9 LorentzInvariant phase-Space

9.1 Cross-sections

The scattering amplitude
M = (qi,q,out|py, pa,in)

is the amplitude for a state |p;, pz) to make a transition into the state |g;,qp). The transition
probability is the square modulus of this quantity. But here we have a problem. Let us write

M = M2m*s (p+p2—ai — ).
The square of the energy-momentum conserving delta-function is not defined.

The problem arises because we do not have incoming states which are perfect eigenstates of mo-
mentum, but rather a wave-packet, which is a weighted superposition of such states, so that in
“in”-state is really

d’p1 d’pe
in> = / (2r2E, (27125, fi(p1) f2(pP2)|p1, P2),

where f| and f, are the Fourier transforms of the wavefunctions of the incident particles. The
transition probability, W, is now given by

d’pr dpy d’py  dp) (o) £
W= / (2m)32E, (21‘[)32E2/ (2m)32E] (2m)32E, fi(p1) f2(p2) 1 (P1) f3 (P2)

(288" (q1 + o — p1 — P2)8* (p1 + P2 — P} — ph)| M |?

We can write the second delta-function as
2m)*&* (a1 + o — p) — / iyl (P1+P2— PP X

and perform the integration over p1’,po’ (the inverse Fourier transform) to get an expression in
terms of the wave-functions, Y (X), Wz (X) of the incoming particles. For incoming wavepackets
which are sharply peaked at p1 and p», this integration approximates to

W = /d4 Wi (17 W )|2(2Tr)454(Q1+C12—pl—p2>|M|2
2E1 2E2

The transition rate per unit volume is

dw 2t (ai+—pi—p
d3xdt 4E,E,
= do x flux

)| P (%) P a0 P
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do is the differential cross-section for the initial state to go into the state |¢;,0z), and the flux
factor, F, is the probability to find particle 1 per unit volume multiplied by the probability to find
particle 2 per unit volume multiplied by their relative velocity, V.

F= WP wa(x)v.

In the rest-frame of one of the particles (2) the relative velocity is given by v = %. Remembering
that the states are relativistically normalised, the square-wavefunction for an (almost) momentum
eigenstate can be replaced by 2E and so we have, in the rest frame of particle 2

F = 4E/Eov = 4|p1|Ex = 4|pg|mp.
This can be written in manifest Lorentz invariant form as
F = 4y /B2 - =4y (pr - p2)? g

Since this latter expression is in terms of masses and Lorentz-invariant scalar products of 4-
momenta, it is a Lorentz invariant expression. We can write

F = 2AY%(s,mf,m3),

with A (as before) given by
A(X,Y,2) =X +y* 4+ 22 — 2xy— 2x2—2yz.

Thus finally we end up with an expression for thew differential cross-section

2m*S* g+ —p1 — p2)|9\/[|2‘

do = =

9.2 Lorentz-invariant phase-space (L1PS) integration

do is the cross-section for a transition into the state |q;, ¢p). The total cross-section is obtained by
integrating over all possible final state momenta using the Lorentz invariant measure.

4 4
DLIPS = g%(‘%‘;é(q% ~ mR)8(q))3(cE - 2)(c)).

where we have taken the masses of the outgoing particles to be m3 and my. In general, if we have
n final-state particles the Lorentz-invariant phase-space is given by

oLIPs = 159 52— mee(e?)
Il:l (2.,.[)3 | 1 1/

It will be convenient to write some of these factors in the non-manifestly Lorenz invariant form

dgy
(21‘[)32qu 7
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and choose a suitable frame in which to perform the integration.
Thus the rules for calculating the total cross-section are
1. Calculate the matrix element M from the Feynman rules, omitting the energy-momentum
delta-function (2m)*8*(3;(qi) — p1 — p2)-
2. The cross-section for n-particles in the final state is

d4q.

]'l/ F—m)6(a)) (23 (Y (i) — p1 — p2)

|fM|2

Returning to the case of two final-state particles, we may not want the total cross section but a
quantity such as E’ where 0 is the scattermg angle. Since this is frame-dependent it would be

better to calculate a quantity such as dt , and then transform the result into the differential cross-
section w.r.t scattering angle in a chosen frame.

Since we are then calculating a Lorentz invariant quantity, we are at liberty to consider the system

in a convenient frame of reference. For the two final-state case the easiest frame is the centre-of-
mass frame for which the incoming momenta pi, p; are given by

P = <\/p2+m%,0,07p)
pg = <\/ p2+m§70707_p)

Using the definitions of the Mandelstam variable Sand A this can be written as

_ [(s+m—mg A2 (s m2 mj)
- (e
w _ [(stm-m 0.0 A2 (s, mt, mg)
p2 - 2\/§ s Uy My T 2\/§

Likewise the outgoing momenta may be written as

q = (1/q2+m%,qsinecos(p,QSinesin(p,qcose)
o = (w/q2+mﬁ,—qsin9cos(p,—qsinesin(p,—qcose),
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where 0, @ are the polar angles of the outgoing particle with momentum ;. Since S may also be
written S= (qy + p)? we can perform the same manipulations to obtain

) <s+m§—mﬁ M2 (s, ) )

==

_ —m AV2(smgmg)
a = 25 25

with the unit 3-vector n given by

n = (sinBcos @, sinBsin@,cos O)
and the Mandelstam variable t is

= (p1—qi)* = m;+nmg —2Ep Eq, +2|p1/|da| cos O

Now write the expression for the cross-section as

|

3 4
= / 2,? 3(121Eq 0;3)2 (8(c; — M) (2198 (p1 + P2 — A = O)

where we have written the phase-space measure for (; in non-relativistic form. We can now use
the integral over d*Qp to absorb the energy-momentum conserving delta-function, but remember
that ¢ must be replaced by p; + p> — q; inside the delta-function é(q% — nﬁ), so that we are now

left with
1 das | M |?

= gz 2g, NPt P2 M)

d*q; = dcosdg|q;|*d|qs]

The integration over @ introduces a factor of 21t We want to replace the integral over cos 0 by an
integral over t. From the expression for t we have

dt

dcos = ——
2|pa||dyl

In the centre-of-mass frame,
(pl + p2>u = (5707()’0)’

so that the argument of the remaining delta-function is

(S_ 2\/§EQ1 + m% - nﬁ)

2 we have

‘q1|d‘Q1‘ = EQ1qu17

Furthermore since Eél =
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so that

d3q1 d([th qu
- dE, .
2, 2pullar] g, 9Ew

leaving (after integration over )

dEg, |M|
2n/4|p (s~ 2/5Eq, + M2 —E)

Performing the integration over Eg, to absorb the remaining delta-function an inserting the expres-
sion for the flux, F, we have

do 1 | M |?
dt ~ 16mpsl/S2A12(s, g, )
But
‘ | _ )\1/2<Svm%7rn%)
P1] = 2\/§ >
and so we finally end up with
do

1
- _ M|?
& s m)

Note that A!/2 is only real if s> (m; + mz)z, which is the physical threshold for the scattering to
occur.

In the ¢ case (with equal masses) that we have been considering we therefore have

do g 1 1 1 2
dt ~ T6ms(s—4md) \(s—n?) T (t—m?)  BrP—s—1))
(Note that we have used U = 4m? —s—t).

The integration over t needed to calculate the total cross-section is often very messy. The limits on
t are obtained in terms of cos @ = 41 giving

tmin = m% + m% - 2EP1E(M - 2‘p1||q1|

thax = m% + m% - 2Ep1 th +2|pl||Q1|

In this case where all the masses are equal, the energies of the particles are equal and so are the
magnitude of their three-momenta (in the centre-of-mass frame) and this simplifies to

tmax - O
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Furthermore, we can obtain the differential cross-section with respect to the centre-of-mass scat-
tering angle, 6 by

99 ipyiy 22
dcos® P1llq dt

Again, if all the masses are equal this simplifies to

do  (s—4m’)do
dcos® 2 dt

Sometimes differential cross-sections are quoted in terms of g—g where Q is the solid angle. This
is what is measured directly as a detector will subtend a given element of solid angle dQ. This is
simply obtained by not performing the integration over the azimuthal angle @, i.e.

do _ 1 do
dQ  2mdcosB’

again this quantity is frame dependent and different in a collider experiment from a fixed-target
experiment.
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