QUANTUM FIELD THEORY 1
 Problem sheet 2

1. By expanding a complex scalar field in terms of creation and annihilation operators show that

$$
\begin{aligned}
{[\phi(x), \phi(y)] } & =0 \\
{\left[\pi^{\dagger}(x), \phi(y)\right] } & =0 \\
{[\pi(x), \phi(y)]_{x_{0}=y_{0}} } & =-i \delta^{3}(\mathbf{x}-\mathbf{y})
\end{aligned}
$$

2. For a complex scalar field, derive expressions for the creation and annihilation operators for the particles and antiparticles in terms of the field, $\phi(x)$ its hermitian conjugate $\phi^{\dagger}(x)$ and their time derivatives.
Hence write down the LSZ reduction formula for the S-matrix element for a particle with momentum p_{1} and an antiparticle of momentum p_{2} scattering into a particle of momentum q_{1} and an antiparticle of momentum q_{2}.
