
6 Unitarity, Causality and Analyticity

The propagator for a scalar particle can be written in terms of a “dispersion relation” sometimes
called the “Källén-Lehmann representation”

−i∆F(q2) ≡
Z

d4x
(2π)4 eiq·x〈0|Tφ(0)φ(x)|0〉 = i

Z ρ(σ2)dσ2

q2 −σ2 + iε
. (6.1)

Taking the imaginary part we have

ℑm
{

∆F(q2)
}

= π
Z

ρ(σ2)δ(q2−σ2)dσ2 = ρ(q2).

The interpretation of the “spectral function” ρ(q2) is that it is the probability for a one particle state
with square momentum q2 to decay into all possible (energetically allowed) final states

ρ(σ2) = (2π)3 ∑
n

δ4(pn −σ)|〈0|φ(0)|n〉|2,

where pn is the total momentum of the particles in the state |n〉 (this is seen by inserting a complete
set of states ∑n |n〉〈n| between the fields in (6.1)).

The vacuum expectation value of the commutator of two fields may also be related to this spectral
function

∆(x) ≡ 〈0| [φ(0),φ(x)] |0〉 = ∑
n
|〈0|φ(0)|n〉|2

(

e−ipn·x − e+ipn·x)

=
1

(2π)3

Z

d4q(2π)3 ∑
n

δ4(pn −q)|〈0|φ(0)|n〉|2
(

e−ipn·x − e+ipn·x)

=
1

(2π)3

Z

d4qdσ2ρ(σ2)δ(σ2 −q2)
(

e−iq·x − e+iq·x) (6.2)

Performing the integration over the energy component q0 this becomes

−i
Z

dσ2ρ(σ2)
Z

d3q
(2π)3 eiq·x sin(

√

q2 +σ2)t)
√

q2 +σ2
.

The integral over q can be performed and a result given in terms of Bessel functions, which can be
shown to vanish if |x| > t. Actually we can see by inspection that for t = 0 this integral vanishes
for any non-zero |x| and so by Lorentz invariance it must always vanish if the four-vector x is
space-like. This result is expected from causality - it tells us that the commutator of two fields
vanishes if the arguments of the fields are separated by a space-like quantity.

The above argument can be inverted to show that causality implies that the propagator is analytic
in the upper half of the plane in q2 (this explains the sign of the iε term in the denominator of
eq.(6.1)).
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The argument can be extended to show that causality implies that all scattering amplitudes are
analytic in the upper half complex plane for all dynamical variables.

Unitarity further implies that scattering amplitudes are analytic in a plane which is cut along the
real axis.

Define the T -matrix from the S -matrix by

Sab ≡ 〈aout |bin〉 = δab + iTab(2π)4δ4(pa − pb)

then the unitarity of the S -matrix, S S † = 1 gives

Tab −T ∗
ba = i∑

n
(2π)4δ4(pa − pn)TanT ∗

bn (6.3)

The sum over n means that for each possible final state c, consisting of a certain set of final state
particles, we must integrate over the whole of the available phase-space. Putting a = b we have an
expression for the imaginary part of the forward amplitude, known as the “optical theorem”

ℑm{Taa} =
1
2

Z

∑
c
|Tac|2d{P.S.} (6.4)

The RHS is proportional to the total probability for the state |a〉 to propagate into some other state
|c〉. If |a〉 is a two-body state with masses m1 and m2 then

ℑm{Taa} = λ1/2(s,m2
1,m

2
2)σ(a)

TOT (s) (6.5)

where
λ(x,y,z) = x2 + y2 + z2 −2xy−2xz−2yx.

As an example we consider the forward scattering of two massless scalar particles (φ) theory
interacting via a cubic interaction, 1

2 gφχ2 with a massive scalar field (χ).

The forward scattering amplitude is calculated from the graph

p2

p1

p2

p1

k k

k− p1

k + p2

(the solid line represents the χ particles which have mass m and the dashed lines the massless
external particles).

The contribution from this graph ( to the T -matrix) is

−ig4
Z

d4k
(2π)4

1
(k2 −m2 + iε)2((p1 − k)2 −m2 + iε)((p2 + k)2 −m2 + iε)
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Feynman parametrizing gives

−i6g4
Z

d4k
(2π)4

Z

dαdβdγdδ
δ(1−α−β− γ−δ)

(k2 −m2 −2k · (p1α− p2β)+ iε)4

Shift k → k + p1α− p2β and make use of the relations p2
1 = p2

2 = 0, p1 · p2 = s/2

−i6g4
Z

d4k
(2π)4

Z 1

0
dαdβdγdδ

δ(1−α−β− γ−δ)

(k2 −m2 + sαβ+ iε)4

Now integrate over k to give

g4

16π2

Z

dαdβdγdδ
δ(1−α−β− γ−δ)

(m2 − sαβ− iε)2

Integrating over δ and then over β this gives

g4

16π2

Z 1

0
dαdγ

θ(1−α− γ)
sα

[

1
m2 − sα(1−α− γ)− iε

− 1
m2 − iε

]

(6.6)

The second term in square parenthesis has no imaginary part. The imaginary part of the first term
is

g4

(16π)

Z

dαdγ
1

sα
δ(m2 − sα(1−α− γ)θ(1−α− γ)

=
g4

16π

Z 1

0

dρdω
sω

δ(m2 − sωρ(1−ρ))

=
g4

16πsm2

√

1− 4m2

s
(6.7)

This imaginary part only exists if s > 4m2, which is the physical threshold for the production of
two χ− particles in the intermediate state. Note that the maximum value of ωρ(1−ρ) is 1

4 , and that
√

1−4m2/s is the range in ρ over which we can pick up a zero of the δ−function when integrating
over ω.

Now we compare this with the cross-section for the process:

φ+φ → χ+χ

The tree-level amplitude for this process is obtained from the Feynman graph
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p2

p1

p4

p3

The amplitude from this graph is

g2

(t −m2)
(t = (p1 − p3)

2)

From this we get the total cross-section to be the phase-space integral

σ =
1

2λ1/2(s,0,0)

Z

d3 p3
(2π)3 2E3

d4 p4
(2π)4 (2π)δ(p2

4−m2)

(

g2

(t −m2

)2
(2π)4δ4(p1 + p2 − p3 − p4)

We carry out the phase space integral in the C.M. frame of p1 and p2, for which

p1 =

(√
s

2 ,0,0,

√
s

2

)

p2 =

(√
s

2 ,0,0,−
√

s
2

)

p3 =

(√
s

2
,

√
s−4m2 sinθcosφ

2
,

√
s−4m2 sinθsinφ

2
,

√
s−4m2 cosθ

2

)

p4 =

(√
s

2 ,−
√

s−4m2 sinθcosφ
2 ,−

√
s−4m2 sinθsinφ

2 ,−
√

s−4m2 cosθ
2

)

t =

(

2m2 − s+
√

s
√

s−4m2 cosθ
)

2
d3 p = (2π)

s
4

dE3d cosθ

The integral over E3 is used to absorb the δ-function δ(p2
4 −m2) and we have finally

σ =
1

λ1/2(s,0,0)

g4

8π
2

Z 1

−1
d cosθ

√
s
√

s−4m2
(

s−√
s
√

s−4m2 cosθ
)2

=
1

λ1/2(s,0,0)

g4

16πsm2

√

1− 4m2

s
. (6.8)

Comparing this expression with (6.7) we see that we get agreement with the unitarity condition,
(6.5).
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6.1 Analytic Structure of scattering amplitudes

In general, we expect a scattering amplitude to be a real analytic function of its dynamical variables
(e.g. s and t) except for cuts along the real axis corresponding to a physical region. A real analytic
function f (z) of a complex variable z, obeys the relation

f (z) = f ∗(z∗),

which implies
f (z)− f ∗(z) = f (z)− f (z∗).

Thus the imaginary part of the forward scattering amplitude is one half the discontinuity across the
cut in the complex s-plane, i.e.

2iℑm{F(s, t = 0)} = F(s+ iε,0)−F(s− iε,0),

and by the optical theorem this can be deduced from the total cross-section.

s

s0

If s is below the threshold for the production of intermediate state particles, s0, the imaginary part
vanishes which implies that the discontinuity vanishes. This means that the cut along the real axis
starts at the physical threshold, s0, which then becomes a branch point. Further cuts open at higher
values of s as more and more physical states become energetically allowed. At each such threshold
there will be a branch-point singularity.

For a general Feynman graph (for any number of loops) the amplitude, after integrating out the loop
momenta, is a function of the momentum invariants, the masses, and a set of Feynman parameters.

A ∼
Z

dα1 · · ·dαnδ(1−∑αi)
1

(J({αi},{p j · pk},{m2
l })+ iε

At some points in the space of Feynman parameters, αi = α0
i , the function J will vanish. We

can usually use the iε prescription to integrate through such singularities in the integrand. The
exceptions are if the J is also at a turning point at the point where it vanishes, or any of the
the Feynman parameters are at the end-points of the range of integration. At such points the
contribution to the amplitude from the Feynman graph has a (branch-point) singularity.

The conditions for a branch point are therefore

J = 0, αi = α0
i
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either ∂J
∂αi

= 0, or α0
i = 0, or or α0

i = 1−∑
j 6=i

α0
j .

Examples:

1. Scalar propagator in cubic interaction theory:
We will allow the internal particles to have arbitrary masses m1 and m2

p

k
m2

m1

(k− p)

The finite part of the self-energy is

− g2

(16π2)

Z 1

0
dα ln

(

m2
1α+m2

2(1−α)− p2α(1−α)
)

.

This gives an imaginary part if the argument of the logarithm becomes negative. The mini-
mum value of p2 for which this can happen is when

J ≡ m2
1α+m2

2(1−α)− p2α(1−α) = 0

and
∂J
∂α

= m2
1 −m2

2 − p2(1−2α) = 0 or α = 0 or α = 1

The solution to this is
p2 = (m1 +m2)

2,

(

α =
m2

m1 +m2

)

This is the threshold for the production of two particles with masses m1 and m2 in the inter-
mediate state.

There is also a solution

p2 = (m1 −m2)
2,

(

α = − m2
m1 +m2

)

,

but this (“pseudo-threshold”) is outside the range of integration of α and so we discard it.

2. The one-loop amplitude for the scattering of four massless scalar particles (φ) which
interact via a cubic interaction term 1

2gφχ2

We have previously looked at the forward amplitude - we now consider the amplitude for a
general square momentum transfer t = (p1 − p3)2.
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p2

p1

p4

p3

k

m

m

m m

After Feynman parametrization, shifting the loop momentum and integrating over k the am-
plitude form this graph is

g4

(16π2)

Z 1

0
dαdβdγ

θ(1−α−β− γ)
(sα(1−α−β− γ)+ tβγ−m2 + iε)2

(we have performed the integral over the Feynman parameter δ absorbing the δ-function).
The threshold is at the values of α, β, γ that obey the relations

J ≡ sα(1−α−β− γ)+ tβγ−m2 = 0

and
∂J
∂α

= s(1−β− γ−2α) = 0, or α = 0, or α = 1−β− γ

and
∂J
∂β

= −sα+ tγ = 0, or β = 0, or β = 1−α− γ

and
∂J
∂γ

= −sα+ tβ = 0, or γ = 0, or γ = 1−β−α

This has a solution within the range of integration at

α =
1
2 , β = γ = 0, s = 4m2, t ≤ 0

or
α = 0, β = γ =

1
2 , t = 4m2, s ≤ 0

The second solution is the physical threshold for the crossed (t-channel) process.

6.2 Cutkosky Rules

The discontinuity across a cut in the variable s of any Feynman graph is written as

A(s+ iε)−A(s− iε).

Since by causality amplitudes are analytic in the upper-half plane we can define

S+
ab = δab + i(2π)4δ4(pa − pb)T +

ab = lim
ε→0

〈aout |bin〉|s+iε.
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and its Hermitian conjugate

S−
ab = δab − i(2π)4δ4(pa − pb)T −

ab = lim
ε→0

〈ain|bout〉|s−iε.

(S+
ab

)∗
=
(S−

ba

)

.

The quantity limε→0 〈ain|bout〉 would be calculated (following the steps of the LSZ reduction for-
mula) using the anti-time ordered product (T ∗), rather than the time-ordered product in the Green
functions. For, example, for the two-point Green function of two scalar fields we have

〈0|T ∗φ(x)φ(0)|0〉 =
Z

d4q
(2π)4 eiq·x −i

q2 −m2 − iε

This differs form the expression for the time-ordered product by an overall and the sign of the iε
prescription. The perturbative expansion for the anti-time ordered product also introduces a minus
sign for every interaction vertex. Collecting all the signs we find that T −

ab is obtained from T +
ab by

replacing iε everywhere by −iε. In other words

T −
ab =

(T +
ab

)∗

The unitarity of the S -matrix then gives us

∆Tab ≡ T +
ab −T −

ab = i∑
n

(2π)4δ4(pa − pn)T +
an T −

nb , (6.9)

where ∆ indicates the discontinuity across the cut . This is the generalization of the optical theorem
and it is valid away from the forward direction - for example it refers to the discontinuity in the
variable s for a fixed value of t away from zero.

Diagramatically the RHS of eq.(6.9) is interpreted as the sum of all cuts in the channel whose
discontinuity is being considered. The part of the diagram on the right of the cut is calculated with
the iε replaced by −iε, the cut lines are placed on mass-shell and the phase-space integral for the
cut lines is performed (this is implied in the sum σn).

For example, the s-channel discontinuity of the one-loop correction to the scattering of two mass-
less scalar particles which interact with massive scalar particles

∆

p2

p1

p4

p3

=

p6

p5

p2

p1

p4

p3

The amplitude on the left of the cut is

T +
an =

g2

((p1− p5)2 −m2 + iε
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The amplitude on the right of the cut is

T −
nb =

g2

((p3− p5)2 −m2 − iε
Multiplying these together and integrating over the phase-space for the intermediate particles with
momenta p5, p6 we get for the discontinuity across the cut

Z

d4 p5
(2π)3 δ(p2

5 −m2)
d4 p6
(2π)3 δ(p2

6 −m2)
(2π)4δ4(p5 + p6 − p1 − p2)g4

((p1− p5)2 −m2 + iε)((p3− p5)2 −m2 − iε)

In higher order there are more cut graphs

∆ = + + +

The first two graphs on the RHS are integrated over two-body phase-space and the last two over
three-body phase-space.

6.3 Dispersion Relations

s’

s0

C

If we consider the integral
I

C
F(s′)

(s− s′+ iε)
,

around the contour shown above, where F(s) is some scattering amplitude (it can also be a function
of t and other variables if there are more than two final-state particles), then given that F(s) is
analytic inside the contour, the integral is by Cauchy’s theorem

2π iF(s+ iε).
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If, furthermore, F(s) goes to zero as |s| → ∞ then the contour integral is just the integral over the
discontinuity across the cut and is therefore equal to

2 i
Z ∞

s0
ds′

ℑm{F(s′)}
(s− s′+ iε)

repeating this with ε replaced by −ε and taking th average, we get an expression for the real part
of the scattering amplitude i terms of an integral over the imaginary part.

ℜe{F(s)} =
1
π

Z ∞

s0
ds′

ℑm{F(s′)}
(s− s′) (PV )

, (6.10)

where “PV” indicates that the singulaity at s = s′ is handled using the Principle Value prescription.
This is called a “dispersion relation”.

If the above integral over s′ does not converge, it is necessary to introduce a subtraction and we
have a subtracted dispersion relation, which gives the real part in terms of the real part at some
subtraction point sB,

1
(sB− s)

(ℜe{F(s)}−ℜe{F(sB)}) =
1
π

Z ∞

sB

ds′
ℑm{F(s′)}

(s− s′)(sB− s′)
(6.11)

A simple example of this is the scalar propagator with equal internal masses m, in the limit s �
4m2.

Calculating the one-loop graph we obtain the integral over the Feynman parameter, α as

− g2

16π2

Z 1

0
dα ln

(

m2 − sα(1−α)
)

(6.12)

The imaginary part is −π times the range of α over which the argument of the logarithm is negative,
which gives

g2

16π

√

1− 4m2

s
θ(s−4m2).

The real part is therefore given by

ℜe
{

Σ(s,m2)
}

=
g2

16π2

Z ∞

4m2
ds′
√

1−4m2/s′

(s− s′)

This integral diverges (it is the standard ultraviolet divergence) and so we need to subtract the
dispersion relation For convenience we choose the subtraction point to be the branch-point s = 4m2,
to obtain
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ℜe
{

Σ(s,m2)
}

−ℜe
{

Σ(4m2,m2)
}

=
g2

(16π2)
(s−4m2)

Z ∞

4m2
ds′

√

(1−4m2/s′)
(s− s′)(4m2− s′)

= − g2

(16π2)

√

1− 4m2

s
ln
(

1+
√

(1−4m2/s)

1−
√

(1−4m2/s)

)

This result could also have been obtained by performing the integral over α in (6.12).

In the case of the forward scattering amplitude for the interacting scalars with equal internal masses
m (eq.(6.7)), the real part of the amplitude is given by the integral

g4

16π2 m2

Z ∞

4m2
ds′

1
(s′− s)s′

√

1− 4m2

s′

=
g4

16π2 sm2

[
√

1− 4m2

s
ln
(

1+
√

1−4m2/s

1−
√

1−4m2/s

)

−2
]

. This could also have been obtained by performing the integral over α and γ in (6.6).
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