
9 Lorentz Invariant phase-Space

9.1 Cross-sections

The scattering amplitude
M ≡ 〈q1,q2,out|p1, p2, in〉

is the amplitude for a state |p1, p2〉 to make a transition into the state |q1,q2〉. The transition
probability is the square modulus of this quantity. But here we have a problem. Let us write

M = M (2π)4δ4(p1 + p2−q1−q2).

The square of the energy-momentum conserving delta-function is not defined.

The problem arises because we do not have incoming states which are perfect eigenstates of mo-
mentum, but rather a wave-packet, which is a weighted superposition of such states, so that in
“in”-state is really

|in > =
Z

d3p1

(2π)32E1

d3p2

(2π)32E2
f1(p1) f2(p2)|p1, p2〉,

where f1 and f2 are the Fourier transforms of the wavefunctions of the incident particles. The
transition probability, W , is now given by

W =

Z

d3p1

(2π)32E1

d3p2

(2π)32E2

Z

d3p′1
(2π)32E ′1

d3p′2
(2π)32E ′2

f1(p1) f2(p2) f ∗1 (p′1) f ∗2 (p′2)

(2π)8δ4(q1 +q2− p1− p2)δ4(p1 + p2− p′1− p′2)|M |2

We can write the second delta-function as

(2π)4δ4(q1 +q2− p′1− p′2) =
Z

d4xei(p1+p2−p′1−p′2)·x,

and perform the integration over p1
′,p2

′ (the inverse Fourier transform) to get an expression in
terms of the wave-functions, ψ1(x), ψ2(x) of the incoming particles. For incoming wavepackets
which are sharply peaked at p1 and p2, this integration approximates to

W =
Z

d4x
|ψ1(x)|2

2E1

|ψ2(x)|2
2E2

(2π)4δ4(q1 +q2− p1− p2)|M |2

The transition rate per unit volume is

dW
d3xdt

=
(2π)4δ4(q1 +q2− p1− p2)

4E1E2
|M |2|ψ1(x)|2|ψ2(x)|2

= dσ×flux
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dσ is the differential cross-section for the initial state to go into the state |q1,q2〉, and the flux
factor, F , is the probability to find particle 1 per unit volume multiplied by the probability to find
particle 2 per unit volume multiplied by their relative velocity, v.

F = |ψ1(x)|2|ψ2(x)|2v.

In the rest-frame of one of the particles (2) the relative velocity is given by v = |p1|
E1

. Remembering
that the states are relativistically normalised, the square-wavefunction for an (almost) momentum
eigenstate can be replaced by 2E and so we have, in the rest frame of particle 2

F = 4E1E2v = 4|p1|E2 = 4|p1|m2.

This can be written in manifest Lorentz invariant form as

F = 4m2

√

E2
1 −m2

1 = 4
√

(p1 · p2)2−m2
1m2

2

Since this latter expression is in terms of masses and Lorentz-invariant scalar products of 4-
momenta, it is a Lorentz invariant expression. We can write

F = 2λ1/2(s,m2
1,m

2
2),

with λ (as before) given by

λ(x,y,z) = x2 + y2 + z2−2xy−2xz−2yz.

Thus finally we end up with an expression for thew differential cross-section

dσ =
(2π)4δ4(q1 +q2− p1− p2)|M |2

F
.

9.2 Lorentz-invariant phase-space (LIPS) integration

dσ is the cross-section for a transition into the state |q1,q2〉. The total cross-section is obtained by
integrating over all possible final state momenta using the Lorentz invariant measure.

DLIPS =
d4q1
(2π)3

d4q2
(2π)3 δ(q2

1−m2
3)θ(q0

1)δ(q2
2−m2

4)θ(q0
2),

where we have taken the masses of the outgoing particles to be m3 and m4. In general, if we have
n final-state particles the Lorentz-invariant phase-space is given by

DLIPS =
n

∏
i=1

d4q1
(2π)3 δ(q2

i −m2
i )θ(q0

i ).

It will be convenient to write some of these factors in the non-manifestly Lorenz invariant form

d3q1

(2π)32Eq1
,

35



and choose a suitable frame in which to perform the integration.

Thus the rules for calculating the total cross-section are

1. Calculate the matrix element M from the Feynman rules, omitting the energy-momentum
delta-function (2π)4δ4(∑i(qi)− p1− p2).

2. The cross-section for n-particles in the final state is

σ =
n

∏
i=1

Z

d4qi

(2π)3 δ(q2
i −m2

i )θ(q0
i )(2π)4δ4(∑

i
(qi)− p1− p2)

|M |2
F

.

Returning to the case of two final-state particles, we may not want the total cross section but a
quantity such as dσ

dθ , where θ is the scattering angle. Since this is frame-dependent it would be
better to calculate a quantity such as dσ

dt , and then transform the result into the differential cross-
section w.r.t scattering angle in a chosen frame.

Since we are then calculating a Lorentz invariant quantity, we are at liberty to consider the system
in a convenient frame of reference. For the two final-state case the easiest frame is the centre-of-
mass frame for which the incoming momenta p1, p2 are given by

pµ
1 =

(

√

p2 +m2
1,0,0, p

)

pµ
2 =

(

√

p2 +m2
2,0,0,−p

)

Using the definitions of the Mandelstam variable s and λ this can be written as

pµ
1 =

(

s+m2
1−m2

2
2
√

s
,0,0,

λ1/2(s,m2
1,m

2
2)

2
√

s

)

pµ
2 =

(

s+m2
2−m2

1
2
√

s
,0,0,−λ1/2(s,m2

1,m
2
2)

2
√

s

)

Likewise the outgoing momenta may be written as

qµ
1 =

(

√

q2 +m2
3,qsinθcosφ,qsinθsinφ,qcosθ

)

qµ
2 =

(

√

q2 +m2
4,−qsinθcosφ,−qsinθsinφ,−qcosθ

)

,
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where θ,φ are the polar angles of the outgoing particle with momentum q1. Since s may also be
written s = (q1 +q2)2 we can perform the same manipulations to obtain

qµ
1 =

(

s+m2
3−m2

4
2
√

s
,
λ1/2(s,m2

3,m
2
4)

2
√

s
n

)

qµ
1 =

(

s+m2
4−m2

3
2
√

s
,−λ1/2(s,m2

3,m
2
4)

2
√

s
n

)

with the unit 3-vector n given by

n = (sinθcosφ,sinθsinφ,cosθ)

and the Mandelstam variable t is

t = (p1−q1)
2 = m2

1 +m2
3−2Ep1Eq1 +2|p1||q1|cosθ

Now write the expression for the cross-section as

σ =

Z

d3q1

(2π)32Eq1

d4q2
(2π)3 (δ(q2

2−m2
4)(2π)4δ4(p1 + p2−q1−q2)

|M |2
F

,

where we have written the phase-space measure for q1 in non-relativistic form. We can now use
the integral over d4q2 to absorb the energy-momentum conserving delta-function, but remember
that q2 must be replaced by p1 + p2− q1 inside the delta-function δ(q2

2−m2
4), so that we are now

left with
σ =

1
(2π)2

Z

d3q1

2Eq1
δ((p1 + p2−q1)

2−m2
4)
|M |2

F

d3q1 = d cosθdφ|q1|2d|q1|
The integration over φ introduces a factor of 2π. We want to replace the integral over cosθ by an
integral over t. From the expression for t we have

d cosθ =
dt

2|p1||q1|

In the centre-of-mass frame,
(p1 + p2)

µ = (s,0,0,0),

so that the argument of the remaining delta-function is

(s−2
√

sEq1 +m2
3−m2

4)

Furthermore since E2
q1 = m3

3 + |q1|2, we have

|q1|d|q1|= Eq1dEq1,
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so that
d3q1

2Eq1
=

dφdt
2|p1||q1|

|q1|
Eq1

2Eq1
dEq1,

leaving (after integration over φ)

dσ
dt

=
1

2π

Z

dEq1

4|p1|
δ(s−2

√
sEq1 +m2

3−m2
4)
|M |2

F

Performing the integration over Eq1 to absorb the remaining delta-function an inserting the expres-
sion for the flux, F , we have

dσ
dt

=
1

16π|p1|
√

s
|M |2

2λ1/2(s,m2
1,m

2
2)

But

|p1| =
λ1/2(s,m2

1,m
2
2)

2
√

s
,

and so we finally end up with

dσ
dt

=
1

16πλ(s,m2
1,m

2
2)
|M |2

Note that λ1/2 is only real if s > (m1 + m2)2, which is the physical threshold for the scattering to
occur.

In the φ3 case (with equal masses) that we have been considering we therefore have

dσ
dt

=
g4

16πs(s−4m2)

(

1
(s−m2)

+
1

(t−m2)
+

1
(3m2− s− t)

)2
.

(Note that we have used u = 4m2− s− t).

The integration over t needed to calculate the total cross-section is often very messy. The limits on
t are obtained in terms of cosθ =±1 giving

tmin = m2
1 +m2

3−2Ep1Eq1−2|p1||q1|

tmax = m2
1 +m2

3−2Ep1Eq1 +2|p1||q1|
In this case where all the masses are equal, the energies of the particles are equal and so are the
magnitude of their three-momenta (in the centre-of-mass frame) and this simplifies to

tmin = −(s−4m2)

tmax = 0
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Furthermore, we can obtain the differential cross-section with respect to the centre-of-mass scat-
tering angle, θ by

dσ
d cosθ

= 2|p1||q1|
dσ
dt

Again, if all the masses are equal this simplifies to

dσ
d cosθ

=
(s−4m2)

2
dσ
dt

Sometimes differential cross-sections are quoted in terms of dσ
dΩ where Ω is the solid angle. This

is what is measured directly as a detector will subtend a given element of solid angle dΩ. This is
simply obtained by not performing the integration over the azimuthal angle φ, i.e.

dσ
dΩ

=
1

2π
dσ

d cosθ
.

again this quantity is frame dependent and different in a collider experiment from a fixed-target
experiment.
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