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Microphysics for neutron star oscillations: static properties

Equation of state

Composition

Pairing properties (superfluidity and superconductivity)

Microphysics for neutron star oscillations: dynamic properties

Viscosities (first, second), thermal conductivity

Electrical conductivity in conducting plasma

Mutual friction for superfluid/superconducting matter

This talk

Electrical conductivity of a warm crust of a neutron star in magnetic field, following

Harutyunyan and Sedrakian, PRC 94, 025805 (2016).

Complete transport for 2SC color superconducting matter, following Alford,

Nishimura, Sedrakian, PRC 90, 055205 (2014).
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Plasma parameter

Γ =
Z2e2

Tai

, ai =

(

3

4πni

)1/3

Coulomb and melting

temperatures

Tc =
Z2e2

ai

, Tm =
Z2e2

Γmai

Plasma temperature

Tp =

(

4πZ2e2ni

M

)1/2

if Γ ≪ 1 - weakly interacting Boltzmann gas

if Γ ≫ 1 - strongly coupled plasma

for Γ > Γm ≃ 160 lattice of nuclei - phonons and impurity scattering.

for Γ < Γm liquid state - electron ion scattering.

for T ≤ Tp quantization of lattice oscillations becomes important
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The kinetics of electrons is described by the Boltzmann eq.

∂f

∂t
+ v

∂f

∂r
− e(E + [v × H])

∂f

∂p
= I[f ],

The collision integral for electron-ion scattering has the form

I = −(2π)4
∑

234

|M12→34|2δ(4)(p + p2 − p3 − p4)[f (1 − f3)g2 − f3(1 − f )g4],

For small perturbation

f = f 0 + δf , δf = −φ∂f 0

∂ε
, g(p) = ni

(

2π

MT

)3/2

e−βε.

The most general form of the perturbation is given by

φ = − eτ

1 + (ωcτ)2
vi

[

δij − ωcτεijkhk + (ωcτ)
2hihj

]

Ej

where the relaxation time

τ−1(ε) =

∫

dωdq

(2π)5

∫

dp2|M12→34|2
q · p

p2
δ(ε− ε3 − ω)δ(ε2 − ε4 + ω)g2

1 − f 0
3

1 − f 0
.
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Defintion of the electrical conduction

ji = 2

∫

dp

(2π)3
eviφ

∂f 0

∂ε
= σijEj.

If B-field is in the direction of z axis

σ̂ =





σ0 −σ1 0

σ1 σ0 0

0 0 σ



 .

The longitudinal conductivity does not depend on the field

σ =
e2

3π2

∫ ∞

0

dpp2v2τ
∂f0

∂ε

The transversal (σ0) and Hall (σ1) conductivities depend on the B-field

σ0 =
e2

3π2

∫ ∞

0

dpp2v2 τ

1 + (ωcτ)2

∂f0

∂ε
, σ1 =

e2

3π2

∫ ∞

0

dpp2v2 τ 2ωc

1 + (ωcτ)2

∂f0

∂ε
.
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For two limiting cases of strongly degenerate and non-degenerate electrons the

conductivities are given analytically.

Low temperature limit corresponds to the Drude formula

σ =
nee2τF

εF

, σ0 =
σ

1 + (ωcFτF)2
, σ1 = (ωcFτF)σ0, (1)

High temperature limit T ≫ TF similar formula is good to 20% with ε̄ ≃ 3T

σ =
nee2τ̄

ε̄
, σ0 =

σ

1 + (ω̄cτ̄)2
, σ1 = (ω̄cτ̄)σ0,

The anisotropy clear depends on the parameter ωcτ

if ωcτ ≪ 1 (weak magnetic fields), σ0 ≃ σ, σ1 ≃ ωcτσ ≪ σ, therefore the tensor

is approximately isotropic

σik ≃ δikσ.

if ωcτ ≫ 1 (strong magnetic fields), σ0 ≃ σ(ωcτ)−2 ≪ σ,

σ1 ≃ σ(ωcτ)−1 ≪ σ, i.e., the transverse conductivities are strongly suppressed.
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M12→34 = −
J0J′0

q2 +Π′
L

+
JtJ

′
t

q2 − ω2 +ΠT

Jµ = −e∗ūs3 (p3)γ
µus(p),

J′µ = Ze∗v′µ = Ze∗(1, p′/M),

The relaxation time is then found as

τ−1(ε) =
πZ2e4ni

εp3

∫ ε−m

−∞
dωe−ω/2T f 0(ε− ω)

f 0(ε)

×
∫ q+

q
−

dq(q2 − ω2 + 2εω)S(q)F2(q)
1√
2πθ

e−ω2/2q2θ2

e−q2/8MT

×
{

(2ε− ω)2 − q2

|q2 +Π′
L|2

+ θ2 (q
2 − ω2)[(2ε− ω)2 + q2]− 4m2q2

q2|q2 − ω2 +ΠT |2
}

.

The polarization tensors are evaluated in the Hard-Thermal-Loop approximation to QED

plasma.
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Left: ion structure factor suppresses the scattering with small q; for aiq ≫ 1 we find

S(q) → 1. Right: Nuclear formfactor where rc = 1.15A1/3 is the nuclear charge.

The structure factor depends on the value of the plasma parameter Γ and is derived in the

case fo one sort of ions. It originates from the calculations of Monte Carlo calculations of

Galam and Hansen for Γ > 2 and analytical expressions by Tamashiro for Γ < 2.

The nuclear structure factor assumes spherical nuclei, which is a good approximation in

the warm and dilute crust (below neutron drip).
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The temperature dependence shows a minimum at approximately T/TF = 0.3 (transition

from degenerate to the non-degenerate regime). Dots show the degenerate regime.
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At high densities or small magnetic fields ωcτ ≪ 1 (isotropic region) and

σ0 ≃ σ, σ1 ≃ σωcτ ≃ B

nee
σ2 (2)

At low densities or strong magnetic fields ωcτ ≫ 1 (anisotropic region) and

σ0 ≃ σ

(ωcτ)2
≃
( nee

B

)2
σ−1, σ1 ≃ σ

ωcτ
=

nee

B
. (3)
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Fit formulae are obtained for components of conductivity tensor

σfit = CZ−1Ta
F

(

T

TF

)−b( T

TF

+ d

)b+c

,

The other components of the tensor are given by

σfit
0 =

σ′

1 + δ2σ′2
, σ′ = σfit

(

TF

εF

)g

,

σfit
1 =

δσ′′2

1 + δ2σ′′2
, σ′′ = σfit

(

1 +
T

TF

)h

,

where δ = B(neec)−1 in c g s .

The relative error in σ is γ ≃ 11% for 12C and γ ≃ 13% for 56Fe and β-equilibrium

composition. The relative error in σ0 and σ1 is γ ≃ 12% for 12C and γ ≃ 15% for 56Fe

and β-equilibrium composition at temperatures T > 0.15 MeV.

Text only tables are available in the arxiv source (free access) and as supplemental material

http://link.aps.org/supplemental/ 10.1103/PhysRevC.94.025805
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General form of order parameter

∆ ∝ 〈0|ψa
ασψ

b
βτ |0〉

- Antisymmetry in spin σ, τ for the BCS mechanism to work

- Antisymmetry in color a, b for attraction

- Antisymmetry in flavor α, β to avoid Pauli blocking

At low densities 2SC phase (Bailin and Love ’84)

∆(2SC) ∝ ∆ǫab3ǫαβ

Important variations on 2SC phase (crystalline-color-superconductor)

∆(CSC) ∝ ∆ǫab3ǫαβ , δµ 6= 0, ms 6= 0.

At high densities we expect 3 flavors of u, d, s massless quarks. The ground state is the

color-flavor-locked phase

∆(CFL) ∝ 〈0|ψa
αLψ

b
βL|0〉 = −〈0|ψa

αRψ
b
βR|0〉 = ∆ǫabC∆ǫαβC

Phase diagram in NJL see Buballa-Shovkovy-Rischke, Sandin-Blaschke, ... (2006+)
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Transport coefficients of dense quark matter: Variational calculation

Boltzmann equation for fermions:

( ∂

∂t
+ v1 · ∇x

)

f1 = −(2π)4
∑

j

νj

∑

234

|Mij|2

× [f1f2(1 − f3)(1 − f4)− f3f4(1 − f1)(1 − f2)] δ
4(pin − pout)

f - fermion distribution function, Mij scattering matrix element.

νj - the degeneracy factors (spin, flavor, color)

Fermions in the basis:

Ψi = {Ψbu,Ψbd,Ψe} = {blue up quark (bu), blue down quark (bd), electron (e)}.

the indices i and j specify the species of the ungapped fermions in this basis.

Further assumptions:

- Red and green colors are gapped and do not contribute to the transport

- No strangeness (number of s-quarks too small)

- High-density, low-temperature regime T,m ≪ µq

- Light flavor (isospin) asymmetry typical for neutron stars µu ≪ µd (β-equilibrium)
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Transport coefficients of dense quark matter: Variational calculation

Gauge bosons: write the covariant derivative as

DµΨ =
(

∂µ − i
∑

a

Aa
µQa

)

Ψ (4)

Two basis for gauge bosons - standard (T8,Q)and rotated (X, Q̃)

Aµ = A
T8
µ T8 + AQ

µQ = AX
µX + AQ̃

µQ̃. (5)

related by rotations via mixing angle ϕ

AX
µ = cosϕA

T8
µ + sinϕAQ

µ (6)

AQ̃
µ = − sinϕA

T8
µ + cosϕAQ

µ cosϕ =

√
3g

√

e2 + 3g2
. (7)

-In the rotated basis the Q̃ charge is massless, i.e., Q̃ color magnetic field penetrates the

2SC phase

-In the rotated basis the X charge is massive, i.e., there is a Meissner effect (more precisely

color magnetic flux tubes)
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Transport coefficients of dense quark matter: Variational calculation

The charges Qa are defined to be the product of the coupling constant and the charge

matrix for the ungapped fermions:

QT8 = g · diag

(

− 1√
3
,− 1√

3
, 0

)

QQ = e · diag

(

+
2

3
,− 1

3
,−1

) (8)

in the standard (T8,Q) basis and

QX = g cosϕ · diag

(

− 1 − 2 tan2 ϕ√
3

,− 1 + tan2 ϕ√
3

,−
√

3 tan2 ϕ

)

QQ̃ = e cosϕ · diag (1, 0,−1)

(9)

in the rotated (X, Q̃) basis.

- The longitudinal part of the screening is evaluated in the standard basis

- The transverse part of the screening is evaluated in the rotated basis
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Transport coefficients of dense quark matter: Variational calculation

Computing the matrix element for scattering: p1i + p2j → p3i + p4j (flavor i, j)

Standard Feynman rules give:

Mij = J
µ
a,i

(

Dab
µν

)

Jνb,j (10)

J
µ
a,i = Qa

i ū (p3) γ
µu (p1) /2p1 Jνb,j = Qb

j ū (p4) γ
νu (p2) /2p2 (11)

where the most general form of the propagator is given by

(

Dab
µν

)−1
= gµν

(

ω2 − q2
)

δab+Πab
µν

(12)

Screening in a plasma is taken into account via self-energies Πµν

Decomposition all the quantities (matrix elements, gauge propagators) into longitudinal

and transverse parts:

Mij =
∑

a={T8,Q}

J0
a,iJ

0
a,j

q2 +Πaa
l

−
∑

a={X,Q̃}

Jt
a,i · Jt

a,j

q2 − ω2 +Πaa
t

(13)

Πaa
l

=
∑

i

(

qa
D,i

)2
χl + 4

(

qa
D,C

)2
χl in the (T8,Q) basis

Πaa
t =

∑

i

(

qa
D,i

)2
χt + 4

(

qa
D,C

)2
χt + 4

(

qa
D,C

)2
χsc in the (X, Q̃) basis

(14)
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Transport coefficients of dense quark matter: Variational calculation

The screening functions, χl and χt in the static limit (Hard Thermal Loop approximation)

χl = 1, χt = i
π

4

ω

q
, χsc =

1

3
. (15)

(better done by Rischke and co-workers). To leading order in ω/q, we thus have

Π
T8T8
l

=
∑

i

(Q
T8
i )2 µ

2
i

π2
+ 4(Q

T8
C
)2 µ

2
C

π2
(16)

ΠQQ
l

=
∑

i

(QQ
i )

2 µ
2
i

π2
+ 4(QQ

C
)2 µ

2
C

π2
(17)

ΠXX
t =

4

3
(QX

C)
2 µ

2
C

π2
(18)

ΠQ̃Q̃
t = i

ω

q
Λ2 where Λ2 ≡

∑

i

(QQ̃
i )

2 µ
2
i

4π
(19)

The Q’s can be found in the paper.
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Transport coefficients of dense quark matter: Variational calculation

The squared matrix element summed over the final spins and averaged over the initial

spins is

|Mij|2 = Ll

∣

∣

∣

∣

∣

∣

∑

a={T8,Q}

Qa
i Qa

j

q2 +Πaa
l

∣

∣

∣

∣

∣

∣

2

+ Lt

∣

∣

∣

∣

∣

∣

∑

a={X,Q̃}

Qa
i Qa

j

q2 − ω2 +Πaa
t

∣

∣

∣

∣

∣

∣

2

−2Llt ℜ









∑

a={T8,Q}

Qa
i Qa

j

q2 +Πaa
l









∑

a={X,Q̃}

Qa
i Qa

j

q2 − ω2 +Πaa
t





∗ 

+ δijγint

(20)

where

Ll =

(

1 − q2

4p2
1

)(

1 − q2

4p2
2

)

Llt =

(

1 − q2

4p2
1

)1/2(

1 − q2

4p2
2

)1/2

cos θ

Lt =

(

1 − q2

4p2
1

)(

1 − q2

4p2
2

)

cos2 θ +
q2

4p2
1

+
q2

4p2
2

(21)

The interference γint term is small and is neglected.
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Transport coefficients of dense quark matter: Variational calculation

Transport coefficients - definitions of electrical and thermal conductivities and shear

viscosity

jα = −σ∂αU =

∫

d3p

(2π)3
evα δ f (22)

hα = −κ∂αT =

∫

d3p

(2π)3
(ǫ− µ) vα δ f (23)

σαβ = −ηVαβ =

∫

d3p

(2π)3
pαvβ δ f (24)

where Vαβ is the traceless part of the spatial derivative of fluid velocity V,

Vαβ = ∂αVβ + ∂βVα − 2

3
δαβ∇ · V. (25)

Comparing the left-hand-sides we obtain a universal relation

ξY =
∑

i

νi

∫

d3p

(2π)3
φi δ fi (26)

where νi is a spin factor for a particle flavor i, ξ stands σ, κ, or η, - Y stands −∂αU,

−∂αT , or −Vαβ
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Transport coefficients of dense quark matter: Variational calculation

Linearization of the Boltzmann equation is given by

fi = f 0
i + δ fi =

1

e(ǫ−µi)/T + 1
− ∂f 0

i

∂ǫ
Φi (27)

Relaxation time approximation

Φi = 3τiψi · Y (28)

ξi = − 3τiνi

γ

∫

d3p

(2π)3
(φi · ψi)

∂f 0
i

∂ǫ
(29)

γ = δαα = 3 for the electrical and thermal conductivities

γ =
(

δααδ
β
β + δαα − 2δαα/3

)

/2 = 5 for the shear viscosity. From Eq. (26), we can now

define transport coefficient of each component ξi as

ξ =
∑

i

ξi = ξbu + ξbd + ξe (30)
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Transport coefficients of dense quark matter: Variational calculation

Linearization of collision integral

ψi · Y
∂f 0

1

∂ǫ1

= − (2π)4

T

∑

j

νj

∑

234

|Mij|2

f 0
1 f 0

2 (1 − f 0
3 )(1 − f 0

4 ) δ
4(pin − pout) (Φ1 +Φ2 − Φ3 − Φ4) . (31)

Using the same procedure as for the drift term

ξi =
9τi

γ

(2π)4

T

∑

j

νiνj

∑

1234

|Mij|2

f 0
1 f 0

2 (1 − f 0
3 )(1 − f 0

4 )δ
4(pin − pout)φ1 · [τi(ψ1 − ψ3) + τj(ψ2 − ψ4)] .(32)

In the limit ω, T ≪ µq

ξi =
τi

γ

∑

j

νiνj

36Tµ2
i µ

2
j

(2π)5

∫ ∞

0

dω

(

ω/2T

sinh(ω/2T)

)2 ∫ qM

0

dq

∫ 2π

0

dθ

2π
|Mij|2

φ1 · [τi(ψ1 − ψ3) + τj(ψ2 − ψ4)] (33)

qM = min [2p1, 2p2] = min [2µi, 2µj] is the maximum momentum transfer, and θ is again

the angle between p1 + p3 and p2 + p4. In the limit T/µq ≪ 1 p1, p2 → µi, µj.

Comparing Eqs. (29) and (33) we obtain relaxation times τi for the three gapless fermion

species.
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Numerical and analytical results for 2SC phase

Qualitative understanding

- Transport in the 2SC phase occurs via the ungapped fermions: the blue up quark, the blue

down quark, and the electron.

- Transport is dominated by the fermion that feels the least influence from surrounding

particles (i.e. long relaxation time or mean-free-path)

Relevant interactions

longitudinal strong interaction (T8) - Debye screened (short range)

longitudinal electromagnetic interaction (Q), - Debye screened (short range)

transverse “rotated” strong interaction (X) - Meissner screening (short ranged)

transverse “rotated” electromagnetic interaction (Q̃) (not screened, only Landau

damped - long ranged at low T)

At low-T the bu quark and electron carry Q̃ charge, bd does not.

Transport is dominated by bd quarks (!)

At high T the Landau damping of the Q̃ is more significant. Relaxation

times are dominated by the X and T8 interactions.

Electron, which has no T8 charge and only a very small X charge,

dominates transport.

A transition from the regime dominated by the bd quark to a regime

dominated by electrons as the temperature is rised.
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Numerical and analytical results for 2SC phase

ηbu

µq

=
0.150

(T/µq)5/3 + 2490 (T/µq)2
,

ηe

µq

=
0.171

(T/µq)5/3 + 2.78 (T/µq)2
(34)

Numerical calculation of shear viscosity as a function of temperature, taking αs = 1. In

this temperature range we see electron and quark contributing equally at high temperature

and electron domination at low temperature.
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Numerical and analytical results for 2SC phase

κbu

µq

=
5.69

1 + 3720 (T/µq)
,

κe

µq

=
6.70

1 + 6.92 (T/µq)2/3
(35)

Numerically calculated thermal conductivity in units of quark chemical potential µq in

the 2SC phase with αs = 1. In this temperature range we see the crossover from electron

domination at high temperature to blue down quark domination at low temperature.
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Numerical and analytical results for 2SC phase

σbu

µq

=
0.000672

(T/µq)5/3 + 2.11 (T/µq)2
,

σe

µq

=
1.46

(T/µq)5/3 + 2.11 (T/µq)2
(36)

Numerically calculated electrical (Q̃) conductivity as a function of temperature, both

expressed in units of the quark chemical potential µq, taking strong interaction coupling

αs = 1. The electrons dominate because the bu relaxation time is shortened by its strong

interaction with the bd quarks.
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Summary

Highly accurate results for conductivity of dilute and warn compact star matter

including dynamical screening effects. Other transport coefficients will follow.

Text-only tables and fit formulas are available for application in MHD computations

of compact stars

Complete set of transport coefficients (thermal and electrical conductivity and shear

viscosity) for 2SC phase; second viscosity is also in the literature

Fit formulas for all transport coefficients of 2SC phase and flux-fermion (quasi)

mutual friction are available.

Future: continue systematically computing accurate transport coefficients in

regimes relevant for compact stars.
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