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Supernovae (SNe)

I 8M� . M? . 25M� → neutron star (NS);

I Eγ = 1052 erg (LSN ' Lgalaxy);

I Eν = 3× 1053 erg (matter opaque to neutrinos!);

I Fe core supported by electrons Fermi pressure;

I when Mcore > MCh = 1.44M� → core collapse;

I increasing density → nucleons Fermi pressure nB ' n0;

I outer-core bounce → shock wave;
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Proto-neutron star (PNS)

PNSs are the SN contracting cores:
I very early evolution (PHASE I): core bounce ÷ ∼ 0.2 s:

I fully relativistic, highly dynamical codes;
I mass accretion;
I PNS contraction 150 km→ 30 km;
I high-temperature PNS envelope;
I neutrinos are trapped in the low-temperature PNS core.

I early evolution (PHASE II): ∼ 0.2 s ÷ minutes:
I relativistic, quasi-stationary evolution;
I beta equilibrium;
I deleptonization stage (heating of the inner core);
I cooling stage.

I minutes: birth of a mature neutron star (neutrino
transparent).

We are interested in the gravitational wave emission (from rotation
or stellar oscillations) of the PNS in PHASE II.
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PNS evolution: general facts

I in a “cold” NS the EoS is barotropic: P → (nB, ε, . . .)
I in a PNS the T ' 40MeV & EF ' 10MeV and therefore the

EoS is non-barotropic (s,YL,P)→ (nB, ε,T ,Yν , . . .)

I PNS structure from general relativistic TOV equations
(spherical metric) with a given finite-temperature EoS
ε(s,YL,P);

I ν transport (Boltzmann–Lindquist Eqs, BLE) with
β-equilibrium to evolve the profiles of entropy s and lepton
number YL;

I the neutrino number and energy fluxes depend on the EoS
and on the neutrino diffusion coefficients;

I neutrino diffusion coefficients depend on the neutrino cross
sections (and therefore on the EoS...);

I For now, only mean-field EoSs have been used (e.g., GM3
Glendenning & Moszkowski, “Reconciliation of Neutron-Star Masses and

Binding of the Λ in Hypernuclei”, PRL 67:2414–2417 [1991]).
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PNS evolution: our code
Our code reproduces the results of Pons, Reddy, Prakash, Lattimer &

Miralles, “Evolution of proto-neutron stars”, ApJ 513:780–804 [1999]:
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Figure: PNS evolution, GM3 EoS (our code).

I low T core;

I high T envelope;

I trapped ν;

I inner core heating;

I cooling;

I deleptonization.
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Effective inclusion of rotation: the procedure
We have extended the work of Villain, Pons, Cerdá-Durán & Gourgoulhon,

“Evolutionary sequences of rotating protoneutron stars”, A&A 418:283–294 [2004]:
Camelio, Gualtieri, Pons & Ferrari, “Spin evolution of a proto-neutron star”, PRD 94,

024008 (2016), arXiv:1601.02945 [astro-ph.HE].

First, evolve the non-rotating star:

I fix the total baryon mass Mb;

I the finite-temperature EoS is ε(s,YL,P);

I the (non-rotating) evolution gives s(t, a), YL(t, a).

To effectively include the rotation:

1. fix an initial angular momentum Jin = J(t = 0);

2. “effective” EoS at time t: ε′t(a,P) = ε(s(t, a),YL(t, a),P);

3. using ε′t , solve Hartle-Torne (structure equations of a slowly
rigidly rotating PNS) at time t with fixed Mb and J(t);

4. determine J(t + dt) using the Epstein formula;

5. t → t + dt, back to point 2.
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Effective inclusion of rotation: results
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EoS dependence: general facts
I previous PNS evolution studies used relativistic mean-field

EoSs; we want to use a general EoS, e.g. a nuclear
many-body theory EoS (Lovato & Benhar, “An effective interaction from

Argonne-Urbana nuclear forces”, in preparation);

I from the free energy per baryon f (T , nb,Yp) you can obtain
all the other thermodynamical quantities with derivatives!

I we want to obtain the EoS from the fit of the interacting part
of the baryon free energy

fEoS(T , nb,Yp) = ffree gas(T , nb,Yp) + fI(T , nb,Yp),

fI(T , nb,Yp) = 4Yp(1− Yp)fSNM(T , nb)

+ (1− 2Yp)2fPNM(T , nb),

f∗NM(T , nb) = polynomial in T and nb,

that is similar to how the bulk nuclear matter has been
treated in Lattimer & Swesty, “A generalized equation of state for hot, dense

matter”, Nucl.Phys.A 535:331 [1991].
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EoS dependence: results (preliminary!)

time: 00.2 s   PRELIMINARY!!!
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Conclusions

Done:

I new PNS evolution code;

I GW emission from a rotating PNS and its angular momentum
evolution (effective inclusion of rotation), Camelio+[2016];

I generalization to other EoSs (in particular the nuclear
many-body theory EoS of Lovato&Benhar [in preparation]);

Work in progress:

I GW from quasi-normal modes (stellar perturbation theory),
Camelio+[in preparation];

Outlooks:

I convection (mixing length theory);

I accretion;

I evolution in 1+1.5D (consistent inclusion of rotation).
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