second term, we may rewrite this as

$$
\Delta(x-y)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} E_{p}} e^{i \mathbf{p} \cdot(\mathbf{x}-\mathbf{y})} \sin \left(E_{p}\left(y_{0}-x_{0}\right)\right)
$$

If $x_{0}=y_{0}$ then this integral vanishes except if $\mathbf{x}=\mathbf{y}$. More generally, it can be shown that this vanishes if

$$
(x-y)^{2}<0
$$

i.e. if the space-time points x and y have space-like separation. This is a statement of causality - it tells us that the operation of creating or annihilation a particle at x must commute with the operation of creating or descrying a particle at y unless it is possible to travel from x to y or from y to x at a speed less than the speed of light so that information can pass from one point to the other.
2. The vacuum expectation of the time-ordered product of two fields:

$$
i \Delta_{F}(x, y) \equiv\langle 0| T \phi(x) \phi(y)|0\rangle
$$

where the time ordering operator T means

$$
\begin{aligned}
T \phi(x) \phi(y) & =\phi(x) \phi(y), \text { if } x_{0}>y_{0} \\
& =\phi(y) \phi(x), \text { if } y_{0}>x_{0}
\end{aligned}
$$

In terms of creation and annihilation of particles, it represents the creation of a particle at the point y and its destruction at x if $x_{0}>y_{0}$ and the creation of a particle at the point x and its destruction at y if $x_{0}<y_{0}$. Thus it represents the propagation of a particle from x to y or from y to x.
Expanding in terms of creation and annihilation operators and using the fact that the annihilation operator acting on the vacuum gives zero so that

$$
\langle 0| a(\mathbf{p}) a^{\dagger}\left(\mathbf{p}^{\prime}\right)|0\rangle=\langle 0|\left[a(\mathbf{p}), a^{\dagger}\left(\mathbf{p}^{\prime}\right)\right]|0\rangle=(2 \pi)^{3} 2 E_{P} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right),
$$

we have

$$
i \Delta_{F}(x, y)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{p}}\left\{\theta\left(x_{0}-y_{0}\right) e^{-i p \cdot(x-y)}+\theta\left(y_{0}-x_{0}\right) e^{+i p \cdot(x-y)}\right\}
$$

We can cast this into manifestly Lorentz invariant form by considering the integral

$$
\lim _{\varepsilon \rightarrow 0} \int d p_{0} \frac{e^{-i p_{0} t}}{p_{o}^{2}-E_{P}^{2}+i \varepsilon}
$$

The integrand has poles at

$$
p_{0}= \pm\left(E_{P}-i \varepsilon\right)
$$

If $t>0$, then we close the contour below the real axis, (as shown) so that $e^{i p_{0} t} \rightarrow 0$ as $\left|p_{0}\right| \rightarrow \infty$ and we pick up the pole at $p_{0}=E_{P}-i \varepsilon$, giving the result

$$
-\frac{2 \pi i}{2 E_{p}} e^{-i E_{p} t}
$$

(the minus sign arising from the fact that the contour is in the clockwise direction) whereas if $t<0$ we need to close the contour in the upper plane, thereby picking up the pole at $p_{0}=-E_{p}+i \varepsilon$, giving the result

$$
\frac{2 \pi i}{-2 E_{p}} e^{+i E_{p} t}
$$

Thus we may write the "Feynman propagator", $\Delta_{F}(x, y)$ in manifestly Lorentz invariant form as

$$
\Delta_{F}(x, y)=\lim _{\varepsilon \rightarrow 0} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p \cdot(x-y)}}{\left(p^{2}-m^{2}+i \varepsilon\right)}
$$

Since

$$
\mathfrak{I} m\left\{\frac{1}{x+i \varepsilon}\right\}=-\pi \delta(x)
$$

we have the reaction

$$
\Delta(x, y)=2 \mathfrak{I} m \Delta_{F}(x, y)
$$

$\Delta_{F}(x, y)$ is a Green functions because it obeys the Green function equation

$$
\left(\square+m^{2}\right) \Delta_{F}(x, y)=-\delta^{4}(x-y)
$$

