
3 One-Loop Counterterms in QED

3.1 Fermion Self-energy

p

k

(p− k)

µ ν

We work in Feynman gauge. Applying the rules of QED we have (in d dimensions)

Σ(p2,m) = iµ(4−d)
Z

ddk
(2π)d (−ieγµ)

i(γ · (p− k)+m)

(p− k)2 −m2 (−ieγν)
−igµν

k2 , (3.1)

where we have displayed explicitly the scale dependence of the coupling outside four dimensions.

Introducing Feynman parameters, we get

Σ(p2,m) = −i e2µ(4−d)
Z

ddk
(2π)d

Z 1

0
dα

Z 1

0
dβδ(1−α−β)

γµ (γ · (p− k)+m)γµ

(k2(α+β)−2p · k α+(p2−m2)α)
2

(3.2)

Now shift k → k + pα (and perform the trivial integral over β absorbing the δ-function)

Σ(p2,m) = −i e2µ(4−d)
Z

ddk

(2π)d

Z 1

0
dα

γµ (γ · p(1−α)+m)γµ

(k2 + p2(α(1−α)−m2α))2 (3.3)

We have omitted a term

−i e2µ(4−d)
Z

ddk

(2π)d

Z 1

0
dα

γµγ · kγµ

(k2 + p2(α(1−α)−m2α))
2 ,

which vanishes by symmetry since the numerator is odd in k, the denominator is even in k and we
must integrate over all directions of the vector k.

Setting d = 4−2ε, using γµγ · pγµ = −2(1− ε)γ · p, γµ γµ = 4−2ε and the result from eq.(2.6) we
have

Σ(p2,m) = − e2

(16π2)
Γ(ε)

Z 1

0
dα [2(1− ε)(1−α)γ · p− (4−2ε)m]

(

4πµ2

m2α− p2α(1−α)

)ε

(3.4)
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Expanding in ε and keeping only the terms which do not vanish as ε → 0, we get

Σ(p2,m) = − e2

(16π2)

[

Z 1

0
dα(2(1−α)γ · p−4m)

(

1
ε

+ ln(4π)− γE

)

+

Z 1

0
dα
(

2γ · p(1−α)−2m +(2(1−α)γ · p−4m) ln
(

m2α− p2α(1−α)

µ2

))]

(3.5)

Performing the integral over α except in the last term, this reduces to

Σ(p2,m) = − e2

(16π2)

[

(γ · p−4m)

(

1
ε

+ ln(4π)− γE

)

+

(

γ · p−2m +
Z 1

0
dα(2(1−α)γ · p−4m) ln

(

m2α− p2α(1−α)

µ2

))]

(3.6)

In order to obtain the (physical) mass subtraction term, δm, and the wavefunction renormalization
constant Z2, we must expand this in a power series in (γ · p−m), making use of the relation

p2 −m2 = (γ · p−m)(γ · p+m) = 2m(γ · p−m)+O((γ · p−m)2).

This enables us to expand the logarithm about p2 = m2. This gives

Σ(p2,m) =
e2

(16π2)

[

3m

(

1
ε

+ ln(4π)− γE

)

−m+2m
Z 1

0
dα(1−α) ln

(

m2α2

µ2

)]

+
e2

(16π2)

[

1− 1
ε
− ln(4π)+ γE +2

Z 1

0
(1−α) ln

(

m2α2

µ2

)

+4
Z 1

0
dα

(1−α2)

α

]

(γ · p−m)

+O((γ · p−m)2) (3.7)

The terms which are O((γ · p−m)2 and higher are finite and independent of the scale µ. They make
up the renormalized self-energy ΣR(p2,m). The last integral over α in eq.(3.7) diverges at α = 0.
This is a new type of divergence caused by the fact that the photon is massless - it is called an
“infrared divergence”. For the moment we regularize this infrared divergence by assigning a small
mass, λ to the photon wherever necessary (i.e. we only keep terms in λ which are not regular as
λ → 0. When we do this the last integral in eq.(3.7) becomes

Z 1

0
dα

α(1−α2)

α2 − (1−α)λ2/m2 =
1
2

(

ln(
m2

λ2 −1
)

+O(λ2).

Writing (to this order in perturbation theory),

Σ(p2,m) = δm+(Z2 −1)(γ · p−m)+ΣR(p2,m).

we have for the mass renormalization (introducing the fine-structure constant α = e2/(4π)),

δm = m
α
4π

[

3
(

1
ε

+ ln(4π)− γE

)

−1−2
Z 1

0
dα(1−α) ln

(

m2α2

µ2

)]

= 3m
α
4π

(

1
ε

+ ln(4π)− γE +
4
3

+ ln
(

m2

µ2

))

, (3.8)

24



and for the wavefunction renormalization constant,

Z2 = 1+
α
4π

[

1− 1
ε
− ln(4π)+ γE +2

Z 1

0
(1−α) ln

(

m2α2

µ2

)

+4
Z 1

0
dα

α(1−α2))

α2 +(1−α)λ2/m2

]

= 1+
α
4π

[

−1
ε
− ln

(

µ2

m2

)

+ γE − ln(4π)−4+2ln
(

m2

λ2

)]

. (3.9)

3.2 Photon Self-energy (Vacuum polarization)

q µ ν

k

(k−q)

The photon self-energy Πµν(q2) is, in general, a two-rank tensor, which is formed from the four-
momentum of the photon , qµ and the (invariant) metric tensor. It must therefore have the form

Πµν(q2) = A(q2)gµν +B(q2)qµqν.

On the other hand Πµν(q2) obeys a Ward identity

qµΠµν(q2) = 0.

This can be seen by writing
1

(γ · k−m)
qµγµ

1
(γ · (k−q)−m)

=
1

(γ · (k−q)−m)
− 1

(γ · k−m)

qµ µ ν
=

u

- = 0

u
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Applying this to the one-loop graph representing the photon self-energy, we get the difference
between two graphs in which one of the two internal fermion propagates has been killed. But these
two graphs are identical and so the difference is zero.

We may therefore write
Πµν(q2) =

(

−gµνq2 +qµqν)Π(q2) (3.10)
In other words only the transverse part of the photon propagator acquires a higher order correction.

The photon has no mass and therefore no mass renormalization. There is only a photon wavefunc-
tion renormalization constant Z3.

Π(q2) =
1
Z3

(

(Z3 −1)+ΠR(q2)
)

, (3.11)

where ΠR(q2) is the renormalized (finite) part of the self-energy. At the one-loop level the prefactor
1/Z3 in eq.(3.11) may be set to unity.

The fact that only the transverse part of the photon-propagator acquires a higher-order correction
means that the gauge parameter, ξ is renormalized. If we write the leading order propagator as

−i

[(

gµν − qµqν

q2

)

− (ξ−1)qµqν

q2

]

q2

The renormalized propagator is

−i
Z3
(

gµν − qµqν

q2

)

q2 (1−ΠR(q2))
+ i(ξ−1)

qµqν

q4 .

The transverse part of the propagator is renormalized but not the longitudinal part. Near q2 = 0,
the renormalized propagator looks like

−i
Z3
[(

gµν − qµqν

q2

)

− (ξR −1)qµqν

q2

]

q2 ,

where
(ξR−1) =

(ξ−1)

Z3
.

Now returning to the one-loop graph and inserting the Feynman rules, we get

Πµν(q2) = −iµ4−d
Z

ddk

(2π)d Tr
[

(−ieγµ)
i(γ · (k−q)+m)

((k−q)2−m2)
(−ieγν)

i(γ · k +m)

k2 −m2)

]

. (3.12)

An overall minus sign has been introduced for a loop of fermions. This arises form the fact that the
Wick contraction required to construct the Feynman graph requires an interchange of two fermion
fields, thereby introducing a minus sign.
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Feynman parametrization gives

Πµν(q2) = −ie2µ4−d
Z

ddk

(2π)d

Z 1

0
dαdβδ(1−α−β)

Tr [γµ(γ · (k−q)+m)γν(γ · k +m)]

(k2 −2k ·qα+q2α−m2)2 . (3.13)

Performing the trace (and integrating over β) gives

Πµν(q2) = 4 ie2µ4−d
Z

ddk
(2π)d

Z 1

0
dα

gµν (k · (k−q)−m2)−2kµkν + kµqν +qµkν

(k2 −2k ·qα+q2α−m2)2 . (3.14)

Shifting kµ → kµ +qµα we get

Πµν(q2) = 4 ie2µ4−d
Z

ddk
(2π)d

Z 1

0
dα

gµν (k2 −α(1−α)q2 −m2)−2kµkν +2α(1−α)qµqν

(k2 +q2α(1−α)−m2)2 ,

(3.15)
where once again we have omitted terms linear in k, which vanish by symmetric integration.

From eq.(3.10) it is sufficient to extract only the terms in the above integral which are proportional
to gµν. Using eqs.(2.6), (2.8) and (2.9) we have (setting d = 4−2ε)

−q2Π(q2) = − e2

4π2

Z 1

0
dα
(

4πµ2

m2 −q2α(1−α)

)ε[

Γ(ε−1)

(

1
2(4−2ε)−1

)

(

q2α(1−α)−m2)

−Γ(ε)
(

q2α(1−α)+m2)] (3.16)

Using

Γ(ε−1) = − Γ(ε)
(1− ε)

,

it can be seen that the RHS of eq.(3.16) becomes proportional to q2, so we have

Π(q2) = − e2

2π2 Γ(ε)
Z 1

0
dαα(1−α)

(

4πµ2

m2 −q2α(1−α)

)ε

(3.17)

Expanding in ε up to terms which vanish as ε → 0, and performing the integral over α where
appropriate, this gives

Π(q2) = − e2

12π2

[

1
ε

+ ln(4π)− γE −6
Z 1

0
dαα(1−α) ln

(

m2 −q2α(1−α)

µ2

)]

(3.18)

We define Z3 to be 1+Π(0), so that we have (in terms of the fine-structure constant, α)

Z3 = 1− α
3π

[

1
ε

+ ln(4π)− γE − ln
(

m2

µ2

)]

, (3.19)

and the renormalized photon self energy

ΠR(q2) = Π(q2)− (Z3 −1),
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is proportional to q2 so that it vanishes as the photon goes on mass-shell.

3.3 The Vertex Function

q

p p′

ρ ν
k

(p− k) (p′− k)

µ

The fermions have momenta p and p′ and the photon has momentum q = p′− p. In general, we
will have processes (such as Compton scattering of photons off electrons) in which one of the
fermion legs are internal and therefore off-shell. Here we restrict ourselves to fermion scattering
in which both the fermion legs are on-shell, i.e. p2 = p′2 = m2.

Using the Feynman rules the vertex correction factor, Γµ(p, p′) is given (in d-dimensions and in
Feynman gauge) by

Γµ(p, p′) = µ4−d
Z

ddk
(2π)d (−ieγν)

i(γ · (p′− k)+m)

((p′− k)2 −m2)
(γµ)

i(γ · (p− k)+m)

((p− k)2−m2)
(−ieγρ)

−igνρ

(k2 −λ2)
,

(3.20)
where we have introduced a small photon mass λ in anticipation of the fact that we will also have
infrared divergences here.

Introducing Feynman parameters (see eq.(1.4)), this may be written

Γµ(p, p′) = −i2e2µ4−d
Z

ddk

(2π)d

Z 1

0
dαdβdγ

δ(1−α−β− γ)N
(k2 −2k · (pα+ p′β)−λ2γ)3 , (3.21)

where N is the numerator

N = γν(γ · (p′− k)+m)γµ(γ · (p− k)+m)γν
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Shift k → k + pα+ p′β (and perform the integral over γ), to get

Γµ(p, p′) = −i2e2µ4−d
Z

ddk

(2π)d

Z 1

0
dαdβdγ

θ(1−α−β)(N2 +N0)

(k2 −λ2(1−α−β)−m2(α+β)2 +q2αβ)
3 ,

(3.22)
where we have made use the on-shell condition of the fermions and written p · p′ = m2 −q2/2.

N2 = kρkσγνγργµγσγν,

is the part of the integral which will give an ultraviolet divergence. Using eq.(2.8), the contribution
to the vertex correction function from this part is

Γµdiv(p, p′) =
e2

32π2 Γ(ε)
Z

dαdβθ(1−α−β)γνγσγµγσγν

(

4πµ2

(m2(α+β)2 −q2αβ)

)ε

=
e2

8π2 Γ(ε)
Z

dαdβθ(1−α−β)γµ(1− ε)2
(

4πµ2

(m2(α+β)2−q2αβ)

)ε

=

e2

16π2 γµ
[

1
ε

+ ln(4π)− γE −2−2
Z

dαdβθ(1−α−β) ln
(

(m2(α+β)2 −q2αβ)

µ2

)]

(3.23)

The N0 term does not lead to an ultraviolet divergence and may be calculated in four dimensions †

. We have
N0 = γν(γ · p′(1−β)− γ · pα+m)γµ(γ · p(1−α)− γ · p′β+m)γν,

which we may write as

N0 = −2(γ · p(1−α)− γ · p′β)γµ(γ · p′(1−β)− γ · pα)−2m2γµ +4m(1−α−β)(p+ p′)µ,

where we have used the symmetry under α ↔ β.

We can consider N0 to be sandwiched between fermion spinors ū(p′,m) and u(p,m). We have the
identity

(p+ p′)µ =
1
2
{

γ · (p+ p′),γµ} = γ · p′γµ + γµγ · p− 1
2qν [γν,γµ] = 2mγµ + iqνσµν

where in the last step we have used the fact that γ · p′ on the left or γ · p on the right generates
m since they are adjacent to fermion spinors. The matrices σµν are the generators of Lorentz
transformations in the spinor representation

σµν = − i
2

[γµ,γν]

Furthermore, we have
γ ·qγµγ ·q = 2qµγ ·q+q2γµ.

†Once again, the numerator term N1, which is linear in k after shifting, is omitted since it vanishes by symmetric
integration.
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The first term vanishes when sandwiched between fermion spinors leaving only the term q2γµ.

Using these relations the numerator N0 becomes

N0 =
(

8(1−α−β)−2−2(1−α−β)2)m2 −2(1−α)(1−β)q2)γµ

+4im((1−α−β)− (1−α)(1−β))qνσµν.

The counterterm associate wih the vertex is (Z1 −1)γµ, so we write

Γµ
R = Γµ +(Z1 −1)γµ,

where Γµ
R is the finite renormalized vertex correction.

The usual definition of the renormalized electromagnetic coupling is the coupling at zero momen-
tum transfer. In other words we must choose the renormalization constant Z1 such that Γµ

R(p, p) =
0, so that we get for

Z1 = 1+
e2

16π2

[

−1
ε
− ln(4π)+ γE − ln

(

µ2

m2

)

+2

+4
Z

dαdβθ(1−α−β)

{

ln(α+β)+m2 2(1−α−β)−1− (1−α−β)2

m2(α+β)2 +λ2(1−α−β)2

}]

. (3.24)

The last integral has an infrared divergence as λ → 0

The nested integral over α and β is most easily performed by the change of variables

α = ρω

β = ρ(1−ω)

The range of ρ and ω are now both from 0 to 1, and there is a factor of ρ from the jacobian. The
integrand depends only of ρ so the integral over ω just gives a factor of unity. We now have (in
terms of the fine-structure constant, α)

Z1 = 1+
α
4π

[

−1
ε
− ln(4π)+ γE − ln

(

µ2

m2

)

+2+4
Z 1

0
ρdρ

{

ln(ρ)+
2(1−ρ)−1− (1−ρ)2

ρ2 +(1−ρ)λ2/m2

}]

= 1+
α
4π

[

−1
ε
− ln(4π)+ γE − ln

(

µ2

m2

)

−4+2ln
(

m2

λ2

)]

(3.25)

Examination of eq.(3.9) shows that we have

Z1 = Z2.

This is to be expected fropm another Ward identity. As in the case of the photon propagator, we
can write

1
γ · (p′− k)−m

γ ·q 1
γ · (p− k)−m

=
1

γ · (p− k)−m
− 1

γ · (p′− k)−m
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which lead diagrammatically to the “Ward identity”

qµ

p p′

µ

= p - p′

qq

.

The dashed line just represents the insertion of the momentum q into the fermion line.

Thus we see a relation between the vertex correction and the self-energy of the fermion. One of
the consequences of this is that the divergent parts are related such that

qµ Γµdiv = Σdiv(p)−Σdiv(p′)

The LHS is (Z1 − 1)q · γ. The mass renormalization cancels out from the two terms on the RHS
and we are left with Z2(p′ · γ− p · γ).

The renormalized vertex function has a term proprtional to γµ and a term proprtional to qνσµν, and
may be written as

Γµ
R = γµF1(q

2) +
i

2m
qνσµνF2(q

2) (3.26)

The functions F1 and F2 which depend on q2 for the case of on-shell fermion legs are known as the
“electric” and “magnetic” form factors respectively.

The exact expressions for F1 and F2 are very complicated, but simplify in the limits q2 � m2 and
q2 � m2. For q2 � m2 we have:

F1(q
2) → 1− α

2π

[(

ln
(−q2

m2

)

−1
)

ln
(

m2

λ2

)

+ ln
(−q2

m2

)

−2
]

F2 ∼ q2

m2

For q2 � m2 we have:

F1(q
2) → 1+

α
3π

q2

m2

[

1
2

ln
(

m2

λ2

)

− 3
8

]

F2(q
2) → α

2π
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The magnetic form-factor in the limit q2 → 0 acts as a correction to the magnetic moment of the
electron, µ. In leading order

µ = gs
e

2m
,

with gs = 2. But in higher order
gs −2 =

α
2π

+ · · · .

This has now been measured for the muon up to one part in 109 and calculated in QED up to
five loops. The calculation up to three loops in QED agrees with experiment. There has recently
been reported a two standard deviation discrepancy between the experimental observation and the
theoretically calculated value. This discrepancy is assumed to be evidence for physics beyond the
Standard Model rather than a breakdown of the validity of QED.
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3.4 Ward Identities

The fact that qµΠµν(q2) = 0 and Z1 = Z2 are examples of Ward identities derived from the fact
that the interaction Hamiltonian density may be written eAµ(x) jµ(x), where jµ(x) is the conserved
electromagnetic current, i.e. ∂µ jµ = 0.

The photon propagator, Gµν(q2), can always be written as the tree-level contribution, Gµν
0 (q2)

plus a correction which may be expressed as the tree-level propagator multiplying the vacuum
expectation value of the time-ordered product of the electromagnetic current and the photon field.
This is because the first interaction of the free photon is always with the electromagnetic current,
i.e.

Gµν(q2) = Gµρ
0 (q2)

[

gρν − i
Z

d4xe−iq·x〈0|T jρ(x)Aν(0)|0〉
]

, (3.27)

where, in a general gauge, the tree-level propagator is

Gµν
0 (q2) = −i

(

gµν −ξqµqν

q2

)

q2

qµGµρ
0 (q2) = −iξ

qρ

q2

−iqρ
Z

d4xe−iq·x〈0|T jρ(x)Aν(0)|0〉 = −
Z

d4xe−iq·x ∂
∂xρ

〈0|T jρ(x)Aν(0)|0〉

= −
Z

d4xe−iq·x〈0| [ j0(x),Aν(0)] |0〉δ(x0) = 0

where the last term arises because the derivative w.r.t. xρ has to act on the time ordering operator
T giving rise to δ(x0), as well as acting on the current, giving a term which vanishes by current
conservation. The result is zero because the electromagnetic current and the photon field commute.

This then implies that
qµGµν(q2) = qµGµν

0 (q2),

i.e. the longitudinal part of the photon propagator does not acquire higher order corrections to any
order in perturbation theory.

We now apply the same technique to the quantity
Z

d4xd4yd4zei(p′·z−p·y−q·x)〈0|T jµ(x)Ψ(y)Ψ(z)|0〉 = S(p′)Γµ(p, p′)S(p)(2π)4δ4(p+q− p′),

where S(p) is the full electron propagator

S−1(p) = −i(γ · p−m−Σ(p))
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S(p) S(p′)

Γµ(p, p′)

p p′

q

Here the quantity denoted as Γµ is the one-particle-irreducible vertex calculated to all orders and
includes the tree level term eRγµ.

Contracting with qµ,

qµS(p′)Γµ(p, p′)S(p)(2π)4δ4(p+q− p′) = i
Z

d4xd4yd4zei(p′·z−p·y−q·x) ∂
∂xµ

〈0|T jµ(x)Ψ(y)Ψ(z)|0〉

Since ∂µ jµ = 0, we only pick up the contributions from the derivative acting on the time-ordering
operator so this gives

Z

d4xd4yd4zei(p′·z−p·y−q·x){〈0|T [ j0(x),Ψ(y)]Ψ(z)|0〉δ(x0− y0)

−〈0|T
[

j0(x),Ψ(z)
]

Ψ(y)|0〉δ(x0− z0)
}

,

where the relative minus sign arises from commuting two fermion fields. Using

j0(x) = Ψ†(x)Ψ(x)

and
{

Ψ(x),Ψ†(y)
}

δ(x0 − y0) = δ4(x− y)

the commutation relations give

[ j0(x),Ψ(y)]δ(x0 − y0) = −Ψ(y)δ4(x− y)
[

j0(x),Ψ(z)
]

δ(x0 − z0) = −Ψ(z)δ4(x− y).

Integrating over x to absorb the δ−functions, we get

qµS(p′)Γµ(p, p′)S(p)(2π)4δ4(p+q− p′) =

−i
Z

d4yd4ze−i 1
2 (q−p′+p)·(z+y)

[

eip′·(z−y)〈0|TΨ(y)Ψ(z)|0〉− eip·(y−z)〈0|TΨ(y)Ψ(z)|0〉
]

= i
(

S(p)−S(p′)
)

(2π)4δ4(p+q− p′) (3.28)

(here Γµ includes the tree diagram γµ as well as all higher order corrections).
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Dividing both sides the the external fermion propagators, this gives

qµΓµ(p, p′) = i
(

S−1(p′)−S−1(p)
)

=
(

Σ(p)−Σ(p′)+ γ · p− γ · p′
)

. (3.29)

This identity is clearly obeyed in leading order, where it becomes

γ ·q =
(

γ · p′−m
)

− (γ · p−m) .

We have shown that this works explicitly at the one-loop level. The above derivation establishes
the result to all orders in perturbation theory.

For very small momentum transfer qµ → 0 the identity reduces to

Γµ(p, p) = − ∂
∂pµ

(Σ(p)− γ · p) .

Before renormalization, Γµ(p, p) ( recall that this includes the tree-level contribution) is Z1 γµ so
we have:

γµ

Z1
= γµ

(

1− (Z2 −1
Z2

)

,

where we have written

Σ(p) =
1
Z2

(Z2δm+(Z2 −1)(γ · p−m))+O((γ · p−m)2).

We have thus established the relation
Z1 = Z2, (3.30)

to all orders in perturbation theory.

Had we calculated Z1 and Z2 in a different gauge we would have obtained different values. Z1 and
Z2 do not themselves correspond to physically measurable quantities and may therefore be gauge
dependent, but we always have the relation Z1 = Z2. Z3 is gauge invariant. Piecing this together we
therefore have the fact that the bare coupling, which is related to the renormalized coupling simply
by e0 =

√
Z3eR, is gauge invariant.

3.5 Finite Renormalization

We have defined the renormalized electromagnetic coupling constant to be the value of the cou-
pling of an electron to a zero momentum photon. This is a sensible definition but it is not unique.
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We could have chosen a different experiment, e.g. e+ e− scattering at the threshold s = 4m2, to
determine the coupling.

Alternatively, we could have chosen a definition which did not directly correspond to a real ex-
periment at all. For example, we could have made Γµ(p, p′) finite by subtracting the contribution
from the Feynman graph at an unphysical point where all three external legs had square momen-
tum p2 = −µ2. Furthermore, we could have subtracted the infinities in the electron propagator by
defining

δm = Σ(p,m)|γ·p=iµ

(Z2 −1) =
∂

∂(γ · p)
Σ(p,m)|γ·p=iµ

and for the photon propagator
(Z3 −1) = Π(−µ2).

Such definitions would be sufficient to subtract all the infinities rendering the renormalized Green-
functions finite.

Such a renormalization scheme has the following consequences:

• The renormalized coupling constant does not correspond to a physical quantity. All such
quantities (including zero momentum transfer potential scattering) would have to be calcu-
lated in terms of the renormalized coupling eR defined in this scheme.

• The renormalized fermion self-energy would not be proportional to (γ · p−m)2, but would
have the form

−∆m+∆Z2(γ · p−m)+O((γ · p−m)2),

where ∆m and ∆Z2 are finite. The physical mass (position of the pole of the propagator)
would not be at mR = m+δm but at mR +∆m.

• Z2 would not be the same as the Z2 which appears in the LSZ reduction formula for the
S-matrix elements, but would differ from it by a finite amount.

Nevertheless, such unphysical definitions of the counterterms are often useful.

• QED provides a natural definition of the physical coupling. But in other field theories, such
as those with massless gauge particles, no such physical definition arises naturally.

• It may not always be possible to perform “physical” renormalizations for all masses and cou-
plings in a given theory without introducing counterterms that violate the internal symme-
tries of the theory. Spontaneously broken gauge theories in which the gauge-bosons acquire
different masses is an example of this. One cannot perform on-shell subtractions for each
the gauge bosons, because gauge invariance only allows one wavefunction renormalization
constant for all of the gauge-bosons.
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• A simpler way of defining counterterms can help higher order calculations.

• General renormalizations introduce a subtraction scale µ. The renormalized Green functions
depend explicitly on µ, but so do the renormalized parameters eR and mR in such a way that
the physical S-matrix elements are µ independent. This can be used to obtain information
about the behaviour of renormalized Green functions as the momenta are scaled up or down.

Dimensional regularization introduces a scale µ associated with the dimension of the coupling
constant outside four dimensions. A simple and practical renormalization prescription is to define
the couterterms to be the pole parts of any given graph. This is the “MS” scheme - we can also
use the “MS” scheme in which the countertems consist of the pole part along with the ln(4π)− γE

that always accompanies it. Such a renormalization automatically generates counterterms which
generate the (dimensionality independent) symmetries of the theory.

In the MS scheme we have, for the fermion propagator

δm =
3α
4π

m

[

1
ε

+ ln(4π)− γE

]

(Z2 −1) =
α
4π

[

−1
ε
− ln(4π)+ γE

]

and the renormalized propagator is

ΣR(p,m) = − α
4π

[

(γ · p−2m)+

Z 1

0
dα(2(1−α)γ · p−4m) ln

(

m2α− p2α(1−α)

µ2

)]

We again have Z1 = Z2. This is obeyed exactly because the MS renormalization scheme preserves
the gauge invariance. However, for a general “unphysical” renormalization scheme only the infinite
(pole) parts would necessarily obey this relation.

For the photon propagator in the MS scheme we have

(Z3 −1) = − α
3π

[

1
ε

+ ln(4π)− γE

]

with the renormalized propagator

ΠR(q2) =
2α
π

[

Z 1

0
dαα(1−α) ln

(

m2 −q2α(1−α)

µ2

)]

(ΠR(q2) does not vanish as q2 → 0 in this scheme and nor does ΣR(p,m) vanish as γ · p → m ).

In dimensional regularization the dimensionless renormalized coupling, αR, (≡ g2
R/(4π)) is related

to the bare coupling α0 by the relation

αB = µ2εαR

(

1+β0
αR

4π
1
ε

+ · · ·
)

, (3.31)

so that αR is an implicit function of the scale µ - despite the fact that it is dimensionless.
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