
Figure 1: A pure sine wave. The wavelength is the distance between two adjacent peaks
(or troughs). The number of peaks (or troughs) passing a given point per second is called
the “frequency”. The wave velocity is the wavelength multiplied by the frequency.

2 Some Classical Physics

Before we can proceed to discuss Quantum Physics we need to understand a few things
about classical physics. This should all be conceptually straightforward, since not only can
we visualize the phenomena described, but we can set up experiments using macroscopic
objects and observe them directly.

2.1 Waves

A wave is a quantity which oscillates between a maximum and minimum and travels in
space. The number of times it reaches a maximum per second (at a fixed point) is called
the “frequency” and the instantaneous distance between two maxima is called the “wave-
length”. The maximum value of the oscillating quantity is called the “amplitude”. This
is demonstrated in Fig. 1.

The quantity which travels in this way is known as a “disturbance”. Precisely what
this disturbance is depends on the wave. For ocean waves it is the surface of the water.
For sound waves it is the fluctuation in pressure, for light (and all other electromagnetic
radiation such as microwaves, X-rays etc.) it is an electric field and a magnetic field which
are perpendicular to each other and also perpendicular to the direction of the wave. The
simplest waves can be generated by taking a long length of string under tension (such as a
washing line) and shaking one end, so that it oscillates with a constant frequency.
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Figure 2: Interference of light emerging through two narrow slits. The light emerges
from each slit as though the slits were the sources of the light. The light from the two slits
travel a slightly di↵erent distance to a given point on the screen. If this distance is a whole
number of wavelengths, the peaks and troughs coincide and we get a maximum, whereas
half-way between these maxima the peaks from one slit coincide with the troughs for the
other so that the wave motion from the two slits cancels out and we get a minimum. This
is know as the “Young’s slits” experiment after Thomas Young [4] who first performed
the experiment in 1801.

2.1.1 Interference and Di↵raction

Suppose a wave-front is incident on two slits which are close together. Waves are emitted
from each of the two slits, as shown in Fig. 2.

If the resultant wave is observed on a screen at a point half-way between the two slits
then the wave from each slit will have travelled the same distance and they will therefore
be “in phase” i.e. they will have maxima together and minima together. This means that
the total disturbance will be the sum of the two disturbances and we have what is called an
“interference maximum”. On the other hand, if the resultant wave is observed slightly away
from the mid-point between the slits then the wave from one of the slits travels further than
the wave from the other, and the waves from the two slits will no longer be in phase so that
the resultant disturbance will be a wave whose amplitude is smaller than the sum of the
two amplitudes. In the case where the extra distance travelled by one of the waves is half a
wavelength the waves will cancel out exactly, leading to a minimum. This is demonstrated
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in Fig. 3.

Even further away from the mid-point the path di↵erence between the waves from the
two slits is again a whole number of wavelengths and the disturbances are again in phase
– and so on. This is shown in Fig. 4. The result is an interference pattern consisting of
series of light and dark fringes as shown on the right of Fig. 4.

We can do this experiment by shining a laser pen-torch on the surface of a DVD. The
DVD consists of a large number of closely ruled grooves and the laser pen-torch produces
light of a single wavelength. If the reflected light is observed on a screen whose plane is
perpendicular to the DVD, then we see series of spots corresponding to the maxima in which
light reflected from adjacent grooves on the DVD are exactly an integer number (i.e. whole
number) of wavelengths apart so that the waves from all the grooves are in-phase and add
up. The experimental setup is shown in Fig. 5. The rainbow which one can see when you
look at a DVD and move it around arises because these maxima occur at slightly di↵erent
angles for di↵erent wavelengths so that white light is dispersed, generating the rainbow.

Something similar happens if we illuminate a small object (such as a pin) with monochro-
matic (i.e. single wavelength) light. A set of closely packed fringes can be seen either side of
the object, owing to interference between light waves from the two sides of the object. This is
actually called “di↵raction” (but I have never seen an adequate definition of “interference”
and “di↵raction” which distinguishes between the two).

An example is shown in Fig. 6, which shows the di↵raction pattern of a pin-head illumi-
nated with monochromatic (red) light. There is interference between the wave that passes
around the object in one direction with the wave that passes around the object in the other
direction, leading to fringes whose maxima and minima correspond to directions in which
these two waves are in phase or out of phase. The path di↵erence between these two waves
is proportional to the size of the object, so that the separation of the fringes is proportional
to the ratio of the wavelength of the light to the object size. If the object is much larger
than the wavelength of the light used, then we still get a sharp image of the object, together
with closely packed di↵raction fringes. On the other hand, if we look at even smaller objects
which are of the order of magnitude of the wavelength of the light, the fringes become more
and more widely separated and eventually we just see the fringes but no sharp image of the
object.

2.1.2 Wavepackets

A pure wave with a single wavelength/frequency oscillates for ever - the wave is infinitely
long. In practice a wave only exists for a finite time interval. In the case of the sound from
an object landing on the floor this could be about 1/20th of a second.

The wave would look something like the wave shown in Fig. 7, in which we have a wave
of some frequency, f0, with an amplitude which grows and then shrinks again. The total
length of the wavepacket is the distance over which the amplitude grows plus the distance
over which it shrinks. Thus, whereas a classical point-particle is totally localized, i.e. it
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Figure 3: The left panel shows the lower two waves travelling the same distance and
therefore being in phase so that the resultant disturbance is a wave with double the
amplitude – an interference maximum. The centre panel, shows the lower wave travelling
a extra distance of one quarter of a wavelength relative to the upper wave and the
resultant disturbance is a wave with a reduced amplitude. In the right panel the lower
wave travels an extra distance of one half of a wavelength so that the two disturbances are
exactly out of phase - one has a maximum at the point where the other has a minimum
and vice versa so that the resultant disturbance is zero and we have an interference
minimum.
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Figure 4: The double slit experiment (a). The interference from the light from the two
slits leads to a set of fringes on the screen (b)

Figure 5: Using a DVD as a di↵raction grating with a laser pen-torch held on a stand,
a CD or DVD and a vertical screen, spots corresponding to interference maxima appear
on the screen.
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Figure 6: The di↵raction pattern obtained from illuminating a pin-head with monochro-
matic (red) light. The di↵raction pattern arises from interference between light waves
which go around the pin in one direction and those that go around the pin in the other
direction. For light emerging at di↵erent angles these two waves will have di↵erent phase
di↵erences because they travel di↵erent distances. Maxima are found when the di↵er-
ence in distance travelled by the two waves is a whole number of wavelengths so that
the waves are in phase and add up. Because the width of the pin is very much larger
than the wavelength of the light used to illuminate it, the fringes are closely packed and
there is a reasonably sharp image of the pin at the centre.
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Figure 7: An example of a wavepacket representing a wave that lasts for a finite time.
The amplitude begins very small and then grows to a maximum and then shrinks again.

has a well-defined exact position in space, a wavepacket is spread over a finite distance and
therefore cannot be said to have a definite (i.e. localized) position. The wavepacket exists
everywhere although the amplitude has a maximum at a specific position (at a given time).
The amplitude decreases as one moves away from that specific position and is negligibly
small far away from it. It is a mathematical fact that such a wavepacket is actually the sum
of many pure frequency waves as shown in Fig. 8 with di↵erent amplitudes and frequencies
slightly di↵erent from f0. The largest amplitude is the wave with frequency, f0 but there are
other frequencies ranging from a little below, i.e. f0 � 1

2�f , to a little above, i.e. f0 + 1
2�f .

The range of frequencies required to construct the wavepacket is �f . Waves with di↵erent
frequencies and amplitudes for which, when the disturbances of the individual waves added
together, generate a total disturbance given by the wavepacket of Fig. 7.

In Fig. 9 we show a bar-chart of the amplitudes of the pure waves against frequency (it
is easy to write a simple computer program which verifies that this works.) So, contrary
to common belief, any wave which lasts a finite time, �t, is never a pure single-frequency
(monochromatic) wave with frequency f0, but a superposition of waves with the largest
amplitude for frequency f0, but with waves with frequencies below and above f0, albeit with
smaller amplitudes. This is extremely important. It means that if we hear a short sound
such as an object knocking against another object or a balloon popping, or see a very short
flash of light, it is meaningless to ask the question “What was the frequency of that noise,
or that flash”, because a short wavepacket does not possess a well-defined (exact) frequency
- it is a superposition of many di↵erent frequencies.
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Figure 8: Waves with di↵erent frequencies and amplitudes for which, when the distur-
bances of the individual waves added together, generate a total disturbance given by the
wavepacket of Fig. 7.
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Figure 9: A bar-chart showing the frequencies and amplitudes which constitute the
wavepacket of Fig. 7
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Figure 10: (a): the spectrum of frequencies with range of 5 Hz; (b): The resulting
wavepacket with time range of 1 sec. (c): the spectrum of frequencies with range of 10
Hz (d): The resulting wavepacket with time range of 0.5 sec. Note that we have chosen
to plot the disturbance at a given point as a function of time. We could have chosen
to plot the spatial distribution of the disturbance at a given instant (same time). The
shape of the graphs on the right would have been exactly the same. The graphs on the
left would have been replaced by a distribution in wavelengths rather than frequencies.
The lower graphs would have a wider range of wavelengths than the upper graphs.
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In Fig. 10, we show two more such bar-charts and the wavepackets that are produced
when we add the waves with the amplitudes and frequencies shown in the bar-charts. In
this case, we show the relevant numbers. In the upper figure the frequency ranges from
about 13.5 to 18.5 Hertz (abbreviated to ‘Hz’, meaning cycles per second) and the resulting
wavepacket has a width (time interval) of around 1 second. In the lower figure, the range of
frequencies is significantly larger - from about 10 to 20 Hz, but the wavepacket is narrower,
with a width of around 0.5 seconds. In both cases, if we multiply the range of frequencies
by the width of the wavepacket we get approximately the same result (around 5). This is
a result which can be derived from the mathematical properties of wavepackets and tells us
that the width of the wavepacket is inversely proportional to the range of frequencies which
are used to construct that particular wavepacket. This result is the basis of the Heisenberg
uncertainty principle. We will see later that the width of the wavepacket is proportional
to the uncertainty in the position of a particle and the range of frequencies is proportional
to the uncertainty in its momentum.
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Figure 11: A travelling wave at three di↵erent times showing how the peaks and troughs
propagate through space as time advances.

2.1.3 Travelling and Standing Waves

A travelling wave, such as the wave on the surface of the sea, advances as time evolves.
For a single wavelength wave, if we take a snapshot of the disturbance we see a disturbance
which oscillates in space with peaks and troughs. At a later time a particular peak has
moved on (either to the right or to the left depending on the direction of the wave). This is
demonstrated in Fig. 11 where we show for three such snapshots at di↵erent times and note
that a particular peak (or trough) advances with time.

The other type of wave is called a “standing wave”. This occurs if there is some
restriction on the disturbance at the ends. An example is a violin string for which the
disturbance of the string is zero at the bridge of the violin and also zero at the point on the
neck where a finger presses on the string so that there is no displacement. In this case the
wave does not propagate, but remains with the same shape with an amplitude that oscillates
with time as shown in Fig. 12. For such waves only certain wavelengths are allowed. The
reason for this is that the disturbance vanishes at two points. The allowed wavelengths are
those for which the disturbance can be zero at both these points - i.e. the distance between
these two points must be a whole number of half-wavelengths (see Fig. 13). This in turn
means that the longest wavelength, �1, that a standing wave can have is 2L, where L is the
distance between the two points at which the disturbance is constrained to be zero. Such a
wave only has zeros at the ends (x = 0 and x = L).

In the case of a violin string, the fact that this is a specific wavelength means that the
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Figure 12: The time development of a standing wave. This wave does not propagate
through space but simply oscillates, maintaining the constraint that the disturbance is
zero at the end points, x = 0 and x = L.

string vibrates with a specific frequency producing a sound with a given pitch. The next
possible wavelength, �2, is L, which has zeros at the ends and also a zero in the middle.
After that we have �3 = 2

3L which has zeros at the ends and two points between the ends
where the disturbance is also zero. These three cases are demonstrated in Fig. 13. In general,
a standing wave in which the disturbance at x = 0 and x = L is zero can have a wavelength
�n, given by

�n =
2L

n
where n is a positive integer, (i.e a whole number e.g. 1,2,3,4 . . . . . . ). (2.1)

2.2 Particles

In classical physics particles behave like tiny billiard balls (so tiny that they may be con-
sidered to be points). Their motion is determined by Newton’s three laws of motion [5].
A moving particle of mass m moving with velocity v (assumed to be very small compared
with the speed of light – so that relativistic e↵ects may be neglected) has a kinetic energy
T = 1

2mv
2 and momentum p = mv. p and v are written in bold letters because they repre-

sent “vectors” i.e. they have direction as well as magnitude or alternatively they have three
components - one for each direction in space. It is insu�cient to specify the speed, v, of
a particle in order to describe its motion. We also need to know the direction in which it is
moving. In an elastic collision (no loss of energy into heat or sound) the total kinetic energy
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Figure 13: The longest (� = 2L), next longest (� = L) and third longest (� = 2
3L)

wavelength for standing waves in which the displacement is constrained to be zero at
x = 0 and at x = L.
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Figure 14: When a ball of mass m collides head-on with a stationary ball with the same
mass, conservation of momentum tells us that the target ball then moves with the initial
velocity of the incident ball and the incident ball becomes stationary.

and the three components of momentum are conserved. For a given scattering between two
particles with given masses and initial velocities these conservation laws are su�cient to
derive a unique relation between the final speeds of the two particles and their scattering
angles (i.e. the angle between the initial and final directions of motion).

An example is shown in Fig. 14 in which a particle (1) with initial velocity u1 collides
with an initially stationary particle (2). The final speeds v1 and v2 and the angles of the
particles after the collision are related to each other. As any good billiards player knows,
the scattering angle of the incident billiard ball is determined by the o↵set of the centres. If
the projectile billiard ball had a velocity whose direction is through the centre of the target
billiard ball, then after the collision the two billiard balls will continue to move in the same
direction, but if the billiard balls are not concentric then the balls will scatter at an angle
determined exactly by the o↵set of the two centres. Thus an expert billiards player can
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Figure 15: For a ball bounced of a hard surface for which there is no loss of energy The
initial speed is the same as the final speed (because the kinetic energy after the bounce
is the same as the kinetic energy before) and the angle the trajectory of the ball makes
with the surface is also conserved because the component of momentum tangential to
the surface is conserved.

shoot the projectile ball in such a way that (s)he can precisely predict the final velocities
(speeds and directions) of the two billiard balls. In particular, for the ball bounced o↵ a
hard surface (no energy loss), the conservation of momentum and kinetic energy is su�cient
to tell us that the angle of reflection is equal to the angle of incidence as shown in Fig. 15.
The component of momentum parallel to the hard surface, before the impact is equal to the
same component of momentum after the impact which leads to the equality of the incident
and reflected angle. We will see that in the sub-microscopic world this is not necessarily
the case because what we traditionally think of as particles can also behave like waves and
produce di↵raction.

Another example of the application of classical physics to particles was Ernest Ruther-
ford’s calculation of the path of an ↵-particle of given energy moving initially along a line
with a distance b from a nucleus [6]. This is shown in Fig. 16. The electrostatic repulsion
between the nucleus and the incident ↵-particle, causes a deflection in the path of the ↵-
particle by an angle, ✓, (called the scattering angle), which depends on the distance, b, of
the initial direction of the incident particle from a parallel line passing through the nucleus
(called the “impact parameter”). The laws of electrostatics (the inverse square law which
tells us that the electric field due to a charged particle is inversely proportional to the square
of the distance from the charged particle) together with Newton’s second law of motion
which tells us how the momentum of a particle changes under the influence of a force, can
be used together to calculate this scattering angle. In the experiment of Hans Geiger and
Ernest Marsden [7], ↵-particles were projected through a thin gold foil and were scattered
through angles in agreement with the calculation of Rutherford – this confirmed that the
gold foil was a lattice of positively charged nuclei.
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Figure 16: A diagram showing Rutherford’s calculation of the scattering angle, ✓, for
the scattering of an ↵-particle o↵ a gold nucleus. The scattering angle can be calculated,
using Newton’s laws of motion, as a function of the momentum of the incident ↵-particle
and the impact parameter, b, which is the perpendicular distance between the initial
direction of the ↵-particle and a parallel line through the target nucleus.

The Smallest Size we Can See

When I was a boy, I had a toy microscope. The maximum magnification was 300⇥. I
discovered that for professional microscopes the maximum magnification was 500⇥ (optical
microscopes with magnification up to 1000⇥ are now available). I assumed that this was
limited by the technology of manufacturing lenses and that advances in engineering would
increase this indefinitely. However, this is not the case.

We have seen in the section on interference of waves that when a su�ciently small object
is viewed with monochromatic light, we observe di↵raction fringes at the edges of the image.
The separation of the interference fringes is proportional to the ratio of the wavelength of
the illuminating light to size of the object viewed. If the size of the object viewed is much
larger than the wavelength of the light, there is still a sharp image of the object itself, albeit
with fringes at the edges. However, as the size of the object is decreased to a few times
the wavelength of light, the di↵raction fringes become wider and wider and if the size of
the object is less than the wavelength of light, then all one can see is the central di↵raction
fringe which covers the entire field of vision and the image of the object is totally lost.
The shortest wavelength that the human eye can see is about 0.4 microns (a micron is a
millionth of a meter). So this is the smallest object that we can see directly. The naked eye
can see an object of size 100 microns, so there is little advantage in building microscopes with
magnification exceeding around 500. Some animals can detect UV radiation with somewhat
shorter wavelengths - so their optical microscopes may be a little more powerful than ours -
but not much!

If we can’t see an object directly with visible light, could we not use electromagnetic
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Figure 17: The arrows point to individual hydrogen atoms, within a graphene lattice.
The image is created using an electron microscope.

radiation with much shorter wavelengths to make an image of an object? An example that
comes to mind is X-rays which have wavelengths down to 0.00001 microns – so we could see
things of the size of an atom with these. X-rays are the same as light waves but with a much
smaller wavelength. The trouble is that we have no way of focusing a beam of X-rays (we
do not know how to build a lens for X-rays). Fortunately Quantum Physics comes to our
rescue here. We will see later that what are classically regarded as particles, can also behave
like waves - a particle has a wavelength associated with it – and this wavelength is inversely
proportional to the particle’s momentum. An electron accelerated through a potential of
100000 Volts has a wavelength of .000004 microns. With such wavelengths individual atoms
can be detected. Such an image, which shows hydrogen atoms in graphene [8] is shown in
Fig. 17.

However, there is a price to pay for such small wavelengths leading to such high resolution.
The high energy electron also has a very high momentum. When it scatters o↵ a hydrogen
atom it imparts some of its momentum to the hydrogen atom, which then begins to move
with a velocity of around 100000 meters per second. This is why the images of the hydrogen
atoms in Fig. 17 are rather blurred. The energy of the incident electrons are far larger than
the binding energies of the electron inside the hydrogen atom, so that in a collision between
the incident electrons and the electron in the hydrogen atom, the electron originally bound
to the hydrogen nucleus is completely knocked out. This would also happen if we could
use X-rays - we will also see that what is classically regarded as a wave comes in discrete
“lumps”, known as “quanta”, which have energy and momentum associated with them, just
like particles. It is therefore impossible to study directly the internal structure of atoms.
Either the wavelength is larger than the size of the atoms so that they cannot be resolved,
or the momentum associated with the wave is so large as to destroy the atomic structure
that we are trying to study.

It is tempting to imagine that the sub-microscopic (i.e. sub-atomic) world that we cannot
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see, even indirectly, is a scaled down copy of the world that we can see, so that although we
cannot see individual electrons within an atom, they have well-defined positions and velocities
(momenta) in orbits around the nucleus, in analogy to the planets moving in well-defined
orbits around the sun. Unfortunately, this is not the case. We have to learn to live with
the fact that an electron inside an atom behaves very much like a wave in a wavepacket and
simply does not possess a well-defined position and momentum. As we have no experience
of such a system, our imagination is limited in such a way that we cannot “understand”
this – i.e. we cannot draw a picture in our mind which represents what is happening. Let
me remind you that the objective of theoretical physics is to develop a theory which allows
us to calculate quantities which can be measured experimentally, and not to allow us to
draw pictures in our minds which portray systems with quantities whose values cannot, even
in principle, be measured. As we shall see from Heisenberg’s uncertainty principle, it is
impossible to measure, simultaneously, the position and momentum of a particle to better
than a certain accuracy. In our macroscopic world, with which we are familiar, this accuracy
is so good that any theoretical error is negligible compared to the accuracy with which we
can perform a measurement - so that we have no concept of quantum e↵ects in our everyday
life.2

Probability Density

The idea of probability density will crop up often in our discussion of Quantum Physics
– so it is worthwhile spending a little time explaining this. The probability that somebody’s
birthday is May 9 is about one in 3653. What this really means is that this is the probability
that somebody was born between midnight on May 8 and midnight May 9 or between time
T = 129 and T = 130 (measured in days from the beginning of the year). The probability
of somebody being born between midnight on May 8 and noon on May 9 is only half of
this and the probability of their being born in an even smaller time slice is even less. The
symbol dT is used to denote a small interval in time T , and the probability of somebody
being born between time T and time T + dT is given by P (T ) dT , where P (T ) is called the
“probability density”. In the case we are discussing this density is (approximately) 1/365
per day – so that the probability of being born between midnight on May 8 and noon on
May 9 is (1/365) ⇥ (1/2) = 1/730 whereas the probability of being born between 9 a.m.
and 10 a.m. on May 9 (dT = 1 hour = 1/24 day) is (1/365) ⇥ (1/24) = 1/8760.

2
This is something that is indeed limited by the technology of measurements. It is perfectly conceivable

that as experimental methods improve, we will be able to detect quantum e↵ects in larger systems, but we

will never be able to evade the limitation of the accuracy to which simultaneous measurements of position

and momentum can be made.
3
The distribution of birthdays is not quite uniform throughout the year because even we humans have

preferred “mating seasons” so the actually probability may be a little di↵erent.
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