A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

Microphysics for neutron star oscillations

Armen Sedrakian

ITP, Goethe-Universität, Frankfurt am Main

Southampton, 13 September, 2016

ヘロン 人間 とくほ とくほ とう

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

Microphysics for neutron star oscillations: static properties

- Equation of state
- Composition
- Pairing properties (superfluidity and superconductivity)

Microphysics for neutron star oscillations: dynamic properties

- Viscosities (first, second), thermal conductivity
- Electrical conductivity in conducting plasma
- Mutual friction for superfluid/superconducting matter

<u>This talk</u>

- Electrical conductivity of a warm crust of a neutron star in magnetic field, following Harutyunyan and Sedrakian, PRC **94**, 025805 (2016).
- Complete transport for 2SC color superconducting matter, following Alford, Nishimura, Sedrakian, PRC 90, 055205 (2014).

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

Plasma parameter

$$\Gamma = \frac{Z^2 e^2}{T a_i}, \quad a_i = \left(\frac{3}{4\pi n_i}\right)^{1/3}$$

• Coulomb and melting temperatures

$$T_c = \frac{Z^2 e^2}{a_i}, \quad T_m = \frac{Z^2 e^2}{\Gamma_m a_i}$$

Plasma temperature

$$T_p = \left(\frac{4\pi Z^2 e^2 n_i}{M}\right)^{1/2}$$

- if $\Gamma \ll 1$ weakly interacting Boltzmann gas
- if $\Gamma \gg 1$ strongly coupled plasma
- for $\Gamma > \Gamma_m \simeq 160$ lattice of nuclei phonons and impurity scattering.
- for $\Gamma < \Gamma_m$ liquid state electron ion scattering.
- for $T \leq T_p$ quantization of lattice oscillations becomes important

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

The kinetics of electrons is described by the Boltzmann eq.

$$\frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{r}} - e(\mathbf{E} + [\mathbf{v} \times \mathbf{H}]) \frac{\partial f}{\partial \mathbf{p}} = I[f],$$

The collision integral for electron-ion scattering has the form

$$I = -(2\pi)^4 \sum_{234} |\mathcal{M}_{12\to 34}|^2 \delta^{(4)}(p+p_2-p_3-p_4)[f(1-f_3)g_2-f_3(1-f)g_4],$$

For small perturbation

$$f = f^0 + \delta f$$
, $\delta f = -\phi \frac{\partial f^0}{\partial \varepsilon}$, $g(p) = n_i \left(\frac{2\pi}{MT}\right)^{3/2} e^{-\beta \varepsilon}$.

The most general form of the perturbation is given by

$$\phi = -\frac{e\tau}{1+(\omega_c\tau)^2} v_i \left[\delta_{ij} - \omega_c \tau \varepsilon_{ijk} h_k + (\omega_c\tau)^2 h_i h_j \right] E_j$$

where the relaxation time

$$\tau^{-1}(\varepsilon) = \int \frac{d\omega d\mathbf{q}}{(2\pi)^5} \int d\mathbf{p}_2 |\mathcal{M}_{12\to 34}|^2 \frac{\mathbf{q} \cdot \mathbf{p}}{p^2} \delta(\varepsilon - \varepsilon_3 - \omega) \delta(\varepsilon_2 - \varepsilon_4 + \omega) g_2 \frac{1 - f_3^0}{1 - f^0}.$$

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

Defintion of the electrical conduction

$$j_i = 2 \int \frac{d\mathbf{p}}{(2\pi)^3} e v_i \phi \frac{\partial f^0}{\partial \varepsilon} = \sigma_{ij} E_j.$$

If *B*-field is in the direction of *z* axis

$$\hat{\sigma} = egin{pmatrix} \sigma_0 & -\sigma_1 & 0 \ \sigma_1 & \sigma_0 & 0 \ 0 & 0 & \sigma \end{pmatrix}.$$

• The longitudinal conductivity does not depend on the field

$$\sigma = \frac{e^2}{3\pi^2} \int_0^\infty dp p^2 v^2 \tau \frac{\partial f_0}{\partial \varepsilon}$$

• The transversal (σ_0) and Hall (σ_1) conductivities depend on the *B*-field

$$\sigma_0 = \frac{e^2}{3\pi^2} \int_0^\infty dp p^2 v^2 \frac{\tau}{1 + (\omega_c \tau)^2} \frac{\partial f_0}{\partial \varepsilon}, \quad \sigma_1 = \frac{e^2}{3\pi^2} \int_0^\infty dp p^2 v^2 \frac{\tau^2 \omega_c}{1 + (\omega_c \tau)^2} \frac{\partial f_0}{\partial \varepsilon}$$

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

For two limiting cases of strongly degenerate and non-degenerate electrons the conductivities are given analytically.

Low temperature limit corresponds to the Drude formula

$$\sigma = \frac{n_e e^2 \tau_F}{\varepsilon_F}, \quad \sigma_0 = \frac{\sigma}{1 + (\omega_{cF} \tau_F)^2}, \quad \sigma_1 = (\omega_{cF} \tau_F) \sigma_0, \tag{1}$$

• High temperature limit $T \gg T_F$ similar formula is good to 20% with $\bar{\varepsilon} \simeq 3T$

$$\sigma = \frac{n_e e^2 \bar{\tau}}{\bar{\varepsilon}}, \quad \sigma_0 = \frac{\sigma}{1 + (\bar{\omega}_c \bar{\tau})^2}, \quad \sigma_1 = (\bar{\omega}_c \bar{\tau}) \sigma_0,$$

The anisotropy clear depends on the parameter $\omega_c \tau$

 if ω_cτ ≪ 1 (weak magnetic fields), σ₀ ≃ σ, σ₁ ≃ ω_cτσ ≪ σ, therefore the tensor is approximately isotropic

$$\sigma_{ik} \simeq \delta_{ik} \sigma.$$

• if $\omega_c \tau \gg 1$ (strong magnetic fields), $\sigma_0 \simeq \sigma(\omega_c \tau)^{-2} \ll \sigma$, $\sigma_1 \simeq \sigma(\omega_c \tau)^{-1} \ll \sigma$, i.e., the transverse conductivities are strongly suppressed.

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

$$\mathcal{M}_{12\to 34} = -\frac{J_0 J_0'}{q^2 + \Pi_L'} + \frac{J_I J_I'}{q^2 - \omega^2 + \Pi_T}$$

$$\begin{aligned} J^{\mu} &= -e^{*}\bar{u}^{s_{3}}(p_{3})\gamma^{\mu}u^{s}(p), \\ J^{\prime\mu} &= Ze^{*}v^{\prime\mu} = Ze^{*}(1,p^{\prime}/M), \end{aligned}$$

The relaxation time is then found as

$$\begin{aligned} \pi^{-1}(\varepsilon) &= \frac{\pi Z^2 e^4 n_i}{\varepsilon p^3} \int_{-\infty}^{\varepsilon - m} d\omega e^{-\omega/2T} \frac{f^0(\varepsilon - \omega)}{f^0(\varepsilon)} \\ &\times \int_{q_-}^{q_+} dq (q^2 - \omega^2 + 2\varepsilon\omega) S(q) F^2(q) \frac{1}{\sqrt{2\pi\theta}} e^{-\omega^2/2q^2\theta^2} e^{-q^2/8MT} \\ &\times \left\{ \frac{(2\varepsilon - \omega)^2 - q^2}{|q^2 + \Pi'_L|^2} + \theta^2 \frac{(q^2 - \omega^2)[(2\varepsilon - \omega)^2 + q^2] - 4m^2q^2}{q^2|q^2 - \omega^2 + \Pi_T|^2} \right\}. \end{aligned}$$

The polarization tensors are evaluated in the Hard-Thermal-Loop approximation to QED plasma.

A Sedrakian

Transport coefficients o dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

Left: ion structure factor suppresses the scattering with small q; for $a_i q \gg 1$ we find $S(q) \rightarrow 1$. Right: Nuclear formfactor where $r_c = 1.15A^{1/3}$ is the nuclear charge.

The structure factor depends on the value of the plasma parameter Γ and is derived in the case fo one sort of ions. It originates from the calculations of Monte Carlo calculations of Galam and Hansen for $\Gamma > 2$ and analytical expressions by Tamashiro for $\Gamma < 2$.

The nuclear structure factor assumes spherical nuclei, which is a good approximation in the warm and dilute crust (below neutron drip).

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

The temperature dependence shows a minimum at approximately $T/T_F = 0.3$ (transition from degenerate to the non-degenerate regime). Dots show the degenerate regime.

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

• At high densities or small magnetic fields $\omega_c \tau \ll 1$ (isotropic region) and

$$\sigma_0 \simeq \sigma, \quad \sigma_1 \simeq \sigma \omega_c \tau \simeq \frac{B}{n_e e} \sigma^2$$
 (2)

• At low densities or strong magnetic fields $\omega_c \tau \gg 1$ (anisotropic region) and

$$\sigma_0 \simeq \frac{\sigma}{(\omega_c \tau)^2} \simeq \left(\frac{n_e e}{B}\right)^2 \sigma^{-1}, \quad \sigma_1 \simeq \frac{\sigma}{\omega_c \tau} = \frac{n_e e}{B}.$$
 (3)

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

Fit formulae are obtained for components of conductivity tensor

$$\sigma^{\rm fit} = C Z^{-1} T_F^a \left(\frac{T}{T_F} \right)^{-b} \left(\frac{T}{T_F} + d \right)^{b+c},$$

The other components of the tensor are given by

$$\begin{split} \sigma_0^{\rm fit} &= \frac{\sigma'}{1 + \delta^2 \sigma'^2}, \quad \sigma' = \sigma^{\rm fit} \left(\frac{T_F}{\varepsilon_F}\right)^g, \\ \sigma_1^{\rm fit} &= \frac{\delta \sigma''^2}{1 + \delta^2 \sigma''^2}, \quad \sigma'' = \sigma^{\rm fit} \left(1 + \frac{T}{T_F}\right)^h, \end{split}$$

where $\delta = B(n_e e c)^{-1}$ in c g s.

The relative error in σ is $\gamma \simeq 11\%$ for ¹²C and $\gamma \simeq 13\%$ for ⁵⁶Fe and β -equilibrium composition. The relative error in σ_0 and σ_1 is $\gamma \simeq 12\%$ for ¹²C and $\gamma \simeq 15\%$ for ⁵⁶Fe and β -equilibrium composition at temperatures T > 0.15 MeV.

Text only tables are available in the arxiv source (free access) and as supplemental material http://link.aps.org/supplemental/ 10.1103/PhysRevC.94.025805

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

General form of order parameter

$$\Delta \propto \langle 0 | \psi^a_{\alpha\sigma} \psi^b_{\beta\tau} | 0 \rangle$$

- Antisymmetry in spin σ, τ for the BCS mechanism to work
- Antisymmetry in color a, b for attraction
- Antisymmetry in flavor α, β to avoid Pauli blocking

At low densities 2SC phase (Bailin and Love '84)

$$\Delta(2SC) \propto \Delta \epsilon^{ab3} \epsilon_{\alpha\beta}$$

Important variations on 2SC phase (crystalline-color-superconductor)

$$\Delta(CSC) \propto \Delta \epsilon^{ab3} \epsilon_{\alpha\beta}, \qquad \delta\mu \neq 0, \qquad m_s \neq 0.$$

At high densities we expect 3 flavors of u, d, s massless quarks. The ground state is the color-flavor-locked phase

$$\Delta(CFL) \propto \langle 0 | \psi^a_{\alpha L} \psi^b_{\beta L} | 0 \rangle = - \langle 0 | \psi^a_{\alpha R} \psi^b_{\beta R} | 0 \rangle = \Delta \epsilon^{abC} \Delta \epsilon_{\alpha \beta C}$$

Phase diagram in NJL see Buballa-Shovkovy-Rischke, Sandin-Blaschke, ... (2006+)

Microphysics Boltzmann equation for fermions:

for neutron star oscillations

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

$\begin{pmatrix} \frac{\partial}{\partial t} + \mathbf{v}_1 \cdot \nabla_{\mathbf{x}} \end{pmatrix} f_1 = -(2\pi)^4 \sum_j \nu_j \sum_{234} |M_{ij}|^2 \\ \times [f_1 f_2 (1 - f_3) (1 - f_4) - f_3 f_4 (1 - f_1) (1 - f_2)] \, \delta^4(p_{\rm in} - p_{\rm out})$

f - fermion distribution function, M_{ij} scattering matrix element. ν_j - the degeneracy factors (spin, flavor, color)

Fermions in the basis:

 $\Psi_i = \{\Psi_{bu}, \Psi_{bd}, \Psi_e\} = \{\text{blue up quark } (bu), \text{ blue down quark } (bd), \text{ electron } (e)\}.$

the indices *i* and *j* specify the species of the ungapped fermions in this basis.

Further assumptions:

- Red and green colors are gapped and do not contribute to the transport
- No strangeness (number of s-quarks too small)
- High-density, low-temperature regime $T, m \ll \mu_q$
- Light flavor (isospin) asymmetry typical for neutron stars $\mu_u \ll \mu_d$ (β -equilibrium)

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

 $D_{\mu}\Psi = \left(\partial_{\mu} - i\sum_{a}A^{a}_{\mu}Q^{a}\right)\Psi$ (4)

Two basis for gauge bosons - standard (T_8, Q) and rotated (X, \tilde{Q})

$$A_{\mu} = A_{\mu}^{T_8} T_8 + A_{\mu}^Q Q = A_{\mu}^X X + A_{\mu}^{\tilde{Q}} \tilde{Q}.$$
 (5)

related by rotations via mixing angle φ

Gauge bosons: write the covariant derivative as

$$A^X_\mu = \cos\varphi A^{T_8}_\mu + \sin\varphi A^Q_\mu \tag{6}$$

$$A^{\tilde{Q}}_{\mu} = -\sin\varphi A^{T_8}_{\mu} + \cos\varphi A^{Q}_{\mu} \qquad \cos\varphi = \frac{\sqrt{3g}}{\sqrt{e^2 + 3g^2}}.$$
 (7)

-In the rotated basis the \tilde{Q} charge is massless, i.e., \tilde{Q} color magnetic field penetrates the 2SC phase

-In the rotated basis the *X* charge is massive, i.e., there is a Meissner effect (more precisely color magnetic flux tubes)

 $\overline{}$

Transport coefficients of dense quark matter: Variational calculation

Microphysics for neutron star oscillations

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

The charges Q^a are defined to be the product of the coupling constant and the charge matrix for the ungapped fermions:

$$Q^{T_8} = g \cdot \operatorname{diag}\left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, 0\right)$$

$$Q^Q = e \cdot \operatorname{diag}\left(+\frac{2}{3}, -\frac{1}{3}, -1\right)$$
(8)

in the standard (T_8, Q) basis and

$$Q^{X} = g \cos \varphi \cdot \operatorname{diag} \left(-\frac{1 - 2 \tan^{2} \varphi}{\sqrt{3}}, -\frac{1 + \tan^{2} \varphi}{\sqrt{3}}, -\sqrt{3} \tan^{2} \varphi \right)$$

$$Q^{\tilde{Q}} = e \cos \varphi \cdot \operatorname{diag} (1, 0, -1)$$
(9)

in the rotated (X, \tilde{Q}) basis.

- The longitudinal part of the screening is evaluated in the standard basis
- The transverse part of the screening is evaluated in the rotated basis

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

Computing the matrix element for scattering: $p_{1i} + p_{2j} \rightarrow p_{3i} + p_{4j}$ (flavor *i*, *j*)

Standard Feynman rules give:

$$M_{ij} = J^{\mu}_{a,i} \left(D^{ab}_{\mu\nu} \right) J^{\nu}_{b,j}$$
(10)

$$J_{a,i}^{\mu} = Q_i^a \bar{u} \left(\mathbf{p}_3 \right) \gamma^{\mu} u \left(\mathbf{p}_1 \right) / 2p_1 \qquad J_{b,j}^{\nu} = Q_j^b \bar{u} \left(\mathbf{p}_4 \right) \gamma^{\nu} u \left(\mathbf{p}_2 \right) / 2p_2 \qquad (11)$$

where the most general form of the propagator is given by

$$\left(D^{ab}_{\mu\nu}\right)^{-1} = g_{\mu\nu} \left(\omega^2 - q^2\right) \delta^{ab} + \Pi^{ab}_{\mu\nu}$$
(12)

Screening in a plasma is taken into account via self-energies $\Pi_{\mu\nu}$

Decomposition all the quantities (matrix elements, gauge propagators) into longitudinal and transverse parts:

$$M_{ij} = \sum_{a = \{T_8, Q\}} \frac{J_{a,i}^0 J_{a,j}^0}{q^2 + \Pi_l^{aa}} - \sum_{a = \{X, \bar{Q}\}} \frac{\mathbf{J}_{a,i}^t \cdot \mathbf{J}_{a,j}^t}{q^2 - \omega^2 + \Pi_l^{aa}}$$
(13)
$$\Pi_l^{aa} = \sum_i (q_{D,i}^a)^2 \chi_l + 4 (q_{D,C}^a)^2 \chi_l \qquad \text{in the } (T_8, Q) \text{ basis}$$
$$\Pi_l^{aa} = \sum_i (q_{D,i}^a)^2 \chi_l + 4 (q_{D,C}^a)^2 \chi_l + 4 (q_{D,C}^a)^2$$

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

The screening functions, χ_l and χ_t in the static limit (Hard Thermal Loop approximation)

$$\chi_l = 1, \qquad \chi_t = i\frac{\pi}{4}\frac{\omega}{q}, \qquad \chi_{sc} = \frac{1}{3}.$$
 (15)

(better done by Rischke and co-workers). To leading order in ω/q , we thus have

$$\Pi_l^{T_8T_8} = \sum_i (\mathcal{Q}_i^{T_8})^2 \, \frac{\mu_i^2}{\pi^2} + 4(\mathcal{Q}_C^{T_8})^2 \frac{\mu_C^2}{\pi^2} \tag{16}$$

$$\Pi_l^{QQ} = \sum_i (Q_i^Q)^2 \frac{\mu_i^2}{\pi^2} + 4(Q_C^Q)^2 \frac{\mu_C^2}{\pi^2}$$
(17)

$$\mathbf{I}_{t}^{XX} = \frac{4}{3} (\mathcal{Q}_{C}^{X})^{2} \frac{\mu_{C}^{2}}{\pi^{2}}$$
(18)

$$\Pi_{t}^{\tilde{Q}\tilde{Q}} = i\frac{\omega}{q}\Lambda^{2} \quad \text{where} \quad \Lambda^{2} \equiv \sum_{i} (Q_{i}^{\tilde{Q}})^{2} \frac{\mu_{i}^{2}}{4\pi}$$
(19)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

17/26

The Q's can be found in the paper.

Ι

The squared matrix element summed over the final spins and averaged over the initial spins is

- > / - >

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

$$= L_{l} \left| \sum_{a = \{T_{8}, Q\}} \frac{Q_{i}^{a} Q_{j}^{a}}{q^{2} + \Pi_{l}^{aa}} \right|^{2} + L_{t} \left| \sum_{a = \{X, \tilde{Q}\}} \frac{Q_{i}^{a} Q_{j}^{a}}{q^{2} - \omega^{2} + \Pi_{l}^{aa}} \right|^{2} - 2L_{lt} \Re \left[\left(\sum_{a = \{T_{8}, Q\}} \frac{Q_{i}^{a} Q_{j}^{a}}{q^{2} + \Pi_{l}^{aa}} \right) \left(\sum_{a = \{X, \tilde{Q}\}} \frac{Q_{i}^{a} Q_{j}^{a}}{q^{2} - \omega^{2} + \Pi_{l}^{aa}} \right)^{*} \right] + \delta_{ij} \gamma_{int}$$
(20)

where

 $|M_{ii}|^2$

$$L_{l} = \left(1 - \frac{q^{2}}{4p_{1}^{2}}\right) \left(1 - \frac{q^{2}}{4p_{2}^{2}}\right)$$

$$L_{lt} = \left(1 - \frac{q^{2}}{4p_{1}^{2}}\right)^{1/2} \left(1 - \frac{q^{2}}{4p_{2}^{2}}\right)^{1/2} \cos\theta \qquad (21)$$

$$L_{t} = \left(1 - \frac{q^{2}}{4p_{1}^{2}}\right) \left(1 - \frac{q^{2}}{4p_{2}^{2}}\right) \cos^{2}\theta + \frac{q^{2}}{4p_{1}^{2}} + \frac{q^{2}}{4p_{2}^{2}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

18/26

The interference γ_{int} term is small and is neglected.

Transport coefficients - definitions of electrical and thermal conductivities and shear viscosity

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

 $j_{\alpha} = -\sigma \partial_{\alpha} U = \int \frac{d^3 p}{(2\pi)^3} e v_{\alpha} \,\delta f \tag{22}$

$$h_{\alpha} = -\kappa \partial_{\alpha} T = \int \frac{d^3 p}{(2\pi)^3} \left(\epsilon - \mu\right) v_{\alpha} \,\delta f \tag{23}$$

$$\sigma_{\alpha\beta} = -\eta V_{\alpha\beta} = \int \frac{d^3p}{(2\pi)^3} p_{\alpha} v_{\beta} \,\delta f \tag{24}$$

where $V_{\alpha\beta}$ is the traceless part of the spatial derivative of fluid velocity **V**,

$$V_{\alpha\beta} = \partial_{\alpha}V_{\beta} + \partial_{\beta}V_{\alpha} - \frac{2}{3}\delta_{\alpha\beta}\nabla\cdot\mathbf{V}.$$
(25)

Comparing the left-hand-sides we obtain a universal relation

$$\xi Y = \sum_{i} \nu_i \int \frac{d^3 p}{(2\pi)^3} \phi_i \,\delta f_i \tag{26}$$

where ν_i is a spin factor for a particle flavor i, ξ stands $\sigma, \kappa,$ or $\eta, -Y$ stands $-\partial_{\alpha} U,$ $-\partial_{\alpha} T,$ or $-V_{\alpha\beta}$

Linearization of the Boltzmann equation is given by

Microphysics for neutron star oscillations

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

$f_i = f_i^0 + \delta f_i = \frac{1}{e^{(\epsilon - \mu_i)/T} + 1} - \frac{\partial f_i^0}{\partial \epsilon} \Phi_i$ (27)

Relaxation time approximation

$$\Phi_i = 3\tau_i \psi_i \cdot Y \tag{28}$$

$$\xi_i = -\frac{3\tau_i\nu_i}{\gamma} \int \frac{d^3p}{(2\pi)^3} \left(\phi_i \cdot \psi_i\right) \frac{\partial f_i^0}{\partial \epsilon}$$
(29)

 $\gamma = \delta^{\alpha}_{\alpha} = 3$ for the electrical and thermal conductivities $\gamma = \left(\delta^{\alpha}_{\alpha}\delta^{\beta}_{\beta} + \delta^{\alpha}_{\alpha} - 2\delta^{\alpha}_{\alpha}/3\right)/2 = 5$ for the shear viscosity. From Eq. (26), we can now define transport coefficient of each component ξ_i as

$$\xi = \sum_{i} \xi_i = \xi_{bu} + \xi_{bd} + \xi_e \tag{30}$$

 ψ_i

Microphysics for neutron star oscillations

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

Linearization of collision integral

$$Y \frac{\partial f_1^0}{\partial \epsilon_1} = -\frac{(2\pi)^4}{T} \sum_j \nu_j \sum_{234} |M_{ij}|^2 f_1^0 f_2^0 (1 - f_3^0) (1 - f_4^0) \, \delta^4(p_{\rm in} - p_{\rm out}) \, (\Phi_1 + \Phi_2 - \Phi_3 - \Phi_4) \,. (31)$$

Using the same procedure as for the drift term

$$\xi_{i} = \frac{9\tau_{i}}{\gamma} \frac{(2\pi)^{4}}{T} \sum_{j} \nu_{i} \nu_{j} \sum_{1234} |M_{ij}|^{2} f_{1}^{0} f_{2}^{0} (1 - f_{3}^{0}) (1 - f_{4}^{0}) \delta^{4}(p_{\text{in}} - p_{\text{out}}) \phi_{1} \cdot [\tau_{i}(\psi_{1} - \psi_{3}) + \tau_{j}(\psi_{2} - \psi_{4})].$$
(32)

In the limit $\omega, T \ll \mu_q$

$$\xi_{i} = \frac{\tau_{i}}{\gamma} \sum_{j} \nu_{i} \nu_{j} \frac{36T \mu_{i}^{2} \mu_{j}^{2}}{(2\pi)^{5}} \int_{0}^{\infty} d\omega \left(\frac{\omega/2T}{\sinh(\omega/2T)}\right)^{2} \int_{0}^{q_{M}} dq \int_{0}^{2\pi} \frac{d\theta}{2\pi} |M_{ij}|^{2} \phi_{1} \cdot [\tau_{i}(\psi_{1} - \psi_{3}) + \tau_{j}(\psi_{2} - \psi_{4})]$$
(33)

 $q_M = \min [2p_1, 2p_2] = \min [2\mu_i, 2\mu_j]$ is the maximum momentum transfer, and θ is again the angle between $\mathbf{p}_1 + \mathbf{p}_3$ and $\mathbf{p}_2 + \mathbf{p}_4$. In the limit $T/\mu_q \ll 1 \ p_1, p_2 \rightarrow \mu_i, \mu_j$.

Comparing Eqs. (29) and (33) we obtain relaxation times τ_i for the three gapless fermion species.

Numerical and analytical results for 2SC phase

Microphysics for neutron star oscillations

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

Qualitative understanding

- Transport in the 2SC phase occurs via the ungapped fermions: the blue up quark, the blue down quark, and the electron.

- Transport is dominated by the fermion that feels the least influence from surrounding particles (i.e. long relaxation time or mean-free-path)

Relevant interactions

- longitudinal strong interaction (T_8) Debye screened (short range)
- longitudinal electromagnetic interaction (*Q*), Debye screened (short range)
- transverse "rotated" strong interaction (*X*) Meissner screening (short ranged)

At low-*T* the *bu* quark and electron carry \tilde{Q} charge, *bd* does not. Transport is dominated by *bd* quarks (!)

At high T the Landau damping of the \tilde{Q} is more significant. Relaxation times are dominated by the X and T_8 interactions.

Electron, which has no T_8 charge and only a very small X charge, dominates transport.

A transition from the regime dominated by the *bd* quark to a regime dominated by electrons as the temperature is rised.

イロン イボン イヨン イヨン 三日

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

Numerical calculation of shear viscosity as a function of temperature, taking $\alpha_s = 1$. In this temperature range we see electron and quark contributing equally at high temperature and electron domination at low temperature.

(34)

Numerical and analytical results for 2SC phase

Microphysics for neutron star oscillations

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

$$\frac{\kappa_{bu}}{\mu_q} = \frac{5.69}{1+3720(T/\mu_q)}, \quad \frac{\kappa_e}{\mu_q} = \frac{6.70}{1+6.92(T/\mu_q)^{2/3}}$$
(35)

Numerically calculated thermal conductivity in units of quark chemical potential μ_q in the 2SC phase with $\alpha_s = 1$. In this temperature range we see the crossover from electron domination at high temperature to blue down quark domination at low temperature.

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary

$$\frac{\sigma_{bu}}{\mu_q} = \frac{0.000672}{(T/\mu_q)^{5/3} + 2.11 (T/\mu_q)^2}, \quad \frac{\sigma_e}{\mu_q} = \frac{1.46}{(T/\mu_q)^{5/3} + 2.11 (T/\mu_q)^2}$$
(36)

Numerically calculated electrical (\tilde{Q}) conductivity as a function of temperature, both expressed in units of the quark chemical potential μ_q , taking strong interaction coupling $\alpha_s = 1$. The electrons dominate because the *bu* relaxation time is shortened by its strong interaction with the *bd* quarks.

Summary

Summary

- Highly accurate results for conductivity of dilute and warn compact star matter including dynamical screening effects. Other transport coefficients will follow.
- Text-only tables and fit formulas are available for application in MHD computations of compact stars
- Complete set of transport coefficients (thermal and electrical conductivity and shear viscosity) for 2SC phase; second viscosity is also in the literature

(日) (同) (E) (E) (E)

26/26

- Fit formulas for all transport coefficients of 2SC phase and flux-fermion (quasi) mutual friction are available.
- Future: continue systematically computing accurate transport coefficients in regimes relevant for compact stars.

Microphysics for neutron star oscillations

A Sedrakian

Transport coefficients of dense quark matter: Variational calculation

Numerical and analytical results for 2SC phase

Summary