QUANTUM FIELD THEORY 1
 Problem sheet 3

1. Consider the scattering process

$$
1+2 \rightarrow 3+4
$$

where particles $1,2,3,4$ have different masses m_{1}, m_{2}, m_{3} and m_{4}. Calculate the energies of particles 1 and 3 and $\cos \theta$, where θ is the scattering angle between particles 1 and 3 , in terms of the Mandelstam variables s and t and the masses:
(a) In the centre-of-mass frame.
(b) In the rest frame of particle 2
2. For a theory of two real scalar particles ϕ and χ, whose Lagrangian density is given by

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}+\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi-\frac{1}{2} M^{2} \chi^{2}-\frac{g}{2} \chi \phi^{2}
$$

Calculate (to leading order in g) the differential cross-section $\frac{d \sigma}{d t}$ for the process

$$
\phi+\chi \rightarrow \phi+\chi
$$

