
6 Interactions

So far, we have only considered free particles propagating form one space-time point to another -
we do not yet have a mechanism for changing the number of particles at some space-time point and
thereby accounting for interactions. This is because the Lagrangian for the free field is quadratic in
the fields so that each (normal ordered) term contains one creation and one annihilation operator.

In order to incorporate interactions, we must add to the Lagrangian density terms which are of
higher degree in the fields - for example we can add a term

LI = − g
3!

φ3,

(we take real scalar fields for the moment). φ3 contains terms with an additional annihilation
operator or one additional creation operator and so it can describe the branching of a particle into
two particles

The equation of motion with such a term added is now non-linear

(

2+m2)φ = −g
2

φ2,

and φ cannot be expanded in terms of creation and annihilation operators.

However, we can invoke the “adiabatic hypothesis” which tells us that the interactions are switched
on at some early time and switched off again at some later time so that as t → ±∞ the field φ
becomes equal to the free field. In fact, we cannot quite achieve this and we have to introduce a
proportionality constant,

√
Z, where Z is known as the wavefunction renormalisation constant -

we will learn more about this when we consider renormalisation and for the tree-level calculations
considered in these lectures it can be set equal to 1, although we keep it now for completeness.
Thus we have

φ(x)x0→±∞ →
√

Zφout
in

(x)

where φout
in

(x) are free fields which can be expanded in terms of creation and annihilation operators

a†
in(p), ain(p) for the incoming states and a†

out(p), aout(p) for the outgoing states.

φ in
out

(x) =
Z

d3p
(2π)32Ep

(

a in
out

(p)e−ip·x +a†
in

out
(p)e+ip·x,

)
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It will be necessary to invert these expressions in order to express a†
in(p) and ain(p) in terms of φin

and φ̇in (and similarly for the outgoing fields.

φ̇in(x) = −i
Z

d3p
(2π)32

(

ain(p)e−ip·x−a†
in(p)e+ip·x,

)

Taking the inverse Fourier transform of the expansions of φ and φ̇ and manipulating, we find

ain(p) = i
Z

d3xeip·x (φ̇in(x)− iEpφin(x)
)

We may rewrite this as
ain(p) = i

Z

d3xeip·x ↔∂0 φin(x),

where the notation f (x)
↔
∂0 g(x) means f (x)(∂0g(x))− (∂0 f (x))g(x).

Likewise
a†

in(p) = −i
Z

d3xe−ip·x ↔∂0 φin(x),

Similar results can be obtained for the out creation and annihilation operators.

6.1 The S-matrix

The “in” and “out” states are related to each other by a unitary operator called the S-matrix opera-
tor, S,

|α, in〉 = Sαβ|β,out〉
and the in and out fields are also related by this operator

φin = SφoutS
−1 = SφoutS

†

The quantum amplitude for an initial state |α〉 to scatter into a final state 〈β| is 〈β,out|α, in〉, so it
is this quantity that we need to calculate in order to be able to determine scattering cross-sections
(or decay rates). For example, suppose |α〉 is the two-particle state with momenta p1 and p2, and
|β〉 is also a two-particle state with momenta q1 and q2. The scattering amplitude for this process
is

Sαβ = 〈q1,q2,out|p1p2, in〉
We can write this as

Sα,β = 〈q1,q2,out|a†(p1)|p2, in〉.
We can express a†(p1) in terms of φin(x) and if x0→−∞ this can be expressed by the full inter-
acting field (up to a factor of

√
Z), as

〈q1,q2,out|p1p2, in〉 = lim
x0

1→−∞

−i√
Z

Z

d3x1e−ip1·x1
↔
∂0 〈q1,q2,out|φ(x1)|p2, in〉.
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This can be written as

〈q1,q2,out|a†
out(p1)|p2, in〉+

+i√
Z

Z

d4x1∂0

{

e−ip1·x1
↔
∂0 〈q1,q2,out|φ(x1)|p2, in〉

}

,

as can be seen by integrating the second term over x0
1 and cancelling the surface term at x0

1→+∞,
which generates the first term.

The first term can be thrown away provided neither q1 = p1 nor q2 = p1 (i.e. no forward scattering
in which one of the particles goes straight through without changing momentum). †

Using
−∂2

0e−ip1·x =
(

−∇2 +m2)e−ip1·x,

this becomes
i√
Z

Z

d4x1
{

(−∇2
1 +m2)e−ip1·x1〈q1,q2,out|φ(x1)|p2, in〉+ e−ip1·x1∂2

0〈q1,q2,out|φ(x1)|p2, in〉
}

.

Integrating ∇2
1 twice by parts this may be written in manifestly Lorentz invariant form as

i√
Z

Z

d4x1e−ip1·x1
(

2x1 +m2)〈q1,q2,out|φ(x1)|p2, in〉.

Next, we write this as
i√
Z

Z

d4x1e−ip1·x1
(

2x1 +m2)〈q2,out|aout(q1)φ(x1)|p2, in〉

= lim
y0

1→∞

(

i√
Z

)2 Z

d4x1d3y1e−ip1·x1eiq1·y1
↔
∂0 〈q2,out|φ(y1)φ(x1)|p2, in〉

When we go through the same procedure as before and convert the integral over d3y1 into and
integral d4y1, we get a surface term at y0

1 → −∞, which contains ain(q1)φ(x1)|p2, in〉. We want
to be able to reject this on the grounds that p2 6= q1, but we could do this only if we had the
term φ(x1)ain(q1)|p2, in〉.. We can achieve this by replacing the term 〈q2,out|φ(y1)φ(x1)|p2, in〉 by
〈q2,out|Tφ(y1)φ(x1)|p2, in〉, where T is the time ordering operator. This makes no difference in
the limit y0

1→∞, and after similar manipulations we get
(

i√
Z

)2 Z

d4x1d4y1e−ip1·x1e+iq1·y1
(

2x1 +m2)
)(

2y1 +m2)
)

〈q2,out|Tφ(x1)φ(y1)|p2, in〉

Proceeding in the same way for the other particles we end up with

〈q1,q2,out|p1, p2, in〉 =

(

i√
Z

)4 Z

d4x1d4x2d4y1d4y2e−i(p1·x1+p2·x2−q1·y1−q2·y2)

(

2x1 +m2)(
2x2 +m2)(

2y1 +m2)(
2y2 +m2)〈0|Tφ(x1)φ(x2)φ(y1)φ(y2)|0〉

†Note that the operator a† acting on a bra-state, 〈α|, is an annihilation operator.
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We recall that the fields φ are interacting fields, and so the task now is to calculate the green
function

〈0|Tφ(x1)φ(x2)φ(y1)φ(y2)|0〉
for these interacting field.

This “LSZ Reduction formula” (Lehmann, Symanzik, Zimmermann) generalises this to any num-
ber of incoming and outgoing particles.

〈q1,q2 · · ·qm,out|p1, p2 · · · pn, in〉 =

(

i√
Z

)m+n Z

d4x1 · · ·d4xnd4y1 · · ·d4ym

e−i∑n
j=1 p j·x je+i∑m

k=1 qk·yk
(

2x1 +m2) · · ·
(

2xn +m2)(
2y1 +m2) · · ·

(

2ym +m2)

〈0|T φ(x1) · · ·φ(xn)φ(y1) · · ·φ(ym)|0〉
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