Gravitational waves from proto-neutron star evolution

Giovanni Camelio

in collaboration with: Leonardo Gualtieri, Alessandro Lovato, Jose A. Pons, Omar Benhar, Morgane Fortin & Valeria Ferrari

PhD student @ University of Rome "Sapienza" work supported by an STSM through the COST Action "NewCompStar"

September 14, 2016

Supernovae (SNe)

- ▶ $8 M_{\odot} \lesssim M_{\star} \lesssim 25 M_{\odot} \rightarrow$ neutron star (NS);
- $E_{\gamma} = 10^{52} \operatorname{erg} (L_{\mathrm{SN}} \simeq L_{\mathrm{galaxy}});$
- $E_{\nu} = 3 \times 10^{53} \, \mathrm{erg}$ (matter opaque to neutrinos!);

Supernovae (SNe)

▶ $8 M_{\odot} \lesssim M_{\star} \lesssim 25 M_{\odot} \rightarrow$ neutron star (NS);

•
$$E_{\gamma} = 10^{52} \operatorname{erg} (L_{\mathrm{SN}} \simeq L_{\mathrm{galaxy}});$$

- $E_{\nu} = 3 \times 10^{53} \, \mathrm{erg}$ (matter opaque to neutrinos!);
- Fe core supported by electrons Fermi pressure;
- when $M_{
 m core} > M_{
 m Ch} = 1.44\,{
 m M}_{\odot}
 ightarrow$ core collapse;

Supernovae (SNe)

- ▶ $8 M_{\odot} \lesssim M_{\star} \lesssim 25 M_{\odot} \rightarrow$ neutron star (NS);
- $E_{\gamma} = 10^{52} \operatorname{erg} (L_{\mathrm{SN}} \simeq L_{\mathrm{galaxy}});$
- $E_{\nu} = 3 \times 10^{53} \, \mathrm{erg}$ (matter opaque to neutrinos!);
- Fe core supported by electrons Fermi pressure;
- when $M_{
 m core} > M_{
 m Ch} = 1.44\,{
 m M}_{\odot}
 ightarrow$ core collapse;
- increasing density \rightarrow nucleons Fermi pressure $n_{\rm B} \simeq n_0$;
- outer-core bounce \rightarrow shock wave;

Proto-neutron star (PNS)

PNSs are the SN contracting cores:

- very early evolution (PHASE I): core bounce $\div \sim 0.2 \, \mathrm{s}$:
 - fully relativistic, highly dynamical codes;
 - mass accretion;
 - PNS contraction $150 \,\mathrm{km} \rightarrow 30 \,\mathrm{km}$;
 - high-temperature PNS envelope;
 - neutrinos are trapped in the low-temperature PNS core.

Proto-neutron star (PNS)

PNSs are the SN contracting cores:

- very early evolution (PHASE I): core bounce $\div \sim 0.2 \, \mathrm{s}$:
 - fully relativistic, highly dynamical codes;
 - mass accretion;
 - PNS contraction $150 \,\mathrm{km} \rightarrow 30 \,\mathrm{km}$;
 - high-temperature PNS envelope;
 - neutrinos are trapped in the low-temperature PNS core.
- early evolution (PHASE II): $\sim 0.2 \,\mathrm{s}$ ÷ minutes:
 - relativistic, quasi-stationary evolution;
 - beta equilibrium;
 - deleptonization stage (heating of the inner core);
 - cooling stage.

Proto-neutron star (PNS)

PNSs are the SN contracting cores:

- very early evolution (PHASE I): core bounce $\div \sim 0.2 \, \mathrm{s}$:
 - fully relativistic, highly dynamical codes;
 - mass accretion;
 - PNS contraction $150 \,\mathrm{km} \rightarrow 30 \,\mathrm{km}$;
 - high-temperature PNS envelope;
 - neutrinos are trapped in the low-temperature PNS core.
- early evolution (PHASE II): $\sim 0.2 \,\mathrm{s}$ ÷ minutes:
 - relativistic, quasi-stationary evolution;
 - beta equilibrium;
 - deleptonization stage (heating of the inner core);
 - cooling stage.
- minutes: birth of a mature neutron star (neutrino transparent).

We are interested in the gravitational wave emission (from rotation or stellar oscillations) of the PNS in PHASE II.

- ▶ in a "cold" NS the EoS is barotropic: $P \rightarrow (n_{\rm B}, \epsilon, ...)$
- ▶ in a PNS the $T \simeq 40 \text{ MeV} \gtrsim E_{\text{F}} \simeq 10 \text{ MeV}$ and therefore the EoS is non-barotropic $(s, Y_L, P) \rightarrow (n_{\text{B}}, \epsilon, T, Y_{\nu}, ...)$

- ▶ in a "cold" NS the EoS is barotropic: $P \rightarrow (n_{\rm B}, \epsilon, ...)$
- ▶ in a PNS the $T \simeq 40 \text{ MeV} \gtrsim E_{\text{F}} \simeq 10 \text{ MeV}$ and therefore the EoS is non-barotropic $(s, Y_L, P) \rightarrow (n_{\text{B}}, \epsilon, T, Y_{\nu}, ...)$
- ► PNS structure from general relativistic TOV equations (spherical metric) with a given finite-temperature EoS ε(s, Y_L, P);
- ν transport (Boltzmann–Lindquist Eqs, BLE) with
 β-equilibrium to evolve the profiles of entropy s and lepton number Y_L;

- ▶ in a "cold" NS the EoS is barotropic: $P \rightarrow (n_{\rm B}, \epsilon, ...)$
- ▶ in a PNS the $T \simeq 40 \text{ MeV} \gtrsim E_{\text{F}} \simeq 10 \text{ MeV}$ and therefore the EoS is non-barotropic $(s, Y_L, P) \rightarrow (n_{\text{B}}, \epsilon, T, Y_{\nu}, ...)$
- ► PNS structure from general relativistic TOV equations (spherical metric) with a given finite-temperature EoS ε(s, Y_L, P);
- ν transport (Boltzmann–Lindquist Eqs, BLE) with
 β-equilibrium to evolve the profiles of entropy s and lepton number Y_L;
- the neutrino number and energy fluxes depend on the EoS and on the neutrino diffusion coefficients;
- neutrino diffusion coefficients depend on the neutrino cross sections (and therefore on the EoS...);

- ▶ in a "cold" NS the EoS is barotropic: $P \rightarrow (n_{
 m B}, \epsilon, ...)$
- ▶ in a PNS the $T \simeq 40 \text{ MeV} \gtrsim E_{\text{F}} \simeq 10 \text{ MeV}$ and therefore the EoS is non-barotropic $(s, Y_L, P) \rightarrow (n_{\text{B}}, \epsilon, T, Y_{\nu}, ...)$
- ► PNS structure from general relativistic TOV equations (spherical metric) with a given finite-temperature EoS ε(s, Y_L, P);
- ν transport (Boltzmann–Lindquist Eqs, BLE) with
 β-equilibrium to evolve the profiles of entropy s and lepton number Y_L;
- the neutrino number and energy fluxes depend on the EoS and on the neutrino diffusion coefficients;
- neutrino diffusion coefficients depend on the neutrino cross sections (and therefore on the EoS...);
- For now, only mean-field EoSs have been used (e.g., GM3 Glendenning & Moszkowski, "Reconciliation of Neutron-Star Masses and Binding of the Λ in Hypernuclei", PRL 67:2414–2417 [1991]).

PNS evolution: our code

Our code reproduces the results of Pons, Reddy, Prakash, Lattimer & Miralles, "Evolution of proto-neutron stars", ApJ **513**:780–804 [1999]:

- Iow T core;
- high T envelope;
- trapped ν;
- inner core heating;
- cooling;
- deleptonization.

Figure: PNS evolution, GM3 EoS (our code).

Effective inclusion of rotation: the procedure

We have extended the work of Villain, Pons, Cerdá-Durán & Gourgoulhon, "Evolutionary sequences of rotating protoneutron stars", A&A **418**:283–294 [2004]: Camelio, Gualtieri, Pons & Ferrari, "Spin evolution of a proto-neutron star", PRD **94**, 024008 (2016), arXiv:1601.02945 [astro-ph.HE].

Effective inclusion of rotation: the procedure

We have extended the work of Villain, Pons, Cerdá-Durán & Gourgoulhon, "Evolutionary sequences of rotating protoneutron stars", A&A **418**:283–294 [2004]: Camelio, Gualtieri, Pons & Ferrari, "Spin evolution of a proto-neutron star", PRD **94**, 024008 (2016), arXiv:1601.02945 [astro-ph.HE]. First, evolve the non-rotating star:

- fix the total baryon mass M_b ;
- the finite-temperature EoS is $\epsilon(s, Y_L, P)$;
- the (non-rotating) evolution gives s(t, a), $Y_L(t, a)$.

Effective inclusion of rotation: the procedure

We have extended the work of Villain, Pons, Cerdá-Durán & Gourgoulhon, "Evolutionary sequences of rotating protoneutron stars", A&A **418**:283–294 [2004]: Camelio, Gualtieri, Pons & Ferrari, "Spin evolution of a proto-neutron star", PRD **94**, 024008 (2016), arXiv:1601.02945 [astro-ph.HE]. First, evolve the non-rotating star:

- fix the total baryon mass M_b ;
- the finite-temperature EoS is $\epsilon(s, Y_L, P)$;
- the (non-rotating) evolution gives s(t, a), $Y_L(t, a)$.

To effectively include the rotation:

- 1. fix an initial angular momentum $J_{in} = J(t = 0)$;
- 2. "effective" EoS at time t: $\epsilon'_t(a, P) = \epsilon(s(t, a), Y_L(t, a), P);$
- 3. using ϵ'_t , solve Hartle-Torne (structure equations of a slowly rigidly rotating PNS) at time t with fixed M_b and J(t);
- 4. determine J(t + dt) using the Epstein formula;
- 5. $t \rightarrow t + dt$, back to point 2.

GWs from PNS evolution: Results

Effective inclusion of rotation: results

Camelio, Gualtieri, Pons & Ferrari, "Spin evolution of a proto-neutron star", PRD **94**, 024008 (2016), arXiv:1601.02945 [astro-ph.HE]

Effective inclusion of rotation: results

Camelio, Gualtieri, Pons & Ferrari, "Spin evolution of a proto-neutron star", PRD **94**, 024008 (2016), arXiv:1601.02945 [astro-ph.HE]

GWs from PNS evolution: Results

Effective inclusion of rotation: results

Camelio, Gualtieri, Pons & Ferrari, "Spin evolution of a proto-neutron star", PRD **94**, 024008 (2016), arXiv:1601.02945 [astro-ph.HE]

EoS dependence: general facts

 previous PNS evolution studies used relativistic mean-field EoSs; we want to use a general EoS, e.g. a nuclear many-body theory EoS (Lovato & Benhar, "An effective interaction from Argonne-Urbana nuclear forces", in preparation);

EoS dependence: general facts

- previous PNS evolution studies used relativistic mean-field EoSs; we want to use a general EoS, e.g. a nuclear many-body theory EoS (Lovato & Benhar, "An effective interaction from Argonne-Urbana nuclear forces", in preparation);
- ▶ from the free energy per baryon f(T, n_b, Y_p) you can obtain all the other thermodynamical quantities with derivatives!

EoS dependence: general facts

- previous PNS evolution studies used relativistic mean-field EoSs; we want to use a general EoS, e.g. a nuclear many-body theory EoS (Lovato & Benhar, "An effective interaction from Argonne-Urbana nuclear forces", in preparation);
- ▶ from the free energy per baryon f(T, n_b, Y_p) you can obtain all the other thermodynamical quantities with derivatives!
- we want to obtain the EoS from the fit of the interacting part of the baryon free energy

$$\begin{split} f_{\rm EoS}(T,n_b,Y_p) &= f_{\rm free \, gas}(T,n_b,Y_p) + f_{\rm I}(T,n_b,Y_p), \\ f_{\rm I}(T,n_b,Y_p) &= 4Y_p(1-Y_p)f_{\rm SNM}(T,n_b) \\ &+ (1-2Y_p)^2f_{\rm PNM}(T,n_b), \\ f_{*\rm NM}(T,n_b) &= {\rm polynomial \ in \ } T \ {\rm and} \ n_b, \end{split}$$

that is similar to how the bulk nuclear matter has been treated in Lattimer & Swesty, "A generalized equation of state for hot, dense matter", Nucl.Phys.A **535**:331 [1991].

EoS dependence: results (preliminary!)

time: 00.2 s PRELIMINARY!!!

Camelio, Lovato, Gualtieri, Benhar, Pons, Fortin & Ferrari, "GW and neutrino luminosity from proto-neutron stars with a nuclear many-body EoS", in preparation. GWs from PNS evolution: Results

EoS dependence: results (preliminary!)

Camelio, Lovato, Gualtieri, Benhar, Pons, Fortin & Ferrari, "GW and neutrino luminosity from proto-neutron stars with a nuclear many-body EoS", in preparation. GWs from PNS evolution: Results

EoS dependence: results (preliminary!)

Camelio, Lovato, Gualtieri, Benhar, Pons, Fortin & Ferrari, "GW and neutrino luminosity from proto-neutron stars with a nuclear many-body EoS", in preparation. GWs from PNS evolution: Results

Conclusions

Done:

- new PNS evolution code;
- GW emission from a rotating PNS and its angular momentum evolution (effective inclusion of rotation), Camelio+[2016];
- generalization to other EoSs (in particular the nuclear many-body theory EoS of Lovato&Benhar [in preparation]);

Conclusions

Done:

- new PNS evolution code;
- GW emission from a rotating PNS and its angular momentum evolution (effective inclusion of rotation), Camelio+[2016];
- generalization to other EoSs (in particular the nuclear many-body theory EoS of Lovato&Benhar [in preparation]);

Work in progress:

 GW from quasi-normal modes (stellar perturbation theory), Camelio+[in preparation];

Conclusions

Done:

- new PNS evolution code;
- GW emission from a rotating PNS and its angular momentum evolution (effective inclusion of rotation), Camelio+[2016];
- generalization to other EoSs (in particular the nuclear many-body theory EoS of Lovato&Benhar [in preparation]);

Work in progress:

 GW from quasi-normal modes (stellar perturbation theory), Camelio+[in preparation];

Outlooks:

- convection (mixing length theory);
- accretion;
- ▶ evolution in 1+1.5D (consistent inclusion of rotation).