
Motivation: oblique rotators The ideas A hierarchy of perturbations Results

Precession-like oscillations in a magnetic star

Sam Lander

with Ian Jones

Southampton
13th September 2016

1 / 15



Motivation: oblique rotators The ideas A hierarchy of perturbations Results

Overview

1 Motivation: oblique rotators

2 The ideas

3 A hierarchy of perturbations

4 Results

2 / 15



Motivation: oblique rotators The ideas A hierarchy of perturbations Results

Neutron stars are not aligned rotators

typical to model NSs as axisymmetric, aligned rotators (‘human frailty’)

not terribly realistic since pulsars... pulse

exterior (magnetosphere) models finally moved away from aligned case

how do we extend interior B-field models?
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Simplest possible misaligned model
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rotating, magnetised, self-gravitating fluid star

rotational ǫα and magnetic ǫB distortions ≪ 1

B gives the star ‘rigidity’, since ǫB is a
distortion misaligned with α-axis

angular momentum conservation =⇒ star
must precess (Spitzer 1958, Mestel & Takhar 1972)

angular velocity now Ω = αe
(α)
z + ωe

(B)
z

precession frequency ω = αǫB cosχ

how do we account for non-rigidity of star?
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Mestel and Takhar’s argument
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in coordinates referred to e
(B)
z -axis, density distribution is

ρ(r , θ, φ, t) = ρ0(r) + δρB(r , θ) + δρα(r , θ, φ+ ωt)

fluid elements slowly (rate ω) dragged through different ρ contours

continuity equation → non-rigid response from additional velocity ξ̇:

∂

∂t
(δρα) = −∇ · (ρξ̇) ≈ −∇ · (ρ0ξ̇).

Velocity of a fluid element seen from inertial frame is:

(αe(α)
z + ωe(B)

z )× r + ξ̇.
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ξ-motions

How can one calculate these additional non-rigid motions?

Mestel’s approach:

continuity is only one equation for the three components of ξ̇

appeal to some additional physics so that ∇ · ξ̇ = 0

still short of one equation!

1st idea: assume ξ̇φ = 0 (Mestel & Takhar 1972)

2nd idea: minimise kinetic energy of ξ̇ (Mestel et al. 1981)

afterwards, can put obtained ξ̇ into induction equation to get δB

Problems: why do we need extra physics? Where has B gone?

Conclude: need to go to higher perturbative order to solve for ξ̇, δB.
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General equations for a precessing star

Recall: inertial-frame velocity = Ω× r + ξ̇ = (αe
(α)
z + ωe

(B)
z )× r + ξ̇.

Work in co-precessing frame → only velocity we see is ξ̇.

The equations of motion for our non-rigidly rotating star are:

ξ̈+(ξ̇ ·∇)ξ̇+2Ω× ξ̇+
dΩ

dt
× r+Ω× (Ω× r) = −∇H−∇Φ+

1

4πρ
(∇×B)×B,

∂ρ

∂t
= −∇ · (ρξ̇),

∂B

∂t
= ∇× (ξ̇ × B),

∇2Φ = 4πGρ,

H = H(ρ),

∇ · B = 0.

We perturb these by writing all quantities in the form:

ρ = ρ0 + δρα + δρB + δραB + . . .

O(1) O(ǫα) O(ǫB) O(ǫαǫB)
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Lower-order equations

We need to solve, successively, a series of perturbation problems:

O(1) → spherical background star, with ρ0(r) ∼ (sin r)/r for γ = 2 polytrope
O(ǫB) → ‘magnetic mountain’ δρB(r , θ), ellipticity ǫB → gives us ω

O(ǫα) → centrifugal bulge δρα(r , θ, φ+ ωt) moving slowly around e
(B)
z

All provide input into O(ǫαǫB) equations, in which we find ξ̇ and δB:

dΩ

dt
× r + ωez × (Ω× r) +Ω× (ωez × r) = −∇δHαB −∇δΦαB

− δρα
4πρ20

(∇×B0)× B0 +
1

4πρ0
[(∇× δB)×B0 + (∇×B0)× δB],

∂δρα
∂t

= −∇ · (ρ0ξ̇),
∂δB

∂t
= ∇× (ξ̇ ×B0),

∇2δΦαB = 4πGδραB ,

δHαB = δHαB(δραB , δραδρB),

∇ · δB = 0.
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Getting ODEs out of the O(ǫαǫB) equations

How can we solve these equations? Let’s take the curl of the Euler equation.

Then the full system separates:

Solve these for δB:

∇×
{dΩ

dt
× r

}

= ∇×
{

− δρα
4πρ02

(∇× B0)× B0

+
1

4πρ0
[(∇× δB)× B0 + (∇× B0)× δB]

}

,

∇ · δB = 0.

Afterwards, solve these for ξ̇:

∂δρα
∂t

= −∇ · (ρ0ξ̇),
∂δB

∂t
= ∇× (ξ̇ × B0).
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Final ODEs

Next, need to do a lot of algebra:

Toroidal-poloidal split of curled Euler

decompose δB =
∑

l,m
Um

l (r)Y m

l er + Vm

l (r)∇Y m

l +Wm

l (r)er ×∇Y m

l

∇ · δB = 0 =⇒ can eliminate Vm

l in favour of Um

l

Y m

l orthogonality relations turns one big infinite sum (r , θ, φ) into an
infinite set of unsummed DEs in r alone

Our equations for δB can then be reduced to two coupled ODEs (actually
DAEs) in the two radial functions, for each l and m:

sources1 = f (U ′′

l−2,U
′′

l ,U
′′

l+2,U
′

l−2,U
′

l ,U
′

l+2,Ul−2,Ul ,Ul+2,W
′

l−1,W
′

l+1,Wl−1,Wl+1)

sources2 = g(U ′

l−3,U
′

l−1,U
′

l+1,U
′

l+3,Ul−3,Ul−1,Ul+1,Ul+3,Wl−2,Wl ,Wl+2)

Can find closed-form expressions for both δB and ξ̇ in terms of U,W , so after
solving the above two equations we are done.
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The headache page
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δB: magnitude

|δBpol|

|δBtor|

χ = π/16 χ = 7π/16 χ = π/2

contours ordered brown, blue, green, red (each twice strength of last)

near-aligned and near-orthogonal results similar

oscillates: pattern rotates around z-axis with period 2π/ω
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δB: direction

r = 0.2R∗ r = 0.4R∗ r = 0.6R∗ r = 0.8R∗

upper: δBpol, lower: δBtor

for upper plots, blue: δB points inwards, white: points out
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ξ-motions

near-aligned (left) and near-orthogonal (right) results again similar

pattern again rotates around z-axis at rate ω

less variation; each contour here is only
√
2 times the last
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Conclusions

This work: finding solutions for δB, ξ̇

probably simplest possible oblique rotator model: rigid rotation,
m = 0, l = 1 (dipole) toroidal magnetic field

ended up with highly complex, multipolar δB, ξ̇

highly compressible motions, ∇ · ξ̇ 6= 0 (Mestel analysis invalid)

Future work: dissipation of these perturbations

original motivation for study

as δB, ξ̇ dissipate, inclination angle χ → 0 (poloidal field) or χ → π/2
(toroidal field)

interesting for distribution of inclination angles, pulsar death line,
apparent absence of precession in NSs, gravitational waves

our results are promising for rapid dissipation
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