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Why study the crust?

Magnetic instabilities in the crust could lead to:

magnetic spots / hotspots at the surface

enhanced magnetic dissipation
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Why study the crust?

Magnetic instabilities in the crust could lead to:

magnetic spots / hotspots at the surface

enhanced magnetic dissipation

Three known magnetic instabilities:

Density-shear instability (requires density gradient)
(Gordeev & Rudakov 1969, Rheinhardt et al. 2004, Wood et al. 2014)

Resistive tearing instability (requires resistivity)
(Gordeev 1970, Rheinhardt & Geppert 2002, Wood et al. 2014)

Thermo-electric instability (requires temperature gradient)
(Blandford et al. 1983, Urpin et al. 1986)
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Electron MHD / Hall MHD

Assume the crust is a rigid ionic lattice

Charge and heat carried entirely by electrons.
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= −∇ ·Q+E · J

E+∇µ/e = σ
−1 · J+G ·∇T

Q+
µ

e
J = TG · J− k ·∇T

Simplest model has:

(σ−1)ij = σ−1δij +
ǫijkBk

ecn

k =
π2k2

B
T

3e2
σ

(G)ij = −
S

e
δij .
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The magneto-thermal evolution model

∂B

∂t
= ∇×

[
c

4πen
B× (∇×B)
︸ ︷︷ ︸

Hall

− η∇×B
︸ ︷︷ ︸

Ohm

+
c

e
S∇T
︸ ︷︷ ︸

Biermann

]
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A strong field inhibits heat flow across field lines:

k ·∇T = k (b̂ ·∇T ) b̂
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kij = k
δij + (ecτ/µ)2BiBj − (ecτ/µ)ǫijkBk

1 + (ecτ/µ)2|B|2

A strong field inhibits heat flow across field lines:

k ·∇T = k (b̂ ·∇T ) b̂

But a weak field encourages heat flow across field lines!

k ·∇T = k∇T + k(ecτ/µ)B ×∇T
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So what happens?
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Thermoelectric instability

Blandford et al. (1983)
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Thermoelectric instability
For perturbations to a background with B = 0:

∂B

∂t
= ∇×

[

− η∇×B+
c

e
S∇T

]

0 = ∇ · (k∇T + (ecτk/µ)B ×∇T )
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Thermoelectric instability
For perturbations to a background with B = 0:

∂Jr
∂t

= ∇ ·

[
η

r2
∇(r2Jr)

]

+
c2

4πe

(
∂S

∂n

)

T

dn

dr
∇2

HT ′

0 = ∇ · (k∇T ′) + (4πeτk/µ)
dT

dr
Jr

Biermann battery generates Jr ∝ ∇2
H
T ′ (analogous to buoyancy).

Heat flux converges where J ·∇T > 0 (analogous to advection).
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Jr

Biermann battery generates Jr ∝ ∇2
H
T ′ (analogous to buoyancy).

Heat flux converges where J ·∇T > 0 (analogous to advection).

Instability onset identical to convection in a porous medium!

Max growth rate ≃
3F

n

(
1

µ

)
′

∼
1

105 yr
(Blandford et al. 1983).
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Thermoelectric instability

Do we actually get the instability?
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Conclusions

Significant ohmic heating in the crust.

Magnetic field reduces luminosity.
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No sign of thermo-electric instability (so far).
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Part II
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Tearing instablity

Furth, Killeen & Rosenbluth (1963; 2515 citations)

Karimabadi et al. (2013)
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EMHD tearing instablity

Almost certainly seen by Rheinhardt & Geppert (2002)

Localised near boundary (where B = 0)

Growthrate ∼ η2/7 (Wood et al. 2014)
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Tearing instablity

“Normal” MHD gives the boundary-layer equation:

d

dt

(
t2

1 + t2
du

dt

)

= λ2t2u

solved by Pegoraro & Schep (1986)

u = t−3/2

[

W1

2
−
1

4
λ,

1

4

(λt2)− 1

4
(1− λ)W

−
1

2
−
1

4
λ,

1

4

(λt2)

]
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Prospects for the crust

Density-shear instability
◮ Quite likely (Wood et al. 2014)

Resistive tearing instability
◮ Possible. But perhaps more relevant to the magnetosphere?

Thermo-electric instability
◮ Unlikely, except for particular field geometries

Toby Wood (Newcastle) Magneto-thermal & tearing instabilities 14 / 14


