
QUANTUM FIELD THEORY 3

Syllabus

• Higher order perturbative corrections in φ3 theory

• Renormalization

• Renormalization in QED

• The renormalization group - β−functions

• Infrared and collinear singularities

• Causality, unitarity and dispersion relations.
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1 Loop corrections in φ3 Theory

Consider the Lagrangian density for a scalar particle of mass m with cubic self-interaction with
coupling constant λ

L =
1
2
(

∂µφ
)2 −m2φ2 − λ

3!φ3

We wish to calculate the scattering amplitude for two particles of momenta, p1 and p2 into two
particles with momenta p3 and p4.

The Feynman rules for the nth order perturbative contribution are:

1. Draw all the possible Feynman graphs with n vertices.

2. Write a factor of 1/
√

Z for each external line (this will be explained later).

3. Write a factor of
i

k2 −m2 + iε
for each internal propagator with momentum k (we take the limit ε → 0, but we need to keep
this term to guarantee the proper time-ordering).

4. Write a factor of iλ at each vertex.

5. Introduce an energy-momentum conserving δ−function, (2π)4δ4(k1 + k2 + k3) for a vertex
between particles with momenta k1,k2 and k3.

6. Integrate over d4ki/(2π)4 for each internal line of momentum ki.

At order λ2 we just have the three tree diagrams

p2

p1

(p1 + p2)

p4

p3

p2

p1

(p1 − p3)

p4

p3

p2

p1

(p1 − p4)

p3

p4
(a) (b) (c)

In each diagram, the integration over the internal particle momentum is “soaked up” by one of the
energy-momentum conserving δ−functions and we are left with one overall delta function

(2π)4δ4(p1 + p2 − p3 − p4),

which multiplies the entire amplitude.
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For example, the contribution from tree-graph (a) is

−i
λ2

(s−m2)
, (1.1)

where we have suppressed the overall energy-momentum conserving δ−function and used s =
(p1 + p2)2.

At the next order λ4 we have graphs which contain one “loop” of internal particles and we will
indeed need to integrate over an internal momentum.

For the corrections to the tree-graph (a), we have the following types of one-loop Feynman graphs

• Self-energy corrections:

• Vertex corrections:

• Box graphs: These “box graphs” are generic one-loop graphs and cannot be associated with
specific tree-level graphs (unlike the vertex or self-energy correction graphs)
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Note that each of these graphs has three more internal lines than the tree-level graph and two more
vertices. There is therefore a remaining integral over one of the internal momenta.

1.1 Vertex Corrections:

We will concentrate first on one of the vertex graphs

(p1 + p2)

(k− p3 − p4)

(k− p3)
k

p3

p4

We have implemented the energy-momentum conserving δ-functions, by ensuring that momentum
is conserved at each vertex. There is a remaining internal momentum l over which we need to
integrate.

The contribution to the scattering amplitude from this term is

λ4

(p1 + p2)2 −m2 + iε)

Z

d4k
(2π)4

1
(k2 −m2 + iε)((k− p3)2 −m2 + iε)((k− p3 − p4)2 −m2 + iε)

(1.2)

We have suppressed the overall energy-momentum conserving δ−function and also the factor
1/Z2, since Z has a perturbation expansion and is unity at leading order, i.e.

Z = 1+O(λ2),

so we do not need it to this order in perturbation theory.

Using the on-shell condition p2
3 = m2 and (p1 + p2)2 = (p3 + p4)2 = s we may write this as

λ4

(s−m2 + iε)

Z

d4k
(2π)4

1
(k2 −m2 + iε)(k2 −2k · p3 + iε)(k2 −2k · (p3 + p4)+ s−m2 + iε)

(1.3)

The integration over k is implemented using the following steps:
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• Feynman parametrize:
Here we use the relation

1
a1 a2 · · ·an

= (n−1)!
Z 1

0
dα1dα2 · · ·dαn

δ(1−∑i αi)

(a1α1 +a2α2 · · ·+anαn)
n (1.4)

Using this, the integral in eq.(1.3) may be written

2
Z

d4k
(2π)4 dαdβdγ

δ(1−α−β− γ)
(k2 −m2 −2k · (p3(α+β)+ p4β)+ sβ+m2α)

3 , (1.5)

where we have used α+β+ γ = 1 in the k2 and m2 terms.

• Shift integration variable:

kµ → kµ + pµ
3(α+β)+ pµ

4β
The integral now becomes

2
Z

d4k
(2π)4 dαβdγ

δ(1−α−β− γ)
(k2 −A2 + iε)3 , (1.6)

where

A2 = −sβ−m2α+(p3(α+β)+ p4β)2 = −sβ(1−α−β)+m2(1−α(1−α))

(we have used (p3 + p4)2 = s and p2
3 = p2

4 = m2)

• Integration over k:
This is most easily achieved by rotating k0 to ik4 and performing the integral in Euclidean
space.

2
Z

k3dkdΩ
(2π)4 dαdβdγ

δ(1−α−β− γ)
(k2 +A2 + iε)3 , (1.7)

The integration over Ω gives 2π2, the area of a three-dimensional spherical surface, and
Z

k3dk
(k2 +A2)n =

(n−3)!
2(n−1)!(A2)(n−2)

,

(provided n > 2).
We end up with

i
16π2

Z 1

0
dαdβdγ

δ(1−α−β− γ)
(s(1−α−β)β−m2(1−α(1−α))+ iε)

(1.8)

The integration over γ can be done trivially to give

i
16π2

Z 1

0
dαdβ

θ(1−α−β)

(s(1−α−β)β−m2(1−α(1−α))+ iε)
(1.9)
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We will leave the result in terms of this integral - whose exact value would be different in the more
realistic cases where the masses of the internal particles were not the same. We note, however, that
in general the integral has an imaginary part arising form the fact that

ℑm

(

1
(s(1−α−α)β−m2(1−α(1−α))+ iε)

)

=

−πδ
(

s(1−α−β)β−m2(1−α(1−α))
)

We write the contribution from this graph to the scattering amplitude as

−i
λ4

(s−m2)
∆F(s) (1.10)

What this means is that the right-most coupling λ is replaced by an effective coupling, which
depends on the square momentum s coming into the vertex.

λ → λ
(

1+λ2∆F(s)
)

. (1.11)

This means that the coupling is not really constant, but depends on the momenta coming into the
vertex.

We now have to give a definition of the coupling in terms of some measurement, which we call the
“renormalized coupling constant”. There is some arbitrariness in this definition and we call this
arbitrariness “renormalization scheme dependence”.

The coupling parameter that we started off with is called the “bare coupling” and is written λ0. t is
not directly measurable.

Thus, for example, we could define the renormalized coupling to be the coupling in which all
momenta coming into the vertex are on shell, i.e. we set (s = m2) and obtain the renormalized
coupling as

λR =
λ0
Z1

, (1.12)

where (to order λ2)
Z1 =

(

1−λ2∆F(m2)
)

. (1.13)

This renormalized coupling can be measured experimentally, and we wish to express the scattering
amplitude in terms of this physically measured coupling. To do this we subtract off a “countert-
erm” corresponding to the conversion of the expression (1.10) into an expression in terms of this
renormalized coupling, i.e. adding the contribution (1.10) to

−i
λ2

R

(s−m2)

(

1+λ2
R

(

∆F(s)−∆F(m2)
))

. (1.14)
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(The replacement of λ by λR in the correction term does not affect the result at this order in
perturbation theory).

The renormalization scheme we have chosen here is called the “on-shell” scheme since it defines
the renormalized coupling as the value of the three-point coupling when all three particles are
on-shell.

We could have chosen to define λR at the coupling at some value s = µ2, so that eq.(1.13) becomes

Z1 =
(

1−λ2∆F(µ2)
)

. (1.15)

and eq.(1.14) becomes

−i
λ2

R(µ2)

(s−m2)

(

1+λ2
R

(

∆F(s)−∆F(µ2)
))

. (1.16)

The numerical values of eqs.(1.14 and 1.16) are identical (up to order λ4) - the explicit µ depen-
dence appearing in eq.(1.16) being compensated by the µ2 dependence of λR(µ2).

We need not have chosen any directly measurable way to define λR. For example we could have
defined λR(µ) as the coupling of the interaction in which all particles are off-shell with square
momentum µ2. This is often done and it is called the “MOM” scheme. In this scheme the subtrac-
tion would again be different and we would get a different expression for the contribution to the
scattering amplitude in terms of λMOM

R (µ2), but the numerical value would again be the same once
we had inserted the corresponding value of the renormalized coupling.

1.2 Self-energy Corrections:

Now we look at the “self-energy” graphs. These are the ones in which the loop has one incoming
and one outgoing line (sometimes also called the “two-point function”).

X Xp

k →

(k− p)

The crosses on the external lines indicate that they have been “truncated” - i.e. the external line
propagators are not included in the calculation of the graph.

Define the “self-energy” function, Σ(p2) such that the contribution from the self-energy diagram
is −iΣ(p2). This is also a function of the particle mass, m and the coupling λR.
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Putting back the external propagators, gives (suppressing the iε)

iΣ(p2)

(p2 −m2)2

+ + · · ·

It looks as though this has a double pole at p2 = m2, but if we sum over all the possible numbers
of self-energy insertions (including no insertions) we get a geometric series who sum is

i
(p2 −m2 −Σ(p2))

(1.17)

and this is how the propagator is modified by the self-energy insertions.

Expand Σ(p2) about p2 = m2
R as

Σ(p2) =
1
Z

(

(m2
R−m2)+(Z−1)(p2 −m2)+ΣR(p2)

)

(1.18)

The quantity ΣR(p2) vanishes quadratically as p2 → m2
R. (The factor Z in the denominator is

unnecessary to this order but would be required for higher order calculations). Inserting this into
the expression for the corrected propagator, (1.17) gives

iZ
(

p2 −m2
R −ΣR(p2)

)

We see that the pole has moved to mR. This “renormalized mass” is therefore the physical mass
and the parameter, m, used in the Lagrangian is the bare mass and is henceforth written as m0. Note
that in general Σ(p2) will be complex. For a resonance of an unstable particles, the imaginary part
of mR is the half-width Γ/2 of the resonance..

In the same way, the field φ, which appears in the Lagrangian are “bare fields”,

φB =
√

ZφR

These are interacting fields which tend asymptotically (in time) to free in or out free-fields.

φB(x, t)
t→±∞→ φin(out)(x, t)

It is the propagator of these free fields φin or φout which behave like i/(p2−m2
R)

The upshot of this is twofold:
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1. The LSZ reduction for an S-matrix element in terms of Green functions (i.e. vacuum ex-
pectation values of time-ordered products of fields) should have a factor of 1/

√
Z for each

external line. This is the origin of the factor in th Feynman rules mentioned previously.

2. The renormalization of the coupling constant has a factor of
√

Z for each line coming into
the vertex, i.e. a factor of Z3/2. So that Eq.(1.12) becomes

λR =
Z3/2

Z1
λ0, (1.19)

For a self-energy insertion on an internal line the factor of Z is absorbed because a factor of
√

Z
is absorbed into the renormalization of the coupling a either end of the internal propagator. For
a self-energy insertion on an external line a factor of

√
Z is absorbed into the renormalization of

the coupling where the external line is attached to the rest of the graph and a factor of
√

Z cancels
against the factor 1/

√
Z in the Feynman rule obtained from the more careful derivation of the LSZ

reduction.

Calculation of mR and Z:
Applying the Feynman rules to the self-energy diagram, we have

Σ(p2) = i
1
2λ2

R

Z

d4k
(2π)4

1
(k2 −m2)((k− p)2 −m2)

. (1.20)

λR should really be λ0, but to this order in perturbation theory we can use the renormalized coupling
- (finally we want an expansion in terms of the renormalized coupling since this is related directly
to a physically measurable quantity). Moreover m should be taken to mean mR.

The factor of 1
2 is a “combinatorial” factor and is determined as follows:

• Expanding the exponential of the interacting part of the action we have, at order λ2

1
2!

(

λ
3!

)2(Z

d4xφ3(x)

)2

•
6 3 + 6 3

There are six ways, to select one of the external lines, three ways to select the other external
line (which must be attached to the other vertex) and two ways to join the remaining lines
together as internal propagators.

• This gives a total combinatorial factor of

6×3×2× 1
2!

×
(

1
3!

)2
=

1
2
.
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It is necessary to determine the combinatorial factor for each graph. had we done so for the vertex
graphs we would have obtained a combinatorial factor of unity.

Write Eq.(1.20) as

Σ(p2) = i
1
2λ2

R

Z

d4k
(2π)4

1
(k2 −m2)(k2−2p · k + p2 −m2)

. (1.21)

Note that we cannot set p2 = m2 here.

Now introduce the trick of Feynman parametrization

Σ(p2) = i
1
2

λ2
R

Z

d4k
(2π)4

Z 1

0
dαdβ

δ(1−α−β)

(k2 −2αp · k + p2α−m2)2 ., (1.22)

(we have used α+β = 1 in the coefficents of k2 and m2).

Shift kµ → kµ +αpµ to get

Σ(p2) = i
1
2λ2

R

Z

d4k
(2π)4

Z 1

0
dα

1
(k2 + p2α(1−α)−m2)2 . (1.23)

(We have performed the integral over β absorbing the δ−function).

In Euclidean space, after integrating over the angles this is

Σ(p2) = − 1
16π2 λ2

R

Z 1

0
dα

Z

k3dk
1

(k2 − p2α(1−α)+m2)2 . (1.24)

This integral is divergent. The divergence is called “ultraviolet” as it arises from the l → ∞ end of
the integral.

The modern view of such divergences is that there is some ‘new physics’ at some high scale which
serves to regulate these divergences. The most popular such theory is string theory in which what
we call point particles are really extended objects with a length of order 1/Λ. The point-like field
theory that we use is valid up to a scale of order Λ, above which the string-like properties provide a
cutoff for these effective integrals which is of order Λ. Several string theories have been identified
which have been shown to be ultraviolet finite when treated correctly - these divergences occurring
only when one makes the approximation that the strings can be treated as point-like particles.

What we need to ensure is that physically measurable quantities are independent of the cut-off Λ.

For the self-energy in the φ3 theory introducing the cut-off gives

Σ(p2) = − λ2
R

32π2

Z 1

0
dα ln

(

Λ2

(m2 − p2α(1−α))

)

(1.25)
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The divergence means that the bare mass depends on the cut-off

m2
0 = m2

R−
λ2

R

32π2

Z 1

0
dα ln

(

Λ2

m2(1−α(1−α)

)

(1.26)

As we go to higher orders in perturbation theory the bare mass m0 is adjusted by terms which
depend on the cutoff, in such a way that the renormalized mass mR is the physical mass that is
measured. m0 is not directly observable and so its cut-off dependence is not important.

In most renormalizable theories, such as QED and QCD, the renormalization constants Z and Z1
are also cut-off dependent (UV divergent). This, in turn, means that the bare coupling is cut-off
dependent in such a that the renormalized coupling is related to a physical measurable in a cut-off
independent way.

In the φ3 case Z is cut-off independent and is given by

(Z−1) =
∂

∂p2 Σ(p2)|p2=m2 = − λ2
R

32π2

Z 1

0
dα

α(1−α)

m2(1−α+α2)
. (1.27)

To calculate the scattering amplitude we also need to consider the box-graphs. These are alge-
braically very complicated, but in a φ3 theory they do not introduce ultraviolet divergences and are
not associated with the renormalization of any of the parameters of the theory.
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