# Southampton

Engineering and the Environment

Aeronautics, Astronautics and Computational Engineering

## Integrating simulation and geometry to determine cost

#### UTC for Computational Engineering

Stuart Jinks, Jim Scanlan, Faculty of Engineering and the Environment Philippa Reed, Faculty of Engineering and the Environment Steve Wiseall, Rolls-Royce plc

#### Introduction

Conventional cost modelling approaches are unable to fully represent dynamic aspects of unit cost. A framework has been developed to integrating dynamic supply chain



simulations with design geometry to assist in design decision making.

### Framework

The framework consists of five steps as shown in Figure 1.

#### Step 1 – Geometry

modification. The framework has been designed to work within Siemens Uni-graphics. The user can modify component geometry via а comprehensive of design set parameters. Figure 2 shows how the component geometry is parametrically linked to multiple manufacturing method condition of supply geometries that update depending on rules.



Step 3 – Time generation. All collected data and

Figure 3: Schematic of the generic data driven discrete event model

Generic operation level cost model

Data sent to supply chain cost
model from operation level cost
model:
∑ Operation process cost
∑ Labour man hours
∑ Capital equipment cost
∑ Building cost

Generic supply chain level cost model

knowledge is utilised to calculate operation times for each selected supply option.

**Step 4 – Dynamic modelling**. All collected and calculated data is utilised to populate a generic data driven discrete event model (Figure 3) of a particular supply chain for the manufacture of the component.

Step 5 – Static calculation of refined unit cost. Output results from the dynamic model are used within a generic data driven cost model (Figure 4) to calculate unit cost.

Completed for each operation Completed for each Supply chain option Figure 4: Schematic of the generic data driven cost model Benefits

There are three benefits from the framework:

- A refined unit cost estimate is calculated
- Manufacturing production data is generated
- Comparisons between manufacturing supply chain options can be made

<u>www.soton.ac.uk/engineering/research/groups/CED/posters.page</u> | email: <u>sj1103@soton.ac.uk</u> Computational Engineering & Design Group, University of Southampton, SO17 1BJ, U.K.