9 Lorentz Invariant phase-Space

9.1 Cross-sections

The scattering amplitude

$$
\left.M \equiv\left\langle q_{1}, q_{2}, \text { out }\right| p_{1}, p_{2}, \text { in }\right\rangle
$$

is the amplitude for a state $\left|p_{1}, p_{2}\right\rangle$ to make a transition into the state $\left|q_{1}, q_{2}\right\rangle$. The transition probability is the square modulus of this quantity. But here we have a problem. Let us write

$$
M=\mathcal{M}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-q_{1}-q_{2}\right)
$$

The square of the energy-momentum conserving delta-function is not defined.
The problem arises because we do not have incoming states which are perfect eigenstates of momentum, but rather a wave-packet, which is a weighted superposition of such states, so that in "in"-state is really

$$
\mid \text { in }>=\int \frac{d^{3} \mathbf{p}_{\mathbf{1}}}{(2 \pi)^{3} 2 E_{1}} \frac{d^{3} \mathbf{p}_{\mathbf{2}}}{(2 \pi)^{3} 2 E_{2}} f_{1}\left(\mathbf{p}_{\mathbf{1}}\right) f_{2}\left(\mathbf{p}_{\mathbf{2}}\right)\left|p_{1}, p_{2}\right\rangle
$$

where f_{1} and f_{2} are the Fourier transforms of the wavefunctions of the incident particles. The transition probability, W, is now given by

$$
\begin{aligned}
W= & \int \frac{d^{3} \mathbf{p}_{\mathbf{1}}}{(2 \pi)^{3} 2 E_{1}} \frac{d^{3} \mathbf{p}_{\mathbf{2}}}{(2 \pi)^{3} 2 E_{2}} \int \frac{d^{3} \mathbf{p}_{\mathbf{1}}^{\prime}}{(2 \pi)^{3} 2 E_{1}^{\prime}} \frac{d^{3} \mathbf{p}_{\mathbf{2}}^{\prime}}{(2 \pi)^{3} 2 E_{2}^{\prime}} f_{1}\left(\mathbf{p}_{\mathbf{1}}\right) f_{2}\left(\mathbf{p}_{\mathbf{2}}\right) f_{1}^{*}\left(\mathbf{p}_{\mathbf{1}}^{\prime}\right) f_{2}^{*}\left(\mathbf{p}_{\mathbf{2}}^{\prime}\right) \\
& (2 \pi)^{8} \delta^{4}\left(q_{1}+q_{2}-p_{1}-p_{2}\right) \delta^{4}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right)|\mathcal{M}|^{2}
\end{aligned}
$$

We can write the second delta-function as

$$
(2 \pi)^{4} \delta^{4}\left(q_{1}+q_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right)=\int d^{4} x e^{i\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right) \cdot x}
$$

and perform the integration over $\mathbf{p}_{\mathbf{1}}{ }^{\prime}, \mathbf{p}_{\mathbf{2}}{ }^{\prime}$ (the inverse Fourier transform) to get an expression in terms of the wave-functions, $\psi_{1}(x), \psi_{2}(x)$ of the incoming particles. For incoming wavepackets which are sharply peaked at $\mathbf{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}}$, this integration approximates to

$$
W=\int d^{4} x \frac{\left|\psi_{1}(x)\right|^{2}}{2 E_{1}} \frac{\left|\psi_{2}(x)\right|^{2}}{2 E_{2}}(2 \pi)^{4} \delta^{4}\left(q_{1}+q_{2}-p_{1}-p_{2}\right)|\mathcal{M}|^{2}
$$

The transition rate per unit volume is

$$
\begin{aligned}
\frac{d W}{d^{3} \mathbf{x} d t} & =\frac{(2 \pi)^{4} \delta^{4}\left(q_{1}+q_{2}-p_{1}-p_{2}\right)}{4 E_{1} E_{2}}|\mathcal{M}|^{2}\left|\psi_{1}(x)\right|^{2}\left|\psi_{2}(x)\right|^{2} \\
& =d \sigma \times \text { flux }
\end{aligned}
$$

$d \sigma$ is the differential cross-section for the initial state to go into the state $\left|q_{1}, q_{2}\right\rangle$, and the flux factor, F, is the probability to find particle 1 per unit volume multiplied by the probability to find particle 2 per unit volume multiplied by their relative velocity, v.

$$
F=\left|\psi_{1}(x)\right|^{2}\left|\psi_{2}(x)\right|^{2} v
$$

In the rest-frame of one of the particles (2) the relative velocity is given by $v=\frac{\left|\mathbf{p}_{1}\right|}{E_{1}}$. Remembering that the states are relativistically normalised, the square-wavefunction for an (almost) momentum eigenstate can be replaced by $2 E$ and so we have, in the rest frame of particle 2

$$
F=4 E_{1} E_{2} v=4\left|\mathbf{p}_{1}\right| E_{2}=4\left|\mathbf{p}_{1}\right| m_{2} .
$$

This can be written in manifest Lorentz invariant form as

$$
F=4 m_{2} \sqrt{E_{1}^{2}-m_{1}^{2}}=4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}
$$

Since this latter expression is in terms of masses and Lorentz-invariant scalar products of 4momenta, it is a Lorentz invariant expression. We can write

$$
F=2 \lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right),
$$

with λ (as before) given by

$$
\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z .
$$

Thus finally we end up with an expression for thew differential cross-section

$$
d \sigma=\frac{(2 \pi)^{4} \delta^{4}\left(q_{1}+q_{2}-p_{1}-p_{2}\right)|\mathcal{M}|^{2}}{F}
$$

9.2 Lorentz-invariant phase-space (LIPS) integration

$d \sigma$ is the cross-section for a transition into the state $\left|q_{1}, q_{2}\right\rangle$. The total cross-section is obtained by integrating over all possible final state momenta using the Lorentz invariant measure.

$$
D L I P S=\frac{d^{4} q_{1}}{(2 \pi)^{3}} \frac{d^{4} q_{2}}{(2 \pi)^{3}} \delta\left(q_{1}^{2}-m_{3}^{2}\right) \theta\left(q_{1}^{0}\right) \delta\left(q_{2}^{2}-m_{4}^{2}\right) \theta\left(q_{2}^{0}\right),
$$

where we have taken the masses of the outgoing particles to be m_{3} and m_{4}. In general, if we have n final-state particles the Lorentz-invariant phase-space is given by

$$
\text { DLIPS }=\prod_{i=1}^{n} \frac{d^{4} q_{1}}{(2 \pi)^{3}} \delta\left(q_{i}^{2}-m_{i}^{2}\right) \theta\left(q_{i}^{0}\right) .
$$

It will be convenient to write some of these factors in the non-manifestly Lorenz invariant form

$$
\frac{d^{3} \mathbf{q}_{\mathbf{1}}}{(2 \pi)^{3} 2 E_{q_{1}}}
$$

and choose a suitable frame in which to perform the integration.
Thus the rules for calculating the total cross-section are

1. Calculate the matrix element \mathcal{M} from the Feynman rules, omitting the energy-momentum delta-function $(2 \pi)^{4} \delta^{4}\left(\sum_{i}\left(q_{i}\right)-p_{1}-p_{2}\right)$.
2. The cross-section for n-particles in the final state is

$$
\sigma=\prod_{i=1}^{n} \int \frac{d^{4} q_{i}}{(2 \pi)^{3}} \delta\left(q_{i}^{2}-m_{i}^{2}\right) \theta\left(q_{i}^{0}\right)(2 \pi)^{4} \delta^{4}\left(\sum_{i}\left(q_{i}\right)-p_{1}-p_{2}\right) \frac{|\mathcal{M}|^{2}}{F}
$$

Returning to the case of two final-state particles, we may not want the total cross section but a quantity such as $\frac{d \sigma}{d \theta}$, where θ is the scattering angle. Since this is frame-dependent it would be better to calculate a quantity such as $\frac{d \sigma}{d t}$, and then transform the result into the differential crosssection w.r.t scattering angle in a chosen frame.

Since we are then calculating a Lorentz invariant quantity, we are at liberty to consider the system in a convenient frame of reference. For the two final-state case the easiest frame is the centre-ofmass frame for which the incoming momenta p_{1}, p_{2} are given by

$$
\begin{aligned}
p_{1}^{\mu} & =\left(\sqrt{p^{2}+m_{1}^{2}}, 0,0, p\right) \\
p_{2}^{\mu} & =\left(\sqrt{p^{2}+m_{2}^{2}}, 0,0,-p\right)
\end{aligned}
$$

Using the definitions of the Mandelstam variable s and λ this can be written as

$$
\begin{aligned}
p_{1}^{\mu} & =\left(\frac{s+m_{1}^{2}-m_{2}^{2}}{2 \sqrt{s}}, 0,0, \frac{\lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right)}{2 \sqrt{s}}\right) \\
p_{2}^{\mu} & =\left(\frac{s+m_{2}^{2}-m_{1}^{2}}{2 \sqrt{s}}, 0,0,-\frac{\lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right)}{2 \sqrt{s}}\right)
\end{aligned}
$$

Likewise the outgoing momenta may be written as

$$
\begin{gathered}
q_{1}^{\mu}=\left(\sqrt{q^{2}+m_{3}^{2}}, q \sin \theta \cos \phi, q \sin \theta \sin \phi, q \cos \theta\right) \\
q_{2}^{\mu}=\left(\sqrt{q^{2}+m_{4}^{2}},-q \sin \theta \cos \phi,-q \sin \theta \sin \phi,-q \cos \theta\right)
\end{gathered}
$$

where θ, ϕ are the polar angles of the outgoing particle with momentum q_{1}. Since s may also be written $s=\left(q_{1}+q_{2}\right)^{2}$ we can perform the same manipulations to obtain

$$
\begin{aligned}
q_{1}^{\mu} & =\left(\frac{s+m_{3}^{2}-m_{4}^{2}}{2 \sqrt{s}}, \frac{\lambda^{1 / 2}\left(s, m_{3}^{2}, m_{4}^{2}\right)}{2 \sqrt{s}} \mathbf{n}\right) \\
q_{1}^{u} & =\left(\frac{s+m_{4}^{2}-m_{3}^{2}}{2 \sqrt{s}},-\frac{\lambda^{1 / 2}\left(s, m_{3}^{2}, m_{4}^{2}\right)}{2 \sqrt{s}} \mathbf{n}\right)
\end{aligned}
$$

with the unit 3-vector \mathbf{n} given by

$$
\mathbf{n}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

and the Mandelstam variable t is

$$
t=\left(p_{1}-q_{1}\right)^{2}=m_{1}^{2}+m_{3}^{2}-2 E_{p_{1}} E_{q_{1}}+2\left|\mathbf{p}_{1}\right|\left|\mathbf{q}_{1}\right| \cos \theta
$$

Now write the expression for the cross-section as

$$
\sigma=\int \frac{d^{3} \mathbf{q}_{\mathbf{1}}}{(2 \pi)^{3} 2 E_{q_{1}}} \frac{d^{4} q_{2}}{(2 \pi)^{3}}\left(\delta\left(q_{2}^{2}-m_{4}^{2}\right)(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-q_{1}-q_{2}\right) \frac{|\mathcal{M}|^{2}}{F}\right.
$$

where we have written the phase-space measure for q_{1} in non-relativistic form. We can now use the integral over $d^{4} q_{2}$ to absorb the energy-momentum conserving delta-function, but remember that q_{2} must be replaced by $p_{1}+p_{2}-q_{1}$ inside the delta-function $\delta\left(q_{2}^{2}-m_{4}^{2}\right)$, so that we are now left with

$$
\begin{gathered}
\sigma=\frac{1}{(2 \pi)^{2}} \int \frac{d^{3} \mathbf{q}_{\mathbf{1}}}{2 E_{q_{1}}} \delta\left(\left(p_{1}+p_{2}-q_{1}\right)^{2}-m_{4}^{2}\right) \frac{|\mathcal{M}|^{2}}{F} \\
d^{3} \mathbf{q}_{\mathbf{1}}=d \cos \theta d \phi\left|\mathbf{q}_{\mathbf{1}}\right|^{2} d\left|\mathbf{q}_{\mathbf{1}}\right|
\end{gathered}
$$

The integration over ϕ introduces a factor of 2π. We want to replace the integral over $\cos \theta$ by an integral over t. From the expression for t we have

$$
d \cos \theta=\frac{d t}{2\left|\mathbf{p}_{\mathbf{1}}\right|\left|\mathbf{q}_{\mathbf{1}}\right|}
$$

In the centre-of-mass frame,

$$
\left(p_{1}+p_{2}\right)^{\mu}=(s, 0,0,0)
$$

so that the argument of the remaining delta-function is

$$
\left(s-2 \sqrt{s} E_{q_{1}}+m_{3}^{2}-m_{4}^{2}\right)
$$

Furthermore since $E_{q_{1}}^{2}=m_{3}^{3}+\left|\mathbf{q}_{1}\right|^{2}$, we have

$$
\left|\mathbf{q}_{1}\right| d\left|\mathbf{q}_{\mathbf{1}}\right|=E_{q_{1}} d E_{q_{1}}
$$

so that

$$
\frac{d^{3} \mathbf{q}_{\mathbf{1}}}{2 E_{q_{1}}}=\frac{d \phi d t}{2\left|\mathbf{p}_{\mathbf{1}}\right|\left|\mathbf{q}_{\mathbf{1}}\right|}\left|\mathbf{q}_{\mathbf{1}}\right| \frac{E_{q_{1}}}{2 E_{q_{1}}} d E_{q_{1}},
$$

leaving (after integration over ϕ)

$$
\frac{d \sigma}{d t}=\frac{1}{2 \pi} \int \frac{d E_{q_{1}}}{4\left|\mathbf{p}_{1}\right|} \delta\left(s-2 \sqrt{s} E_{q_{1}}+m_{3}^{2}-m_{4}^{2}\right) \frac{|\mathcal{M}|^{2}}{F}
$$

Performing the integration over $E_{q_{1}}$ to absorb the remaining delta-function an inserting the expression for the flux, F, we have

$$
\frac{d \sigma}{d t}=\frac{1}{16 \pi\left|\mathbf{p}_{\mathbf{1}}\right| \sqrt{s}} \frac{|\mathcal{M}|^{2}}{2 \lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right)}
$$

But

$$
\left|\mathbf{p}_{\mathbf{1}}\right|=\frac{\lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right)}{2 \sqrt{s}}
$$

and so we finally end up with

$$
\frac{d \sigma}{d t}=\frac{1}{16 \pi \lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}|\mathcal{M}|^{2}
$$

Note that $\lambda^{1 / 2}$ is only real if $s>\left(m_{1}+m_{2}\right)^{2}$, which is the physical threshold for the scattering to occur.

In the ϕ^{3} case (with equal masses) that we have been considering we therefore have

$$
\frac{d \sigma}{d t}=\frac{g^{4}}{16 \pi s\left(s-4 m^{2}\right)}\left(\frac{1}{\left(s-m^{2}\right)}+\frac{1}{\left(t-m^{2}\right)}+\frac{1}{\left(3 m^{2}-s-t\right)}\right)^{2} .
$$

(Note that we have used $u=4 m^{2}-s-t$).

The integration over t needed to calculate the total cross-section is often very messy. The limits on t are obtained in terms of $\cos \theta= \pm 1$ giving

$$
\begin{aligned}
& t_{\text {min }}=m_{1}^{2}+m_{3}^{2}-2 E_{p_{1}} E_{q_{1}}-2\left|\mathbf{p}_{\mathbf{1}}\right|\left|\mathbf{q}_{\mathbf{1}}\right| \\
& t_{\text {max }}=m_{1}^{2}+m_{3}^{2}-2 E_{p_{1}} E_{q_{1}}+2\left|\mathbf{p}_{\mathbf{1}}\right|\left|\mathbf{q}_{\mathbf{1}}\right|
\end{aligned}
$$

In this case where all the masses are equal, the energies of the particles are equal and so are the magnitude of their three-momenta (in the centre-of-mass frame) and this simplifies to

$$
\begin{gathered}
t_{\min }=-\left(s-4 m^{2}\right) \\
t_{\max }=0
\end{gathered}
$$

Furthermore, we can obtain the differential cross-section with respect to the centre-of-mass scattering angle, θ by

$$
\frac{d \sigma}{d \cos \theta}=2\left|\mathbf{p}_{\mathbf{1}}\right|\left|\mathbf{q}_{1}\right| \frac{d \sigma}{d t}
$$

Again, if all the masses are equal this simplifies to

$$
\frac{d \sigma}{d \cos \theta}=\frac{\left(s-4 m^{2}\right)}{2} \frac{d \sigma}{d t}
$$

Sometimes differential cross-sections are quoted in terms of $\frac{d \sigma}{d \Omega}$ where Ω is the solid angle. This is what is measured directly as a detector will subtend a given element of solid angle $d \Omega$. This is simply obtained by not performing the integration over the azimuthal angle ϕ, i.e.

$$
\frac{d \sigma}{d \Omega}=\frac{1}{2 \pi} \frac{d \sigma}{d \cos \theta}
$$

again this quantity is frame dependent and different in a collider experiment from a fixed-target experiment.

