5 The Complex Scalar Field

The scalar field expanded as

$$
\phi(x)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}}\left(a(\mathbf{p}) e^{-i p \cdot x}+a^{\dagger}(\mathbf{p}) e^{+i p \cdot x},\right)
$$

is equal to its Hermitian conjugate (under Hermitian conjugation, $a(\mathbf{p}) \leftrightarrow a^{\dagger}(\mathbf{p})$ and $e^{i p \dot{x}} \leftrightarrow e^{-i p \cdot x}$). This field can only be used to describe particles with the quantum numbers of the vacuum, i.e. no charge or other flavour properties - particles such as the π_{0} that are equal to their antiparticle.

In order to describe spin-0 particles with electric charge or other properties (such as strangeness, charm etc.) we need to introduce a new pair of creation and annihilation operators, $b^{\dagger}(\mathbf{p}), b((\mathbf{p})$ which create and annihilate the antiparticles. These also obey the commutation relations

$$
\left[b(\mathbf{p}), b^{\dagger}(\mathbf{p})\right]=(2 \pi)^{3} 2 E_{p} \delta^{3}\left(\mathbf{p}-\mathbf{p}^{\prime}\right)
$$

The complex scalar field is then expanded as

$$
\begin{aligned}
\phi(x) & =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}}\left(a(\mathbf{p}) e^{-i p \cdot x}+b^{\dagger}(\mathbf{p}) e^{+i p \cdot x},\right) \\
\phi^{\dagger}(x) & =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}}\left(b(\mathbf{p}) e^{-i p \cdot x}+a^{\dagger}(\mathbf{p}) e^{+i p \cdot x},\right)
\end{aligned}
$$

The field $\phi(x)$ annihilates a particle with positive energy or creates an antiparticle with negative energy, whereas The field $\phi^{\dagger}(x)$ annihilates an antiparticle with positive energy or creates a particle with negative energy.

The (Feynman) propagator is now

$$
\Delta_{F}(x, y)=-i\langle 0| T \phi(x) \phi^{\dagger}(y)|0\rangle=\lim _{\varepsilon \rightarrow 0} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p \cdot(x-y)}}{p^{2}-m^{2}+i \varepsilon}
$$

The interpretation is that for $x_{0}>y_{0}$ a particle propagates from y to x, whereas for $x_{0}<y_{0}$ an antiparticle propagates from x to y.

We can define the (electric) charge operator as

$$
Q=i \int d^{3} \mathbf{x}:\left(\phi^{\dagger} \dot{\phi}-\phi \dot{\phi}^{\dagger}\right):
$$

Expanding this in terms of the creation and annihilation operators and performing the integral over all space (whcih generates a delta function) and one of the three-momenta we get

$$
Q=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}}\left(a^{\dagger}(\mathbf{p}) a(\mathbf{p})-b^{\dagger}(\mathbf{p}) b(\mathbf{p})\right)
$$

This counts the number of particles minus the number of antiparticles (which have opposite charge).
For a complex scalar field the Lagrangian density is

$$
\mathcal{L}=\left(\partial_{\mu} \phi\right)^{\dagger} \partial_{\mu} \phi-m^{2} \phi^{\dagger} \phi
$$

The Euler-lagrange equations of motion give

$$
\begin{aligned}
\left(\square+m^{2}\right) \phi & =0 \\
\left(\square+m^{2}\right) \phi^{\dagger} & =0
\end{aligned}
$$

The canonical momentum is given by

$$
\pi(x)=\frac{\partial \mathcal{L}}{\partial \dot{\phi}}=\dot{\phi}^{\dagger}
$$

(and likewise $\pi^{\dagger}=\dot{\phi}$).
In terms of the creation and annihilation operators the Hamiltonian density may be written

$$
\mathcal{H}=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}} E_{p}\left(a^{\dagger}(\mathbf{p}) a(\mathbf{p})+b^{\dagger}(\mathbf{p}) b(\mathbf{p})\right)
$$

The number operator is

$$
N=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}}\left(a^{\dagger}(\mathbf{p}) a(\mathbf{p})+b^{\dagger}(\mathbf{p}) b(\mathbf{p})\right)
$$

which counts the number of particles plus the number of antiparticles.

