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ABSTRACT

In drug optimization calculations, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method can be

used to compute free energies of binding of ligands to proteins. The method involves the evaluation of the energy of con-

figurations in an implicit solvent model. One source of errors is the force field used, which can potentially lead to large

errors due to the restrictions in accuracy imposed by its empirical nature. To assess the effect of the force field on the cal-

culation of binding energies, in this article we use large-scale density functional theory (DFT) calculations as an alternative

method to evaluate the energies of the configurations in a “QM-PBSA” approach. Our DFT calculations are performed

with a near-complete basis set and a minimal parameter implicit solvent model, within the self-consistent calculation, using

the ONETEP program on protein–ligand complexes containing more than 2600 atoms. We apply this approach to the T4-

lysozyme double mutant L99A/M102Q protein, which is a well-studied model of a polar binding site, using a set of eight

small aromatic ligands. We observe that there is very good correlation between the MM and QM binding energies in vac-

uum but less so in the solvent. The relative binding free energies from DFT are more accurate than the ones from the MM

calculations, and give markedly better agreement with experiment for six of the eight ligands. Furthermore, in contrast to

MM-PBSA, QM-PBSA is able to correctly predict a nonbinder.

Proteins 2014; 82:3335–3346.
VC 2014 Wiley Periodicals, Inc.

Key words: free energies of binding; protein–ligand interactions; DFT; large-scale DFT; ONETEP; QM-PBSA; T4-lysozyme

L99A/M102Q.

INTRODUCTION

Advances in computational chemistry and biochemistry

are directed toward more accurate descriptions of pro-

tein–ligand binding energies, which are essential for the

prediction of ligand binding affinities, a long-standing

goal in the field of computational drug design.1,2 Many

methods have been developed to tackle this problem,

ranging from theoretically rigorous approaches such as

free energy perturbation3,4 and thermodynamic integra-

tion (TI),5 to cheap and fast scoring methods6 commonly

used for docking calculations.

A method of medium computational effort is the

molecular mechanics Poisson-Boltzmann surface area

(MM-PBSA) approach.7 This approach combines molec-

ular dynamics (MD) simulations and continuum solva-

tion models to estimate protein–ligand binding free

energies. A significant source of error in MM-PBSA can

be the accuracy of the interaction energies computed for

each snapshot, as this accuracy depends on the selected

force field. Force fields have limitations due to their

empirical parametrization, which can be unreliable for

novel compounds significantly different from those pres-

ent in the fitting set. Another limitation of most force
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fields is their inability to explicitly describe electronic

polarization and charge transfer. To investigate the effect

of these force field-based limitations, in this work we

replace the MM energy with a first-principles quantum

mechanical (QM) energy evaluated for the entire system,

to perform QM-PBSA. For the QM calculations we use

the linear-scaling density functional theory (DFT) pro-

gram ONETEP.8 In a previous article,9 we investigated

the numerical parameters of the implicit solvation model

within ONETEP,10 using as a test system the T4 lyso-

zyme double mutant Leu99Ala/Met102Gln11 (or L99A/

M102Q). In this study we will also be using T4 lysozyme

L99A/M102Q to calculate QM-PBSA-based relative free

energies of binding for various ligands.

There has been a great deal of research into protein

stability, folding and design by looking at mutations of

the lysozyme from the bacteriophage T4.12,13 Two well-

studied mutants of T4 lysozyme are Leu99Ala

(L99A)12,14–16 and L99A/M102Q.11 These mutations

create a small buried apolar and polar cavity respectively,

which are capable of encapsulating small aromatic

ligands. These T4 lysozyme mutants have been used to

compare and validate binding free energy meth-

ods14,17–21 and to develop docking procedures.11,22,23

The relative simplicity of the T4 lysozyme mutants and

their small size make them attractive for validating com-

putational methods. Coupled with the abundance of lit-

erature, this makes T4 lysozyme L99A/M102Q a good

choice for a benchmark of QM-PBSA calculations.

In this study we are comparing the free energy of

binding between the conventional MM-PBSA approach

and our QM-PBSA approach on eight ligands bound to

the T4 lysozyme double mutant L99A/M102Q. These

ligands were chosen as they comprise a variety of chemi-

cal and physical properties (polarity, inclusion of halides,

size and nonbinders). Methods section describes the

MM-PBSA method, some of its most common variants,

ONETEP and our solvation model, QM-PBSA and our

simulation protocols and parameters. In Results and dis-

cussion section, we present and discuss our calculation

results and, we finish with conclusions in Conclusions

section.

METHODS

MM-PBSA and QM-PBSA

Ligand binding affinity is calculated as

DGbind5Gcomplex2Greceptor2Gligand: (1)

MM-PBSA7 is a method for computationally predict-

ing ligand binding affinity. The approach is based on the

postprocessing of a molecular dynamics trajectory, typi-

cally run in explicit solvent and counterions in a periodic

box. The free energy of binding is estimated by extract-

ing a representative structural ensemble of “snapshots”

from the trajectory. Solvent molecules and counterions

are removed, then MM is used to calculate the gas phase

interaction energy and a continuum solvent model

(PBSA) is used to calculate the solvation energies. The

free energy of binding is then obtained as the average

over the ensemble of structures:

DG5 hDEMMi1 hDGPBSAi2ThDSMMi; (2)

where hDEMMi is the interaction energy in vacuum,

hDGPBSAi is the solvation energy, and hDSMMi is the sol-

ute entropy, which can be obtained using normal mode

analysis. By using a continuum solvent model, the prob-

lem is simplified since we are implicitly integrating out

all the solvent coordinates, which results in more rapid

convergence with the number of snapshots.

The straightforward way to calculate the binding free

energy is the three-trajectory approach, where separate

simulations are carried out for the complex, receptor and

ligand. However, it has been found that the one-trajectory

approach, where only the complex simulation is run, and

receptor and ligand configurations are extracted from the

complex geometries, is more accurate due to error cancel-

lation.24 It is also 2–3 times faster, since the most com-

putationally demanding part is the MD simulations.

However, this approach assumes that there are no confor-

mational changes to the ligand or receptor upon binding.

Furthermore, when using the single trajectory approach,

hEMMi is the difference in nonbonded terms only, since

all bonded terms will cancel.

Calculation of the entropy in a consistent and accurate

manner is challenging. This makes calculation of the

absolute binding free energies difficult. An approxima-

tion that is often used is that entropy change is assumed

to be comparable for similar ligands, and hence cancels

when considering relative free energies of binding.

Although this may seem a poor assumption, calculating

the entropy of the ligand from structures taken from the

complex trajectory may well be an equally poor simplifi-

cation; since the ligand would be expected to have many

more degrees of freedom when free in solution. The rela-

tive free energy is calculated as

DDGA!B5DhDEMMiA!B1DhDGsolviA!B: (3)

A significant source of error in MM-PBSA can be the

accuracy of the interaction energies computed for each

snapshot, as this accuracy depends on the parametrization

and transferability of the selected force field. Apart from the

obvious approach of using more advanced force fields, a

related direction for improvement is to replace either part

or all of the force field description by a quantum descrip-

tion of the system. This would be expected to be more accu-

rate and transferable due to explicitly accounting for the

electronic effects, which are the source of all the

interactions.
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Kaukonen et al.25 presented a QM/MM-PBSA

approach and compared it to MM-PBSA for the purpose

of studying reactions in proteins. The aim was to study

the stability of two states with a shared proton. The QM

calculations were performed with DFT using the BP86

exchange-correlation functional with a 6–31G* basis set

and DZP for metal ions for one system, and the B3LYP

functional for another system using the same basis sets.

This method showed improved results for the proton

transfer and was in good agreement with more rigorous

approaches (QTCP26) with median absolute deviations

(MADs) of 4–22 kJ/mol. However, the QM region was

quite small, comprising 46 atoms while the MM part

comprised 12,132 atoms.

Wang and Wong27 used the SIESTA DFT code28 com-

bined with the implicit solvation model in the UHBD

software29 in a QM/MM-PBSA approach. The only dif-

ferences between the ligands in the pocket was a single

chemical functional group, with all common atoms being

in identical positions. This was done to improve the

odds of cancellation of systematic errors when comparing

binding free energies. Relaxed structures were generated

in three different ways. The first was geometry optimized

with SIESTA and the second and third in a QM/MM

approach with the ONIOM method in GAUSSIAN03.30

However, no protein configurational sampling was per-

formed. Wang et al. used a fixed geometry (single struc-

ture) approximation, where only minimized crystal

structures are used.

Diaz et al.31 replaced DhDEMMi with energies from

linear-scaling semiempirical QM calculations on an

ensemble of structures from a classical MD simulation in

a QM-PBSA type model. Prior to the single-point energy

calculations, QM/MM geometry optimizations of a sub-

system of the enzyme were performed, keeping the rest

of the enzyme fixed. Single point energy calculations

were performed with AM1 and PM3 using the divide

and conquer (D&C) approach on the subsystem of the

enzyme. The DivCon9932 program was used to perform

the D&C calculations. Diaz et al. found that the resulting

QM/MM geometry-optimized structures were similar to

the MD representations generated from the force fields,

and using semiempirical QM D&C gave comparable rela-

tive binding free energies to MM-PBSA. However, this

uses an empirical method and suffers from some of the

same transferability problems as force fields.

Cole et al.33 have recently extended the MM-PBSA

approach to a full QM-PBSA approach, with sampling of

protein motion, where the calculation of the interaction

energies in vacuum by the force field is replaced by DFT

calculations on the entire molecule for an ensemble of

snapshots taken from an MD simulation. The energy of

each snapshot is obtained as EQM5EDFT1Edisp, where

Edisp is the dispersion correction34 to the total DFT

energy, EDFT. In previous work,33,35 the free energy of

solvation in the QM calculation, GQM
solv was obtained by

scaling the classical solvation energy by the QM electro-

static energy, giving the free energy of binding as

DGtot5hDEQMi1hDGPB
DEDFT

DEEL

� �
1DGSAi (4)

5hDEQMi1hDGQM
solv i; (5)

where DEEL is the electrostatic contribution to the binding

energy from the MM calculation, DGPB is the polar term

from the solvation energy and DGSA is the nonpolar term.

The first application of QM-PBSA with ONETEP has been

on protein–protein interactions.33 The results obtained

were in good agreement with MM-PBSA, most likely

because the force field employed has been extensively and

carefully parameterized for protein systems and improved

over a number of years. This was applied to a model of a

host-guest system,35 where the force fields are much more

general and harder to parameterize. Here a significant

improvement was seen over MM-PBSA for relative binding

free energies. However, this does not calculate the QM sol-

vation energy in the QM calculation, and as such is suscep-

tible to the errors in the computed MM solvation energy.

In this work we are presenting the first QM-PBSA

study of a protein–ligand system where the entire protein

of 2602 atoms has been described by DFT calculations.

These calculations have been performed with ONETEP,

and in contrast to our previous QM-PBSA studies, the

solvation free energy has been computed within ONE-

TEP with a newly implemented self-consistent minimal

parameter implicit solvation model.10

The ONETEP approach

The ONETEP8 program is a linear-scaling DFT code that

has been developed for use on parallel computers.36 ONE-

TEP combines linear scaling with accuracy comparable to

conventional cubic-scaling plane-wave methods, which pro-

vide an unbiased and systematically improvable approach

to DFT calculations. Its novel and highly efficient algo-

rithms allow calculations on systems containing tens of

thousands of atoms.37 ONETEP is based on a reformula-

tion of DFT in terms of the one-particle density matrix. The

density matrix in terms of Kohn–Sham orbitals is

qðr; r
0 Þ5
X1
n50

fnwnðrÞw�nðr
0 Þ; (6)

where fn is the occupancy and wnðrÞ are the Kohn–Sham

orbitals. In ONETEP the density matrix is represented as

qðr; r
0 Þ5
X

a

X
b

/aðrÞK ab/�bðr
0 Þ; (7)

where /aðrÞ are localized nonorthogonal generalized

Wannier functions (NGWFs)38 and K ab, which is called
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the density kernel, is the representation of fn in the duals

of these functions. Linear scaling is achieved by trunca-

tion of the density kernel, which decays exponentially for

materials with a band gap, and by enforcing strict local-

ization of the NGWFs onto atomic regions. In ONETEP,

as well as optimizing the density kernel, the NGWFs are

also optimized, subject to a localization constraint. Opti-

mizing the NGWFs in situ allows for a minimum num-

ber of NGWFs to be used whilst still achieving plane

wave accuracy. The NGWFs are expanded in a basis set

of periodic sinc (psinc) functions,39 which are equivalent

to a plane-wave basis as they are related by a unitary

transformation. Using a plane wave basis set allows the

accuracy to be improved by varying a single parameter,

equivalent to the kinetic energy cutoff in conventional

plane-wave DFT codes. The psinc basis set provides a

uniform description of space, meaning that ONETEP

does not suffer from basis set superposition error.40

A minimal parameter implicit solvent model has

recently been developed within ONETEP.10,41 In this

model the total potential of the solute is obtained by

solving the nonhomogeneous Poisson equation within

the self-consistent calculation in ONETEP:

r � ðE½q�r/Þ524pqtotðrÞ; (8)

where qtotðrÞ is the total charge density and is calculated

as a sum of the electronic density qðrÞ and the density of

the atomic cores. The solute cavity is constructed directly

from the electronic density of the solute, which reduces

the number of parameters required to only two.42 The

model includes a smooth transition of the relative per-

mittivity according to the following expression:

EðrÞ511
E121

2
11

12ðqðrÞ=qoÞ2b

11ðqðrÞ=qoÞ2b

 !
; (9)

where E1 is the bulk permittivity, b controls the

smoothness of the transition of EðrÞ from 1 to E1, and

q0 is the density value for which the permittivity drops

to half that of the bulk. This model was validated on two

test sets, one of 60 small molecules (20 neutral, 20 cati-

onic, and 20 anionic) and the second of 71 larger mole-

cules, on which the solvation energies obtained had a

root mean square (rms) error with respect to experiment

of 3.8 kcal/mol, while the PCM model43 showed an rms

error of 10.9 kcal/mol and the highly parameterized

state-of-the-art SMD model44 had an rms error of 3.4

kcal/mol.

Simulation details

The lysozyme structure was protonated with the

MOE45 program. MM simulations were carried out

using the amber1046 package, with the ff99SB47 force

field used for the protein and the generalized amber

force field (GAFF)48 used to model the ligands. Ligand

charges were calculated with the AM1-BCC method with

antechamber (part of AMBER). The system was explicitly

solvated in the TIP3P water model49 and the charge

neutralized by Cl2 ions.

Since the binding modes of the ligands are all very

similar, only catechol bound in the pocket (PDB: 1XEP)

was equilibrated. All other ligands were mutated from

the catechol at the end point of the equilibration. The

system was equilibrated using the following protocol.

Hydrogen atoms were relaxed with restraints placed on

all heavy atoms in the complex and solvent, before relax-

ing the solvent with restraints only on the complex. The

system was heated to 300 K over 200 ps, still restraining

the heavy atoms of the complex, in the NVT ensemble,

then run for a further 200 ps with the NPT ensemble at

300 K in order to equilibrate the solvent density. This

was cooled over 100 ps to 100 K and a number of relaxa-

tions were run, reducing the restraints on the heavy

atoms in stages (1000 kcal/mol Å22, 500 kcal/mol Å22,

100 kcal/mol Å22, 50 kcal/mol Å22, 20 kcal/mol Å22, 10

kcal/mol Å22, 5 kcal/mol Å22, 2 kcal/mol Å22, 1 kcal/

mol Å22, and 0.5 kcal/mol Å22). Finally the system was

reheated to 300 K with no restraints over 200 ps and

then for a further 200 ps at 300 K in the NPT ensemble

to equilibrated the pressure at 1 atm. At this stage, it was

confirmed that the water density in the box and the pro-

tein structure were stable, as measured by the root mean

squared deviation of the protein backbone atoms (con-

verged to 0.8 Å relative to the initial configuration).

Production simulations were run for 20 ns in the NVT

ensemble at 300 K, with the first 1 ns being considered

as further equilibration of the ligand in the pocket. All

MD simulations used the Langevin thermostat,50 the

particle mesh Ewald (PME) sum for the treatment of the

electrostatics and the SHAKE algorithm51 to constrain

hydrogen-containing bonds, allowing a time-step of 2 fs.

For the MM-PBSA calculation an infinite nonbonded

cutoff was used with a dielectric constant of 80 to repre-

sent the water solvent. The 1-phenylsemicarbazide ligand

was treated slightly differently. Since it is significantly

bigger than catechol, this ligand was built into the pro-

tein pocket using the structure of the benzyl acetate com-

plex with L99A/M102Q double mutant of T4 lysozyme

(PDB:3HUK), which is structurally similar to 1-

phenylsemicarbazide. This structure was then equili-

brated in the same way as catechol, followed by a 20-ns

NVT production simulation, the last 19 ns of which were

used to generate the snapshots for this study.

In the ONETEP calculations, four NGWFs were used

to describe carbon, oxygen, and nitrogen atoms, one

NGWF for hydrogen atoms and nine NGWFs for the

halogen atoms, all with radii of 8 a0. A kinetic energy

cutoff of 827 eV for the psinc basis set was used, with

the GGA exchange-correlation functional PBE52 com-

bined with our implementation of the DFT1D approach

S. Fox et al.
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to account for dispersion, parameterized specifically for

this functional.34 These settings for our ONETEP calcu-

lations were previously compared against calculations

with large near-complete Gaussian basis sets and shown

to agree with them to less than 0.02 kcal/mol.53 The

numerical parameters for QM implicit solvation model

were chosen after validation using this protein in a previ-

ous study9; these are a dielectric constant of 78.54 to

represent the water solvent, a b value of 1.3, and numeri-

cal parameters for the smeared ion width of 0.8 a0 and a

discretization order of 8.

The change in entropy was computed with normal

mode analysis in amber10. The structural optimizations

were performed first with the conjugate gradients

method, followed by the Newton-Raphson method, with

very small force tolerances for tight convergence. These

were done in the presence of an implicit solvent using

the Generalized Born model.

It is important to note that the QM total energies of

the complex and host are of the order of millions of

kcal/mol, in contrast the binding energies are only a few

tens of kcal/mol, a minute value in comparison. Thus,

for the accurate calculation of the binding energies the

total energies have to be very well converged, and for

systems of this size (26001 atoms) this can be challeng-

ing. We examined the convergence of the total energy on

one of our large systems (phenol bound in the cavity of

T4 lysozyme L99A/M102Q) to ensure that the energies

are converged sufficiently well for the calculation of

binding energies. The results for two snapshots of phenol

bound in the pocket are displayed in Table I. For our

test calculations on this system with ONETEP we see

very good convergence with errors less than 0.1 kcal/mol.

Snapshots were extracted at constant time intervals

from the production trajectory. For MM-PBSA the bind-

ing free energies were calculated with an increasing num-

ber of snapshots up to a total of 1000 snapshots taken

from the 19 ns production simulations. Figure 1 displays

the convergence of the MM-PBSA free energies as more

snapshots are included in the ensemble, considering the

value at 1000 snapshots as the fully converged (standard

errors below 0.08 kcal/mol). The maximum error observed

using 5 snapshots is 1.15 kcal/mol, for the 2-methylphenol

ligand. By using 50 snapshots the maximum error is

reduced to less than 0.5 kcal/mol (with catechol having

the largest error of 0.41 kcal/mol). Assuming the conver-

gence pattern for the QM calculations is similar, and

taking into account the increased computational cost of

the QM calculations, in this study we have chosen to

use 50 snapshots to calculate the QM-PBSA energies.

We can further support the assumption of similar con-

vergence rates if we examine the standard errors for the

50 snapshots for the MM and QM binding energies

(both in solvent). For the case of phenol the MM

standard error over 50 snapshots is 0.34 kcal/mol (and

0.34 kcal/mol in solvent), while the QM value is 0.35

kcal/mol (0.42 kcal/mol). For catechol the MM error is

0.34 kcal/mol (0.27 kcal/mol) compared to a QM value

of 0.38 kcal/mol (0.42 kcal/mol), and for toluene the

MM standard error is 0.22 kcal/mol (0.27 kcal/mol)

compared to a QM value of 0.24 kcal/mol (0.34 kcal/

mol). Thus, MM and QM standard error values are

very similar, supporting the assumption that the QM

binding energies converge at a similar rate as the MM

binding energies shown in Figure 1.

Another issue for the T4 lysozyme L99A/M102Q is

that of Val111 in the binding pocket, which is known to

have two rotamers with a v1 angle of �180
�

and �260
�
.

Studies have shown that using the wrong rotamer can

have an effect of up to 4 kcal/mol on the calculated

Table I
Total Energies and Binding Energies From ONETEP for Two Snapshots (A and B) of Phenol Bound in the Cavity of T4 Lysozyme L99A/M102Q,

and the SCF Convergence Errors of the Calculations

Snapshot Complex Receptor Ligand Binding energy

A 27360884.3 6 0.03 27326972.6 6 0.03 233886.6 6 0.000005 225.1
B 27360982.7 6 0.07 27327066.1 6 0.07 233886.8 6 0.000005 229.8

Energies are given in kcal/mol.

Figure 1
Absolute deviations of the binding energies of the studied ligands as a

function of the number of snapshots included in the MM-PBSA calcula-
tion, taking 1000 snapshots as the converged value. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Free Energies of Binding From DFT Calculations on Entire Proteins

PROTEINS 3339

http://wileyonlinelibrary.com


binding free energies.14,19 Explicit modeling of this

effect has been shown to improve the agreement with

experimental binding free energies.19 We confirmed that

our simulations sampled both of these rotamers.

When relative binding free energies are calculated, an

approximation that can be used, if ligands are of a similar

size and shape, is that the changes in entropy of binding

between different ligands are comparable and will cancel

each other. To investigate the effect of this approximation

for this system, we have also approximated the entropy

using normal mode analysis in amber and the results with

and without entropy are shown. In Table III, the entropy

is calculated as the average from the 50 snapshots taken at

constant time intervals from the trajectories.

Ligand hydration energies were calculated using the

SMD model44 in the Gaussian03 program30 at the M05-

2X/6-31G(d) SCRF(IEFPCM, Solvent 5 Water, SMD)

level on a single geometry optimized structure.

RESULTS AND DISCUSSION

We computed the binding free energy of the 8 ligands

shown in Table II to the T4 lysozyme double mutant

L99A/M102Q using MM-PBSA and QM-PBSA. These

ligands were chosen as they comprise of a variety of

chemical and physical properties (polarity, inclusion of

halides, size, and binder/nonbinder).

For a protein like this with a buried binding pocket

which contains solvent, both the QM and MM models

will provide a qualitatively wrong description for the

host by adding rather than subtracting the nonpolar con-

tribution of the cavity, as depicted in Figure 2.

We can correct the error described in Figure 2 if we

subtract twice the difference between the host and com-

plex nonpolar terms from the host nonpolar solvation

energy; once to remove the presence of the erroneous

addition of the cavity (making it equal to the description

of the complex), and a second time to create a solvent

filled cavity. With the observation that the surface ten-

sion term used in the QM model takes into account the

solute-solvent dispersion and repulsion,10 we wish to

remove only the spurious cavitation from our model of

the host, whilst leaving the physically correct dispersion–

repulsion contributions. The corrected host solvation

energy is then given by Equation 12.

DSASA5SASAhost2SASAcomplex

Ecav5g � SASA

Edis-rep52g0 � SASA

Enon-polar5Ecav1Edisp-rep5ðg2g0Þ � SASA5~g � SASA:

DSASA5
1

~g
Ehost

non-polar2E
complex
non-polar

� �
:

(10)

EQM
cav-corr52g � DSASA52

g

~g
Ehost

non-polar2E
complex
non-polar

� �

’ 7:116 Ehost
non-polar2E

complex
non-polar

� �
:

(11)

DEQM
host-solvation5EQM

host-solv2EQM
cav-corr2EQM

host-vac: (12)

Here c is the is the solvent surface tension, while g0 is

an additional factor to c that introduces dispersion–

repulsion interactions, SASA is the solvent-accessible sur-

face area, Ecav is the cavitation energy, Edis-rep is the

solute-solvent dispersion–repulsion energy, Ehost
non-polar is

the total nonpolar solvation energy, and EQM
cav-corr is the

QM correction to the cavitation energy. This is also the

case with the MM nonpolar energy, with the buried

pocket adding to the surface area, causing the host to

have a larger cavitation energy than the complex. We

have treated the MM in a similar way, subtracting twice

the difference of the host and complex nonpolar energy:

EMM
cav-corr52 � Ehost

non-polar2E
complex
non-polar

� �
:

DEMM
host-solvation5EMM

host-solv2EMM
cav-corr2EMM

host-vac:

(13)

Table III presents the computed binding free energies

of these ligands (relative to phenol which is normalized

Table II
Ligands Chosen for Study in the T4 Lysozyme Double Mutant

L99A/M102Q

L99A/M102Q ligands DGexp Structure

Toluene 25.2 [11]

Phenol 25.5 [11]

Catechol 24.4 [22]

2-Fluoroaniline 25.5 [11]

2-Methylphenol 24.4 [11]

3-Chlorophenol 25.8 [11]

2-Aminophenol Nonbinder [21]

1-Phenylsemicarbazide Nonbinder [22]

Experimentally measured free energies of binding (DGexp) are given in kcal/mol.
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to the experimental binding free energy of phenol to T4

lysozyme double mutant L99A/M102Q), averaged over

50 snapshots. The top table shows the QM binding ener-

gies in vacuum, solvent, and with entropic contributions

calculated from normal mode analysis (from the MM

calculations), alongside the experimentally obtained val-

ues. The lower table displays the same data obtained

from MM-PBSA.

Looking at the MM binding free energies (averaged

over 50 snapshots) in Table III, we observe that the rela-

tive binding free energies from MM-PBSA are not very

close to the experimental values. There are two excep-

tions, catechol that has a calculated relative binding free

energy with an error of 0.7 kcal/mol when compared to

the experimental value, and 2-methylphenol which has

an error of 0.9 kcal/mol from experiment. The smallest

error for the other binding ligands is almost 2 kcal/mol.

The binding free energies from QM-PBSA are improved,

with two ligands having errors less than 0.8 kcal/mol

from experiment (2-fluoroaniline and toluene). Catechol,

in contrast to MM-PBSA, has the largest error (with

respect to the experimental value) of the known binders

overestimated by 4.1 kcal/mol. Given that the vacuum

binding energies from MM and QM correlate very well,

as we can observe in Table III, the difference observed in

the binding energies in solvent is primarily due to the

solvation energies. For a deeper understanding, we will

look at only the solvation energy of the ligands. We will

use catechol as an example, since the MM-PBSA relative

binding free energy is very close to the experimental

value whilst the QM-PBSA value is not. The experimen-

tal hydration free energy of catechol is 29.4 kcal/mol.54

The QM hydration free energy averaged over the 50

snapshots is 28.1 kcal/mol. In contrast, the MM

Table III
QM-PBSA (Top) and MM-PBSA (Bottom) Binding Free Energies for 50 Snapshots Relative to Phenol

Ligand DGQM
bind;vac DGQM

bind;solv DGQM
bind;solv 2TDS DGexp

Catechol 213.9 6 0.38 29.0 6 0.42 28.6 6 0.67 24.4 [22]
3-Chlorophenol 28.1 6 0.26 26.9 6 0.40 27.7 6 0.67 25.8 [11]
2-Fluoroaniline 24.3 6 0.25 25.9 6 0.42 24.8 6 0.55 25.5 [11]
2-Methylphenol 28.2 6 0.25 28.5 6 0.37 27.0 6 0.61 24.4 [11]
Toluene 1.6 6 0.24 24.8 6 0.35 24.4 6 0.59 25.2 [11]
1-Phenylsemicarbazide 219.8 6 0.49 20.3 6 0.55 3.8 6 0.70 Nonbinder [22]
2-Aminophenol 212.2 6 0.41 26.2 6 0.39 25.1 6 0.51 Nonbinder [21]
Phenol (reference) 25.6 6 0.35 25.6 6 0.42 25.6 6 0.59 25.6 [11]

Max errora 19.8 6.2 5.1
RMS error 10.0 3.3 2.7

Catechol 216.0 6 0.34 24.1 6 0.27 23.7 6 0.60 24.4 [22]
3-Chlorophenol 29.6 6 0.25 28.8 6 0.27 29.2 6 0.73 25.8 [11]
2-Fluoroaniline 25.7 6 0.28 28.5 6 0.33 27.4 6 0.46 25.5 [11]
2-Methylphenol 28.2 6 0.27 27.2 6 0.23 26.1 6 0.61 24.4 [11]
Toluene 0.8 6 0.22 27.5 6 0.27 27.1 6 0.50 25.2 [11]
1-Phenylsemicarbazide 222.9 6 0.42 211.6 6 0.37 27.5 6 0.55 Nonbinder [22]
2-Aminophenol 213.2 6 0.40 27.1 6 0.39 26.1 6 0.50 Nonbinder [21]
Phenol (reference) 25.6 6 0.34 25.6 6 0.34 25.6 6 0.49 25.6 [11]

Max errora 22.9 11.6 7.5
RMS error 11.3 5.5 4.0

Standard errors for each ligand are included as obtained from the binding energies of the 50 snapshots. All energies in kcal/mol.
aThe experimental binding energy for the nonbinders is set to 0.00 kcal/mol, unless the prediction is positive, in which case the error is assumed 0.00 kcal/mol.

Figure 2
Left: The host in reality. Right: The host as described by the solvation
model, in terms of its contributions to the cavitation energy. In the

model, the surface area of the buried pocket is added to the cavitation
energy contribution of the host, providing a qualitatively wrong

description of the host. DSASA is the difference in the solvent accessible

surface area between the complex and host. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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hydration free energy averaged over the same 50 snap-

shots, is 220.9 kcal/mol. This shows that the MM hydra-

tion energy is substantially overestimated; however MM-

PBSA still produces a very good relative binding free

energy compared to experiment. Since MM and QM

binding energies in vacuum are so close to each other,

this suggests that both MM and QM overbind the cate-

chol in the pocket in vacuum, however the excessively

large solvation energy from MM-PBSA cancels out the

overbinding in vacuum to give a final relative free energy

of binding that does agree closely with experiment.

MM-PBSA predicts 1-phenylsemicarbazide, which is

an experimental nonbinder, to be a strong binder, while

QM-PBSA correctly predicts that this molecule is a non-

binder. This is a consequence of the much larger size of

this ligand and the contributions this makes to the solva-

tion energy in each model. 1-Phenylsemicarbazide has

the largest binding energy in vacuum for both MM and

QM descriptions. Due to the larger size, 1-

phenylsemicarbazide also shows more pronounced

changes in the entropy of binding, which results in a dif-

ference of around 4.1 kcal/mol in the calculated binding

entropy compared to phenol. Thus, the approximation of

entropy cancellation is not valid in this case and indeed

the inclusion of entropy has a large effect for both the

MM-PBSA and QM-PBSA results for this ligand. We can

assess the increase in the binding pocket volume in the

case of 1-phenylsemicarbazide by examining Figure 3,

which displays the dielectric permittivity from the quan-

tum solvation model within the binding pocket at an

isovalue of 70, for the host as extracted from the com-

plex geometry with phenol bound (3.a) or with 1-

phenylsemicarbazide bound (3.b). This clearly shows the

enlargement of the cavity caused by the presence of the

larger ligand. Solvation energies are also very important.

The desolvation energy of this ligand is larger than the

others due to its large polar chain and the solvation

energy of the host is also increased compared to the host

solvation energies for the other ligands due to the

enlarged cavity, so both of these effects act to destabilize

the binding of 1-phenylsemicarbazide. The combination

of these effects as shown in Table III produces a positive

free energy of binding showing that this ligand is a non-

binder for the QM calculations, while it is still predicted

to be a strong binder by the MM calculations. As the

geometries are the same between the MM and QM calcu-

lations and also the relative energies in vacuum agree

closely (around 3 kcal/mol), we conclude that the more

rigorous QM solvation model is responsible for produc-

ing the correct result for this case. This deciding role of

the solvent is also demonstrated by previous calculations

using the more thermodynamically rigorous TI technique

in explicit solvent in which case 1-phenylsemicarbazide

was also predicted to be a nonbinder.22

It is interesting to observe that 2-aminophenol which is

a known decoy,21 that is, an experimental nonbinder that

computational approaches predict as a binder, lives up to

its name and is predicted to be a good binder by both the

MM and QM techniques in our study. By examining the

binding energies in vacuum we observe that 2-

aminophenol, as is the case with catechol, has very large

binding energies (212.2 kcal/mol for QM and 213.2 for

MM). While this is to be expected as the amine and

hydroxyl groups can each form a hydrogen bond in the

cavity while most other ligands form a single hydrogen

bond, the computed binding energies appear to be larger

than we might expect, even for a bidentate ligand. Graves

et al.21 also suggest that both catechol and 2-

aminophenol are expected to share the same binding

modes within the cavity. They attribute the lack of bind-

ing for 2-aminophenol to an expectation that it should

have a larger desolvation energy than catechol due to the

Figure 3
The dielectric permittivity from QM calculations at an isovalue of 70 inside of the host, extracted from the complex geometry, with (a) phenol

bound, and (b) phenylsemicarbazide bound. The ligands have been superimposed as a guide to the eye. The ligand-containing green volumes in

the middle are the cavities that contribute to the solvation energy, while the apparently empty space is occupied by the protein.
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perceived ability of the amine to stabilize more hydrogen

bonds in water. This is not confirmed however from our

ligand hydration energies as calculated with three different

solvation models. For example, the most accurate hydra-

tion free energy values we can obtain from the QM mod-

els, for catechol and 2-aminophenol differ by 0.5 kcal/mol

for the SMD model and 0.1 kcal/mol for our model.

Therefore the experimental result, which has been

obtained by the thermal upshift denaturation temperature

technique, may need to be checked with more accurate

methods. While the MM solvation energy of 2-

aminophenol is overestimated by about 4 kcal/mol, this is

not as large as the 12 kcal/mol overstimation of the cate-

chol MM solvation energy, and does not cause the same

fortuitous error cancellation that led to the remarkable

agreement with experiment for the MM binding free

energy of catechol. If we did have the same level of error

in the MM solvation energy of 2-aminophenol, MM-

PBSA would predict it as essentially a nonbinder.

If we exclude 1-phenylsemicarbazide for the reasons we

have already discussed, all other ligands have entropies of

binding much closer to phenol, between 0.4 kcal/mol and

1.6 kcal/mol, with the largest value being for 2-

methylphenol. Although this difference in entropies is

quite small, we do observe an overall improvement in the

agreement with experiment when entropy is included in

the calculation of the relative binding free energies aver-

aged over 50 snapshots for all ligands, for both MM-

PBSA and QM-PBSA. Therefore the argument that entro-

pies of binding for ligands of similar size can be ignored

when calculating relative free energies of binding is par-

tially valid and could be applied in cases where the calcu-

lation of vibrational entropies is not feasible. In the case

of 1-phenylsemicarbazide, which is much larger and more

flexible than the other ligands, the effect of the entropy is

significant and cannot be ignored. A more rigorous theo-

retical approach for including entropy in the calculation

of free energies of binding is TI. However, even with MM

calculations, this approach is computationally extremely

demanding compared to MM-PBSA as it requires explicit

solvent and multiple MD simulations “mutating” one

ligand to another. Boyce et al.22 have used MM-based TI

simulations to calculate free energies of binding of 8

ligands to the same protein as we. Their ligands are small

rigid aromatic molecules and they have in common with

us the ligands catechol, phenol and 2-methylphenol. Their

rms errors of the relative binding free energies from phe-

nol to their other ligands with respect to experimentally

measured values (obtained from ITC) were 2.5 kcal/mol,

and using catechol as a reference, 1.1 kcal/mol. Our QM-

PBSA calculations have comparable rms error of 2.7 kcal/

mol while MM-PBSA has a larger rms error of 4.0 kcal/

mol. These comparisons make it clear that the rigorous

calculation of the entropy of binding is equally important

to the accurate description of the intermolecular interac-

tions that the QM method provides.

We have already discussed the effect of the solvation

model, which plays a major role in the free energies of

binding that each method provides. More in depth infor-

mation can be obtained from Table IV where we present

all the ligand hydration energies that we have available.

The experimentally obtained hydration energies of cate-

chol, 2-methylphenol, phenol and toluene are 29.4 kcal/

mol,54 25.9 kcal/mol,55 26.6 kcal/mol,55 and 20.9

kcal/mol,55 respectively. Hydration energies obtained

from QM-PBSA averaged over 50 snapshots are 28.1

kcal/mol, 22.9 kcal/mol, 23.7 kcal/mol, and 1.4 kcal/

mol in contrast to MM-PBSA which gives 220.9 kcal/

mol, 29.0 kcal/mol, 29.8 kcal/mol, and 21.5 kcal/mol.

Table IV shows also the hydration energies of all the

ligands as calculated with the SMD model as well. We

can clearly see that the MM-PBSA hydration energies are

less accurate and this impacts the outcome of the free

energy calculations. The QM-PBSA energies on the other

hand have a smaller error and the relative hydration

energies are substantially closer to experimentally

obtained values. For the classical solvation model, the

maximum error for the relative solvation energies of the

ligands is 8.6 kcal/mol, with an rms error 2.1 kcal/mol,

compared with 1.8 kcal/mol maximum error and 1.2

kcal/mol rms error for our QM solvation model. The

more accurate QM solvation energies result in improved

binding free energies for the majority of the ligands.

Finally, it is interesting to consider the computational

effort required for our QM-PBSA calculations. As would

be expected, even with a linear scaling and highly paral-

lelized DFT program such as ONETEP, these calculations

Table IV
Comparison of QM-PBSA and MM-PBSA Ligand Absolute (Top) and

Relative (Bottom) Hydration Energies With Experimental Hydration
Energies

Molecule DGSMD
lig;solv DG

exp
lig;solv DGMM

lig;solv DGQM
lig;solv

Catechol 29.3 29.4 [54] 220.9 28.1
3-Chlorophenol 26.7 – 29.9 23.6
2-Fluoroaniline 24.5 – 25.4 23.2
2-Aminophenol 29.8 – 213.9 28.0
2-Methylphenol 26.3 25.9 [55] 29.0 22.9
1-Phenylsemicarbazide 215.1 – 216.2 213.8
Toluene 21.3 20.9 [55] 21.4 1.4
Phenol 26.7 26.6 [55] 29.7 23.7
Relative hydration

energies
Catechol 22.5 22.8 211.1 24.3
3-Chlorophenol 0.1 – 20.1 0.1
2-Fluoroaniline 2.3 – 4.4 0.6
2-Aminophenol 23.1 – 24.1 24.2
2-Methylphenol 0.4 0.7 0.8 0.9
1-Phenylsemicarbazide 28.4 – 26.4 210.1
Toluene 5.4 5.7 8.3 5.1
Phenol (reference) 0.0 0.0 0.0 0.0
Max errora 8.6 1.8
RMS errora 3.4 1.2

Hydration energies averaged over the 50 chosen snapshots (energies in kcal/mol).
aError calculation used SMD values as reference.
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are significantly more computationally expensive than

the MM calculations. A single QM-PBSA energy evalua-

tion (i.e., achieving self-consistent convergence in

implicit solvent) on a representative complex structure

(2615 atoms) took approximately 28 h on 48 Intel
VR

Xeon
VR

E5–2670 processor cores. This is around 4:83107

core-seconds, compared to the MM-PBSA energy evalua-

tion on the same structure that took just 11 s on one

(slightly slower) Intel
VR

Xeon
VR

E5–2650 processor core.

Even with the small difference in core speeds taken into

account, the QM-PBSA energy evaluation is about six

orders of magnitude more computationally demanding

than MM-PBSA. However, the point is that with linear-

scaling DFT approaches, run on modest computational

resources which are widely available today, free energy

calculations on entire proteins encompassing thousands

of atoms are becoming feasible. While the computational

effort is and will remain much higher than MM-based

approaches, the ability to run full DFT calculations on

thousands of atoms with a near-complete basis set

obtaining superior accuracy and transferability compared

to MM, means that such calculations are likely to

become a useful tool in drug optimization.

CONCLUSIONS

We have developed a QM-PBSA approach for the cal-

culation of free energies of binding, in which large-scale

DFT calculations with a near-complete basis set are per-

formed to evaluate the energy of the configurations in

place of the force field that is used in the conventional

MM-PBSA technique. The solvation effects in the DFT

calculations are described by a minimal parameter self-

consistent implicit solvent model. We applied this QM-

PBSA approach to compute the relative binding free

energies of eight small aromatic ligands bound in the

polar cavity of the T4 lysozyme mutant L99A/M102Q

protein which contains 2601 atoms, and have compared

our results to the traditional MM-PBSA method. To our

knowledge, this is the first study where an entire pro-

tein–ligand system is described by a DFT approach with

a self-consistent implicit solvent model.

All the structures were obtained from classical molecu-

lar dynamics simulations. The free energy calculations

have been converged to within 0.5 kcal/mol with respect

to the number of snapshots included in the ensembles

for both the MM and QM approaches. Our aim was to

explicitly account for electronic polarization and charge

transfer via the DFT calculations. We observed remark-

able agreement between the MM and QM binding ener-

gies in vacuum, which indicates that the parametrization

of the force field in this case is good enough to capture,

in an average way, effects of polarization and charge

transfer for the T4 lysozyme mutant L99A/M102Q. With

the QM and MM vacuum energies agreeing so closely,

the differences in the final binding free energies are due

to the solvation energies. Thus, we observe significant

differences when computing free energies of binding in

solvent and we have found that our DFT-based solvation

model is overall more consistent and accurate than the

MM model. For the eight ligands we used in this study

the rms error in free energies of binding is 4.0 kcal/mol

for MM-PBSA, whereas QM-PBSA reduces this error to

2.7 kcal/mol. This demonstrates that at least the solvent-

induced polarization needs to be treated explicitly in

order to improve the reliability of such free energy

approaches.

Even though the QM-PBSA results are overall more

accurate, the approach performs significantly worse for

the catechol ligand. MM-PBSA’s improved accuracy for

this ligand in particular appears to be fortuitous error

cancellation between overbinding in vacuum and a

ligand hydration energy that is over twice the experimen-

tal value. It is important to note that the ligands in our

set contain two nonbinders that MM-PBSA predicts as

good binders, whereas QM-PBSA correctly predicts one

of these as a nonbinder.

The T4 lysozyme double mutant is a challenging sys-

tem, as not only do all the experimentally confirmed

binders in our study have very similar binding free ener-

gies but also the buried cavity is a challenge for the

implicit solvation models. In addition to this, the

advantage of explicitly accounting for the electrons is off-

set by the simplicity of the protein and ligands we have

used here, which, as we have shown are described very

well by the force field. Although the sample size of this

study was small, our full QM-PBSA approach has given

very encouraging results. We expect that QM-PBSA sim-

ulations of this kind will prove beneficial in future com-

putational drug optimization studies, especially in cases

where the ligands have functional groups whose interac-

tions with the hosts are not captured accurately by avail-

able force fields and their parametrizations.
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Åqvist J. Free energy calculations and ligand binding. Adv Protein

Chem 2003;66:123-158.

3. Zwanzig R. High-temperature equation of state by a perturbation

method. I. nonpolar gases. J Chem Phys 1954;22:1420-1426.

4. Christ CD, Mark AE, van Gunsteren WF. Basic ingredients of free

energy calculations: A review. J Comp Chem 2010;31:1569-1582.

S. Fox et al.

3344 PROTEINS



5. Kirkwood JG. Statistical mechanics of fluid mixtures. J Chem Phys

1935;3:300-313.

6. Halperin I, Ma BY, Wolfson H, Nussinov R. Principles of docking:

An overview of search algorithms and a guide to scoring functions.

Proteins 2002;47:409-443.

7. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA. Con-

tinuum solvent studies of the stability of DNA, RNA, and phos-

phoramidate-DNA helices. J Am Chem Soc 1998;120:9401-9409.

8. Skylaris C-K, Haynes PD, Mostofi AA, Payne MC. Introducing

{ONETEP}: Linear-scaling density functional simulations on parallel

computers. J Chem Phys 2005;122:084119.

9. Dziedzic J, Fox SJ, Fox T, Tautermann C, Skylaris C-K, Large-scale

{DFT} calculations in implicit solvent - {A} case study on the {T}4

lysozyme {L}99{A}/{M}102{Q} protein. Int J Quantum Chem 2012;

113:771-785.

10. Dziedzic J, Helal HH, Skylaris C-K, Mostofi AA, Payne MC, Mini-

mal parameter implicit solvent model for ab initio electronic struc-

ture calculations. Europhys Lett 2011;95:43001.

11. Wei BQ, Baase WA, Weaver LH, Matthews BW, Shoichet BK. A

model binding site for testing scoring functions in molecular dock-

ing. J Mol Biol 2002;322:339-355.

12. Baase WA, Zhang XJ, Heinz DW, Blaber M, Baldwin EP, Matthews

BW, Eriksson AE. Responce of a protein-structure to cavity-creating

mutations and its relation to the hydrophobic effect. Science 1992;

255:178-183.

13. Eriksson AE, Baase WA, Matthews BW. Similar hydrophobic

replacement of Leu99 and Phe153 within the core of T4-lysozyme

have different structural and thermodynamic consequences. J Mol

Biol 1993;229:747-769.

14. Deng Y, Roux B. Calculation of standard binding free energies: Aro-

matic molecules in the {T}4 lysozyme {L99A} mutant. J Chem

Theory Comput 2006;2:1255-1273.

15. Morton A, Baase W, Matthews BW. Energetic origins of specificity

of ligand binding in an interior nonpolar cavity of {T}4 {L}ysozyme

. Biochemistry 1995;34:8564-8575.

16. Morton A. Specificity of ligand binding in a buried nonpolar cavity

of {T}4 lysozyme: Linkage of dynamics and structural plasticity .

Biochemistry 1995;34:8576-8588.

17. Gallicchio E, Lapelosa M, Levy RM. Binding energy distribution

analysis method ({BEDAM}) for estimation of protein–Ligand bind-

ing affinities. J Chem Theory Comput 2010;6:2961-2977.

18. Leitgeb M, Karplus M, Boresch S, Tettinger F. Absolute binding free

energies: A quantitative approach for their calculation. J Phys Chem

B 2003;107:9535-9551.

19. Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK,

Dill KA. Predicting absolute ligand binding free energies to a simple

model site. J Mol Biol 2007;371:1118-1134.

20. Deng Y, Roux B. Computations of standard binding free energies

with molecular dynamics simulations. J Phys Chem B 2009;113:

2234-2246.

21. Graves AP, Brenk R, Shoichet BK. Decoys for docking. J Med Chem

2005;48:3714-3728.

22. Boyce SE, Mobley DL, Rocklin GJ, Graves AP, Dill KA, Shoichet

BK. Predicting lingand binding affinity with alchemical free energy

methods in a polar model binding site. J Mol Biol 2009;394:747-

763.

23. Graves AP, Shivakumar DM, Boyce SE, Jacobson MP, Case DA,

Shoichet BK. Rescoring docking hit lists for model cavity sites: Pre-

dictions and experimental testing. J Mol Biol 2008;377:914-934.

24. Massova I, Kollman PA. Computational alanine scanning to probe

protein–protein interactions: A novel approach to evaluate binding

free energies. J Am Chem Soc 1999;121:8133-8143.

25. Kaukonen M, S€oderhjelm P, Heimdal J, Ryde U. {QM/MM-PBSA}

method to estimate free energies for reactions in proteins. J Phys

Chem B 2008;112:12537-12548.

26. Rod TH, Ryde U. A method for calculating high-level {QM/MM}

free energies for enzymatic reactions: methyl transfer catalyzed by

catechol {O}-methyltransferase. Phys Rev Lett 2005;94:198302.

27. Wang M, Wong CF. Rank-ordering protein-ligand binding affinity

by a quantum mechanics/molecular mechanics/Poisson-Boltzmann-

surface area model. J Chem Phys 2007;126:026101.

28. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P,

Sanchez D. The {S}iesta method for ab initio order-N materials sim-

ulation. J Phys Cond Mater 2002;14:2745-2779.

29. Davis ME, Madura JD, Luty BA, McCammon JA. Electrostatic and

diffusion of molecules in solution: {S}imulations with the University

of Houston Brownian Dynamics Program. Comp Phys Commun

1991;62:187-197.

30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,

Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC,

Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M,

Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M,

Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y,

Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB,

Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE,

Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY,

Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG,

Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck

AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG,

Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz

P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng

CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen

W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, revision C.02.

Wallingford, CT: Gaussian, Inc.; 2004.

31. Diaz N, Su�arez D, Merz KM, Sordo TL. Molecular dynamics simula-

tions of the TEM-1 {b}-lactamase complexed with cephalothi.

J Med Chem 2005;48:780-791.

32. Dixon SL, van der Vaart A, Wang B, Gogonea V, Vincent JJ,

Brothers EN, Suarez D, Westerhoff LM, Merz JKM, Divcon. Univer-

sity Park, PA: The Pennsylvania State University; 2004.

33. Cole DJ, Skylaris C-K, Rajendra E, Venkitaraman AR, Payne MC.

Protein-protein interaction from linear-scaling first-principles quan-

tum-mechanical calculations. Europhys Lett 2010;91:37004.

34. Hill Q, Skylaris C-K. Including dispersion interactions in the {ONE-

TEP} program for linear-scaling density functional theory calcula-

tions. Proc R Soc A 2009;465:669-683.

35. Fox S, Wallnoefer HG, Fox T, Tautermann CS, Skylaris C-K. First

principles-based calculations of free energy of binding: Application

to ligand binding in a self-assembling superstructure. J Chem

Theory Comput 2011;7:1102-1108.

36. Skylaris C-K, Haynes PD, Mostofi AA, Payne MC. Implementation

of linear scaling plane wave density functional theory on parallel

computers. Phys Stat Sol 2006;243:973-988.

37. Hine NDM, Haynes PD, Mostofi AA, Skylaris C-K, Payne MC, Lin-

ear-scaling density-functional theory with tens of thousands of

atoms: Expanding the scope and scale of calculations with ONETEP.

Comp Phys Commun 2009;180:1041-1053.

38. Skylaris C-K, Mostofi AA, Haynes PD, Di�eguez O, Payne MC, Non-

orthogonal generalized Wannier function pseudopotential plane-

wave method. Phys Rev B 2002;66:035119.

39. Mostofi AA, Haynes PD, Skylaris C-K, Payne MC. Preconditioned

iterative minimization for linear-scaling electronic structure calcula-

tions. J Chem Phys 2003;119:8842-8848.

40. Haynes PD, Skylaris C-K, Mostofi AA, Payne MC. Elimination of

the basis set superposition error in linear-scaling density-functional

calculations with local orbitals optimized in situ. Chem Phys Lett

2006;422:345-349.

41. Anton L, Dziedzic J, Skylaris C-K, Probert M. Multigrid solver

module for onetep, castep and other codes. http://www.hector.ac.uk/

cse/distributedcse/reports/onetep/; 2013.

Free Energies of Binding From DFT Calculations on Entire Proteins

PROTEINS 3345

http://www.hector.ac.uk/cse/distributedcse/reports/onetep/
http://www.hector.ac.uk/cse/distributedcse/reports/onetep/


42. Fattebert J-L, Gygi F. Density functional theory for efficient ab ini-

tio molecular dynamics simulations in solution. J Comp Chem

2002;23:662-666.

43. Tomasi J, Persico M. Molecular interactions in solution: An over-

view of methods based on continuous distributions of the solvent.

Chem Rev 1994;94:2027-2094.

44. Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model

based on solute electron density and on a continuum model of the

solvent defined by the bulk dielectric constant and atomic surface

tensions. J Phys Chem B 2009;113:6378-6396.

45. Molecular operating environment (MOE), 2013.08. Montreal, QC,

Canada: Chemical Computing Group Inc.; 2013.

46. Case DA, Darden T, Cheatham T, Simmerling C, Wang J, Duke R,

Luo R, Crowley M, Roitberg SHA, Seabra G, Kolossv�ary I, Wong

KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke

H, Yang H, Tan C, Mongan J, Hornak V, Cui G, Mathews D, Seetin

M, Sagui C, Babin V, Kollman PA. Amber10; 2008.

47. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling

C. Comparison of multiple amber force fields and development of

improved protein backbone parameters. Proteins 2006;65:712-725.

48. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA, Develop-

ment and testing of a general amber force field. J Comp Chem

2004;25:1157-1174.

49. Jorgensen WL, Chandrasekhar J, Madura JD. Comparison of simple

potential functions for simulating liquid water . J Chem Phys 1983;

79:926-935.

50. Alderman SA, Doll JD. Generalized Langevin equation approach

for atom-solid-surface scattering - general formulation for classical

scattering off harmonic solids. J Chem Phys 1976;64:2375-2388.

51. Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration

of the cartesian equations of motion of a system with constraints:

molecular dynamics of n-alkanes. J Comput Phys 1977;23:327-

341.

52. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approxima-

tion made simple. Phys Rev Lett 1996;77:3865-3868.

53. Fox S, Pittock C, Fox T, Tautermann C, Malcolm N, Skylaris C-K.

Electrostatic embedding in large-scale first principles quantum

mechanical calculations on biomolecules. J Chem Phys 2011;135:

224107.

54. Mordasini TZ, McCammon JA. Calculations of relative hydration

free energies: A comparative study using thermodynamic integration

and an extrapolation method based on a single reference state

J Phys Chem B 2000;104:360-397.

55. Marenich AV, Kelly CP, Thompson JD, Hawkins GD, Chambers CC,

Giesen DJ, Winget P, Cramer CJ, Truhlar DG. Minnesota solvation

database—version 2012. Minneapolis: University of Minnesota;

2012.

S. Fox et al.

3346 PROTEINS


	l
	l
	l
	l
	l

