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1 Questions that Need Answers

• Expressiveness of Rigorous Methods

• Can we give a precise characterisation of a class C of systems that are cap-
tured by our methodM?

• If we capture C ′ ( C, can we precisely characterise what we gain (e.g. easier
proofs, reduced complexity, etc.) for the reduced expressiveness?

• Can we justify that C ′ ( C is of equal importance as C itself?

• Can we ensure that our method adequately captures the technology and
implementation languages that are commonly used for implementations of
the captured class C of systems?

• Can we ensure that our refinement-based development methodology provides
an adequate (in terms of effort, feasibility, quality of the result) for the
development of systems in the class of interest?
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Questions / cont.

• Logical Reasoning with Rigorous Methods

• Can we provide a logic for our method by means of which all desirable
properties of a system of interest can be expressed?

• Can we provide a (preferably complete) proof theory for such a logic that
enables mechanical reasoning complementing proofs by brain and pencil?

• Can we ensure that proofs can exploit previous knowledge?

• Can we provide pragmatic guidance for conducting proofs?

• Can we provide pragmatic refinement rules that have been proven a priori
to be correct?

Distributed Adaptive Systems – Theory, Specification, Reasoning 3/44



Behavioural Systems Theory

Foundations for Expressiveness and Logical Reasoning:

• Provide a language-independent definition of a class C of systems of interest

• Provide an abstract machine model M (i.e. the rigorous method)

• Prove that the abstract machine modelM captures the class C of systems

• Plausibility: Show the satisfaction of the characterising properties of C

• Capture: Show that every system stipulated by the characterising proper-
ties of C can be specified by a behaviourally equivalent abstract machine

• Derive a logic L from M and show how to express desirable properties of
systems in C in this logic
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2 Foundations: Expressiveness

Ur-Instance: Behavioural Theory of Sequential Algorithms (aka: Sequen-
tial ASM Thesis)

Sequential algorithms are defined by four conditions (postulates):

Bounded Exploration

Sequential Time

Background

Abstract State

Sequential Algorithm
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Characterising Postulates

• Sequential Time: A sequential algorithm t is associated with a non-empty
set of states St, a subset It ⊆ St of initial states, and a transition function
τt : St → St.

• This already determines the notion of a run S0, S1, . . . with S0 ∈ It and
Si+1 = τt(Si)

• Abstract State: All states S ∈ St of a sequential algorithm t are structures
over the same signature Σt. For all states S and τt(S) have the same base set
B. The sets of states and initial states are closed under isomorphisms.

• Bounded Exploration: For a sequential algorithm t there exists a fixed,
finite set W (bounded exploration witness) of ground terms such that
∆(t, S1) = ∆(t, S2) holds whenever the states S1 and S2 coincide over W .

• Background: There exists a background class providing at least truth values
and their junctors and a value undef .

Here ∆(t, S) is the uniquely defined update set of the algorithm t in state S, i.e.
the set of updates (`, v) defined by the transition from S to τt(S).

Distributed Adaptive Systems – Theory, Specification, Reasoning 6/44



Sequential ASM Rules

• Sequential ASM rules over a signature Σ are defined as follows:

• If t0, . . . , tn are terms over Σ, and f is a n-ary function symbol in Σ, then
f (t1, . . . , tn) := t0 is a rule r in R called assignment rule.

• If ϕ is a Boolean term and r′ ∈ R is a DB-ASM rule, then if ϕ then r′

endif is a rule r in R called conditional rule.

• If r1, . . . , rn are rules in R, then the rule r defined as par r1 . . . rn endpar
is a rule in R, called parallel rule.

• Each rule r yields an update set ∆(r, S) for a state S over Σ.
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Sequential Abstract State Machines

Definition. A sequential Abstract State Machine (ASM) M over a
signature Σ consists of

• a set SM of states over Σ and a non-empty subset IM ⊆ SM of initial states,
both closed under isomorphisms,

• a closed sequential ASM rule rM over Σ, and

• a function τM : SM → SM determined by rM such that
τM(S) = S + ∆(rM, S) holds.

Theorem (Plausibility Theorem). Each sequential ASM M defines a se-
quential algorithm with the same signature asM.

Theorem (Characterisation Theorem). For every sequential algorithm
there exists a behaviourally equivalent sequential ASMM.

Y. Gurevich, Sequential abstract-state machines capture sequential algorithms, ACM Trans. Comput. Log. 1

(1) (2000): 77-111.
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Proof Sketch

1. Fix a bounded exploration witness W (w.l.o.g. closed under subterms)

2. Take a state S and an update ((f, (v1, . . . , vn)), v0) ∈ ∆(S)

3. Show that each vi is a critical value in S, i.e. it results from interpretation of a ground term

ti ∈ W in the state S

4. Then the update is yielded by the rule f (t1, . . . , tn) := t0, and consequently ∆(S) results from

a rule rS that is the parallel composition of such assignments

5. Generalise to states that coincide on W : If S ′ and S coincide on W , then ∆(S ′) = ∆(rS, S
′)

6. Extend to isomorphic states: If S1, S2 are isomorphic and ∆(S1) = ∆(rS, S1), then also ∆(S2) =

∆(rS, S2) holds

7. Define W -similarity: States S1, S2 are W -similar iff valS1(ti) = valS1(tj) ⇔ valS2(ti) =

valS2(tj) holds for all ti, tj ∈ W

8. Extend to W -similar states: If S ′ and S are W -similar, then ∆(S ′) = ∆(rS, S
′)

9. As there are only finitely many W -equivalence classes, use conditional rules to finally create a

rule r with ∆(S ′) = ∆(r, S ′) for all states S ′
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Easy Observations

• The proof mainly exploits properties derived from the postulates

• Any other method providing parallel assignments and guards could have been
used in the proof as well

• An extension to cover bounded non-determinism is also straightforward:

• In the sequential time postulate replace the state transition function τt by a
relation

• Add a bounded choice rule to sequential ASMs
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2.1 Extension: Unbounded (Synchronous) Parallelism

• The parallel “branches” involved in a single step do not only depend on the
algorithm, but also on the state

• The key is to exploit multiset comprehension terms (instead of just
ground terms) in the bounded exploration postulate (conjecture launched at
ABZ 2012)

• In addition, the background structure in the background postulate must
provide constructors for tuples and multisets together with the corresponding
operators on them

• Sequential ASMs need to be extended to parallel ASMs that exploit a general
forall-rule for unbounded parallelism:

• If ϕ is a term with {x1, . . . , xk} ⊆ fr(ϕ) and r′ ∈ R is an ASM rule, then
forall x1, . . . , xk with ϕ do r′ enddo is a rule r in R
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Proof Sketch

Only Step 4 in the previous proof (trivial for sequential algorithms) requires an
amendment, the rest remains more or less the same

1. Define a logical theory (derived from W ) and show that whenever tuple ā =
(a0, . . . , ar) and b̄ = (b0, . . . , br) have the same type (i.e. they satisfy exactly the
same formulae in this theory), then ((f, (a1, . . . , ar), a0) appears in an update
set ∆(S) iff ((f, (b1, . . . , br), b0) ∈ ∆(S).

2. For this assume first that there is an isomorphism taking ā to b̄ and apply the
bounded exploration postulate, then use a Gödelisation to tackle the general
case.

3. Show that for the theory isolating formulae exist, i.e. tuples have the same type
iff they are satisfied by the isolating formula of the type.

4. Use the isolating formula to define a rule
forall x0, x1, . . . , xr with tāχ(x0, x1, . . . , xr) do f (x1, . . . , xr) := x0

F. Ferrarotti, K.-D. Schewe, L. Tec, Q. Wang: A New Thesis concerning Synchronised Parallel Computing –

Simplified Parallel ASM Thesis. Theor. Comp. Sci. 649 (2016): 25-53.
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2.2 Extension: (Asynchronous) Concurrency

Concurrent algorithms require two additional postulates :

Bounded Exploration

Sequential Time

Background

Abstract State

Concurrent AlgorithmDistribution Concurrency
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Characterising Postulates

• Distribution: A distributed (adaptive) system (DAS) is given by a set A of
agents a, each equipped with a parallel (reflective) algorithm alg(a). Further-
more, there is a set L of localities and and assignment loc : A → L.

• Concurrency: A DASD = {(a, alg(a)) | a ∈ A} defines concurrent D-runs
S0, S1, . . . starting in some initial state S0, such that each state Sn (n ≥ 0)
yields a next state Sn+1 by a finite set An of agents simultaneously completing
the execution of their current alg(a)-step they had started in some preceding
state Sj (j ≤ n depending on a), i.e. Sn+1 = Sn +

⋃
a∈An ∆a(Sj).

• Informally phrased, in a concurrent run the sequence of states results from
simultaneously applying update sets of several individual machines that have
been built on previous (not necessarily the last nor the same) states.

• Concurrent runs do not rely on interleaving, but permit simultaneous updates
by several machines
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Concurrent ASMs Capture Concurrent Algorithms

a1

a2

a3

S0 S1 S2 S3 S4 S5 S6 S7

• Simply use families of ASMs indexed by agents, i.e. {(a,Ma) | a ∈ A}

• Exploit that locations between different ASMs in the family can be shared

• Define concurrent runs in analogy to the concurrency postulate

• The proof that concurrent ASMs capture concurrent algorithms is straightfor-
ward: reduction to the already known proofs

E. Börger, K.-D. Schewe: Concurrent Abstract State Machines. Acta Inform. 53 (5), (2016): 469-492 (open

access).
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2.3 Extension: Adaptivity through Linguistic Reflection

• Reflection: each agent computes not only updates to the state, but also
to itself, which requires (for each agent) a function from pairs of states and
specifications to specifications:

• Think of pairs (Si, Pj) comprising a state Si (as in the sequential thesis),
and a (sequential or parallel) algorithm Pj

• Consider transition functions τj : (Si, Pj) 7→ (Si+1, Pj) not changing the
algorithm Pj, and transition functions σi : (Si, Pj) 7→ (Si, Pj+1) changing
only the algorithm

• A run of a reflective algorithm corresponds to the sequence of pairs (Si, Pi),
where in each step both the state Si and the algorithm Pi are updated

• This requires changes to all postulates; the key issue is to permit terms as
values

F. Ferrarotti, K.-D. Schewe, L. Tec: A Behavioural Theory for Reflective Sequential Algorithms. Perspectives

in Systems Informatics. LNCS vol. 10742, pp. 117-131, Springer 2018.
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Sequential Time

•We can capture the state-algorithm pairs by an extension Σext of the signature
Σ using additional function symbols to represent the algorithm, e.g. capturing
the signature and some syntactic description

•We must further permit new function symbols to be created, which can be done
by exploiting the concept of “reserve”

Reflective Sequential Time Postulate.
A reflective algorithm A consists of the following:

• A non-empty set SA of extended states .

• A non-empty subset IA ⊆ SA of initial extended states such that for all
(S, P ), (S ′, P ′) ∈ IA, it holds that S and S ′ are first-order structures of a same
signature Σ and P |Σ and P ′|Σ have exactly the same runs.

• A one-step transformation function τA : SA → SA such that τA((S, P )) =
(S ′, P ′) iff τP ((S, P )) = (S ′, P ′) for the one-step transformation function τP of
the algorithm P .
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Behavioural Equivalence

•While behavioural equivalent sequential/parallel algorithms have exactly the
same runs, this is not necessarily the case for reflection

• For runs r1 = (S0, P0), (S1, P1), (S2, P2), . . . , and r2 = (S ′0, P
′
0), (S ′1, P

′
1),

(S ′2, P
′
2), . . . , defne that r1 and r2 are essentially equivalent if for every

i ≥ 0 the following holds:

• Si = S ′i

• Si and S ′i are first-order structures of a same signature Σi and Pi|Σi and P ′i |Σi
have exactly the same runs

Definition (Behavioural Equivalence).
Two reflective algorithms A and A′ are behaviourally equivalent iff A and
A′ have essentially equivalent classes of essentially equivalent runs, i.e. there is
a bijection ζ between runs of A and A′, respectively, such that r and ζ(r) are
essentially equivalent for all run r.
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Abstract States

• States are first-order structures, but must also include (an encoding of) an
algorithm given by a finite text

• The representation of algorithms in a state requires terms that are used by the
algorithms to appear as values. So we have to allow terms over Σ (including
the dormant function symbols in the reserve) to be at the same time values in
an extended base set

• States (S, P ) and (S ′, P ′) are essentially isomorphic if S and S ′ are iso-
morphic first-order structures of some vocabulary Σ and P |Σ and P ′|Σ have
exactly the same runs

• If ζ is an isomorphism form S to S ′, then we say that (S, P ) and (S ′, P ′) are
essentially isomorphic via ζ
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Extended Abstract States

Reflective Abstract State Postulate.
Let A be a reflective algorithm. Fix a signature Σ and an extension Σext of the
signature Σ with additional function names.

• States of A are first-order structures of signature Σext .

• Every state (S, P ) of A is formed by the disjoint union of an arbitrary first-
order structure S of some finite signature Σst ⊆ Σ and a first-order structure
SP of signature Σwt = Σext \ Σ which contains an encoding of the sequential
algorithm P .

• The one-step transformation τA of a RSA A does not change the base set of
any state of A.

• The sets SA and IA of, respectively, states and initial states of A, are closed
under essentially isomorphic states.

• If two states (S, P ) and (S ′, P ′) of A are essentially isomorphic via an isomor-
phism ζ from S to S ′, then τA((S1, A1)) and τA((S2, A2)) are also essentially
isomorphic via ζ .
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Bounded Exploration

• Each algorithm Pi represented in state (Si, Pi) has its own bounded exploration
witness Wi

• For parallel algorithms Pi such a bounded exploration witness is a set of multiset
comprehension terms, where each element in such a multiset corresponds to a
branch (or proclet) of the parallel computation

• Due to the construction of Wi in the characterisation proof we know that Wi is
somehow contained in the finite representation of Pi

• E.g., the ASM rule constructed in the proof of the parallel ASM thesis only
contains terms derived from the terms in Wi, and this holds analogously for any
other representation of Pi

• Thus, the terms in Wi result by interpretation from terms that appear in the
representation of any algorithm, and there must exist a finite set of terms W
such that its interpretation in an extended state yields both values and terms,
and the latter represent Wi

• Consequently, the interpretation of W and of its interpretation in an extended
state suffice to determine the update set in that state
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Strong Coincidence

We first need an extension of the notion of strong coincidence over a set of
multiset comprehension terms

Definition (Strong Coincidence).
Let (S, P ) and (S ′, P ′) be states of signature Σext . Let Wst be a set of multiset
comprehension terms over signature Σ and Wwt be a set of multiset comprehension
terms over signature Σext \Σ. (S, P ) and (S ′, P ′) strongly coincide over Wst∪
Wwt iff the following holds:

• For every t ∈ Wst, val (S,P )(t) = val (S′,P ′)(t).

• For every t ∈ Wwt,

• val (S,P )(t) = val (S′,P ′)(t).

• val (S,P )(raise(t)) = val (S′,P ′)(raise(t)),
where raise(t) denotes the interpretation of t as a term of signature Σ.
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Reflective Bounded Exploration

• Use ∆(P, S) to denote the unique set of updates produced by the sequential
algorithm P in state S

• The unique set of updates produced by a RSA A in a state (S, P ) is defined as
∆(A, (S, P )) = ∆(P, (S, P ))

• The idea of the modified bounded exploration postulate is that, for every state
(Si, Pi), the multiset comprehension terms obtained by the interpretation in
(Si, Pi) of the terms in Wwt together with the “standard” terms in Wst form a
bounded exploration witness for the sequential algorithm Pi
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Reflective Bounded Exploration Postulate

Reflective Bounded Exploration Postulate.
For every reflective A of signature Σext there is a finite set Wst of multiset compre-
hension terms over signature Σ and a finite setWwt of multiset comprehension terms
over signature Σext \ Σ such that ∆(A, (S, P )) = ∆(A, (S ′, P ′)) holds, whenever
states (S, P ) and (S ′, P ′) of A strongly coincide on Wst ∪Wwt.

If a set of multiset comprehension terms Wst ∪Wwt satisfies the reflective bounded
exploration postulate, we call it a reflective bounded exploration witness
(R-witness) for A

A reflective algorithm (RA) is characterised by the Reflective Sequential Time,
Reflective Abstract State, Reflective Background and Reflective Bounded Explo-
ration Postulates.
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Background Postulate

• Parallelism and reflection require the presence of additional constructors

Reflective Background Postulate.
Let A be a reflective algorithm of vocabulary Σext with background class K. The
vocabulary ΣK of K includes (at least) a binary tuple constructor and a multiset
constructor of unbounded arity; and the vocabulary ΣB of the background of
the computation states of A includes (at least) the following obligatory function
symbols:

• Nullary function symbols true, false, undef and �.

• Unary function symbols reserve, atomic, Boole, ¬, first, second, {{·}},
⊎

and AsSet.

• Binary function symbols =, ∧, ∨, →, ↔, ] and ( , ).

• raise mapping terms over Σext to terms over Σ.

All function symbols in ΣB, with the sole exception of reserve, are static.
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Reflective ASMs

• In a reflective ASM the following extensions to signature, background and
rules apply:

• The signature contain a function symbol self capturing the signature and
rule of the actual ASM

• The background structure captures all constructs required by the reflective
background postulate

• If self is to be bound to a tree structure, then the tree operators are defined
in the background

• In a run of an individual ASM asma in each step always the actual rule in self
is applied
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Tree Algebra

• An unranked tree is a structure (O,≺c,≺s) consisting of a finite, non-empty set
O of node identifiers, called tree domain, ordering relations ≺c and ≺s over O
called child relation and sibling relation, respectively, satisfying the following
conditions:

• there exists a unique, distinguished node or ∈ O (called the root of the tree)
such that for all o ∈ O − {or} there is exactly one o′ ∈ O with o′ ≺c o,

• whenever o1 ≺s o2 holds, then there is some o ∈ O with o ≺c oi for i = 1, 2,
and

• the relations ≺c and ≺s are irreflexive (x 6≺ x).

K.-D. Schewe, Q. Wang: XML Database Transformations. J. UCS vol. 16 (20): 3043-3072, 2010
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Trees, Hedges and Contexts

• A tree t (over the set of labels L with values in the universe U) is a triple (γt,
ωt, υt) consisting of an unranked tree γt = (Ot,≺c,≺s), a total label function
ωt: Ot → Σ, and a partial value function υt: Ot → U such that whenever υt
is defined on the argument o, o is a leaf in γt.

• A sequence t1, ..., tk of trees is called a hedge, and a multiset {{t1, ..., tk}} of
trees is called a forest – ε denotes the empty hedge.

• The set of contexts over an alphabet L (ξ /∈ L) is the set TL∪{ξ} of unranked
trees over L ∪ {ξ} such that for each tree t ∈ TL∪{ξ} exactly one leaf node is
labelled with the symbol ξ and has undefined value, and all other nodes in a
tree are labelled and valued in the same way as a tree.
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Operations on Trees

• Tree-to-tree substitution. For a tree t1 ∈ TL1 with a node o ∈ Ot1 and a
tree t2 ∈ TL2 the result t1[ô 7→ t2] of substituting t2 for the subtree rooted at o
is a tree in TL1∪L2.

• Tree-to-context substitution. For a tree t1 ∈ TL1 with a node o ∈ Ot1
the result t1[ô 7→ ξ] of substituting the trivial context for the subtree rooted at
o is a context in TL1∪{ξ}.

• Context-to-context substitution. For a context c1 ∈ TL1∪{ξ} and a con-
text c2 ∈ TL2∪{ξ} the result c1[ξ 7→ c2] of substituting c2 for the node labelled
by ξ in c1 is a context in TL1∪L2∪{ξ}.

• Context-to-tree substitution. For a context c1 ∈ TL1∪{ξ} and a tree
t2 ∈ TL2 the result c1[ξ 7→ t2] of substituting t2 for the node labelled by ξ in c1

is a tree in TL1∪L2.
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Further Operations on Trees

• context is a binary, partial function defined on pairs (o1, o2) of nodes with
oi ∈ Ot (i = 1, 2) such that o1 is an ancestor of o2, i.e. o1 ≺∗c o2 holds for the
transitive closure ≺∗c of ≺c. We have context(o1, o2) = ô1[ô2 7→ ξ].

• subtree is a unary function defined on Ot. We have subtree(o) = ô.
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A Glimpse of the Proof

• Define the set of terms generated by Wwt in (S, P ) as

G
(S,P )
Wwt

= {raise(t′) | val (S,P )(t) = t′ for some t ∈ Wwt}

• Show again that every value occurring in an update is critical , i.e. results
from the interpretation of the bounded exploration witness terms

• Show again that any tuple with the same logical type as the tuple defined by an
update in ∆(A, (S, P )) also gives rise to an update, from which we can conclude
again the existence of an ASM rule that yields the update set at hand

•We obtain for every extended state (S, P ) a rule r(S,P ) such that r(S,P ) uses only
critical terms and ∆(r(S,P ), (S, P )) = ∆(A, (S, P )) holds

• If two states (S, P ) and (S ′, P ′) ofA are relative W [(S, P )]-equivalent and coin-
cide over W [(S, P )], then it follows that ∆st(r(S,P ), (S

′, P ′)) = ∆st(A, (S ′, P ′))
• Two states (S1, P1) and (S2, P2) of A are W -equivalent relative to
C[(S, P )] iff (S1, P1), (S2, P2) ∈ C[(S, P )] and E(S1,P1) = E(S2,P2), where
(for i = 1, 2) E(Si,Pi)(t1, t2) ≡ val (Si,Pi)(t1) = val (Si,Pi)(t2) is an equivalence
relation on the set of critical terms of (S, P )
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A Glimpse of the Proof (cont.)

• For every class C([Si, Pi]) of states of A, we have a corresponding rule r[(Si,Pi)]

with

• ∆st(r[(S,P )], (Si, Pi)) = ∆st(A, (Si, Pi)) for every state (Si, Pi) ∈ C[(S, P )],
i.e., for every state that is relative W [(S, P )]-equivalent to (S, P )

• Extend this result to all states which belong to some run of A, not just for the
states in the class C([Si, Pi])

• Fix an arbitrary initial state (S, P ) of A and define M as the reflective
ASM machine with:

SM = {(Si, P ′i ) | (Si, Pi) ∈ SA and P ′i is the “self” representation of r[(Si,Pi)]}
IM = {(Si, P ′i ) | (Si, P ′i ) ∈ SM and P ′i is the “self” representation of r[(S,P )]}

•With this show that for every run (S0, P0), (S1, P1), . . . of A and corresponding
run (S ′0, P

′
0), (S ′1, P

′
1), . . . ofMwith S0 = S ′0, it holds that ∆st(r[(Si,P

′
i )]
, (S ′i, P

′
i )) =

∆st(A, (Si, Pi))
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3 Foundations: Logic

• Formulae of the logic for determistic ASMs (Stärk / Nanchen):

ϕ, ψ ::= s = t | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ∀x.ϕ | ∃x.ϕ |
| def(r) | upd(r, f, ~s, t) | [r]ϕ

• Here upd(r, f, ~s, t) informally means that rule r yields an update at location
(f, valS(~s)) with new value valS(t)

• A proof system has been defined – the logic is complete

• The logic is a definitional extension of first-order logic

• The logic does not cover non-determinism

• The logic does not cover synchronisation of parallel branches

Distributed Adaptive Systems – Theory, Specification, Reasoning 33/44



3.1 Extension to Non-Deterministic ASMs

• Formulae of the logic for non-determistic ASMs:

ϕ, ψ ::= s = t | sa = ta | ¬ϕ | ϕ ∧ ψ | ∀x(ϕ) | ∀x(ϕ) | ∀M(ϕ)

| ∀X(ϕ) | ∀X (ϕ) | ∀Ẍ(ϕ) | ∀Ẍ (ϕ) | ∀F (ϕ) | ∀G(ϕ)

| upd(r,X) | upm(r, Ẍ) |M(s, ta) | X(f, t, t0)

| X (f, t, t0, s) | Ẍ(f, t, t0, ta) | Ẍ (f, t, t0, ta, s)

| F (f, t, t0, ta, t
′, t′0, t

′
a, s) | G(f, t, t0, ta, t

′, t′0, t
′
a, sa) | [X ]ϕ

• s, t and t′ denote terms in Tf
• sa, ta and t′a denote terms in Ta
• x ∈ Xf and x ∈ Xa denote first-order variables

•M , X , X , Ẍ , Ẍ , F and G denote second-order variables

• r is an ASM rule

• f is a dynamic function symbol in Υf ∪ Fb
• t0 and t′0 denote terms in Tf or Ta depending on whether f is in Υf or Fb,

respectively
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Informal Meaning

• upd(r,X) and upm(r, Ẍ) respectively state that a finite update set represented
by X and a finite update multiset represented by Ẍ are generated by a rule r

• X(f, t, t0) describes that an update (f, t, t0) belongs to the update set repre-
sented by X

• Ẍ(f, t, t0, ta) describes that an update (f, t, t0) occurs at least once in the up-
date multiset represented by Ẍ

• If (f, t, t0) occurs n-times in the update multiset represented by Ẍ , then there
are n distinct a1, . . . , an ∈ Ba such that (f, t, t0, ai) ∈ Ẍ for every 1 ≤ i ≤ n
and (f, t, t0, aj) 6∈ Ẍ for every aj other than a1, . . . , an

• [X ]ϕ expresses that ϕ holds in the state resulting from executing the update
set represented by X on the current state
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Completeness

• The second-order variables X and Ẍ are used to keep track of the parallel
branches that produce the update sets and multisets, respectively

•M denotes binary second-order variables which are used to represent the finite
multisets in the semantic interpretation of ρ-terms

• F and G to denote second-order variables which encode bijections between
update multisets

A proof system for this logic has been developed

Theorem. The logic of non-deterministic ASMs is complete with respect to
Henkin semantics for higher-order logics.

F. Ferrarotti, K.-D. Schewe, L. Tec, Q. Wang: A complete logic for Database Abstract State Machines1. Logic

Journal of the IGPL vol. 25 (5): 700-740 (2017)
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3.2 Extension: Concurrency

• Simple observation: concurrency can be mimicked by non-determinism: for each
agent a replace its rule r by

IF ctl = idle THEN CHOOSE r OR local(r) ‖ ctl := active ENDIF

IF ctl = active THEN CHOOSE skip OR final(r) ‖ ctl := idle ENDIF

• In an initial state the “control-state” location ctl is set to idle

• If idle the agent executes either immediately its rule or executes a local
version of it, i.e. all updates will be written to a local copy

• Otherwise the control-state becomes active

• If active, the agent may either do nothing or finalise the execution by copying
all updates to the shared locations and returning to an idle control state

F. Ferrarotti, K.-D. Schewe, L. Tec, Q. Wang: A unifying logic for non-deterministic, parallel and concurrent

Abstract State Machines. Annals of Mathematics and Artificial Intelligence (2018), to appear

Distributed Adaptive Systems – Theory, Specification, Reasoning 37/44



3.3 Extension: Reflection

• Reflection concerns rules r in the logic, which only appear in formulae of the
form upd(r,X) and upm(r, Ẍ)

• In a non-reflective ASM the main rule is given as part of the specification
and treated as extra-logical constant

• In a reflective ASM the main rule is the value in a location such as self : we
have valS(self ) = rS

• That is, the interpretation of the term self in a state S yields the rule that
is to be applied in S

• As in a reflective ASM the main rule does not change within a single step, we
have to take multiple steps into account
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Predicates for Multiple Steps

• Use two additional predicates r-upd and r-upm with the following informal
meaning:

• r-upd(n,X) means that n steps of the reflective ASM yield the update set
X , where in each step the actual value of self is used

• r-upm(n,X) means that n steps of the reflective ASM yield the update
multiset X

• The proof theory for non-deterministic ASMs used in the completeness proof
defines upd(r,X) and upm(r, Ẍ) for sequence rules

• Inductively define axioms for r-upd and r-upm

• Clearly, we have r-upd(1, X)↔ upd(self , X) and
r-upm(1, Ẍ)↔ upm(self , Ẍ)
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Predicates for Multiple Steps (cont.)

r-upd(n + 1, X)↔
(
r-upd(1, X) ∧ ¬conUSet(X)

)
∨(

∃Y1Y2(r-upd(1, Y1) ∧ conUSet(Y1) ∧ [Y1]r-upd(n, Y2)∧∧
f∈Fdyn

∀xy(X(f, x, y)↔ ((Y1(f, x, y)∧∀z(¬Y2(f, x, z)))∨Y2(f, x, y))))
)

upm(n + 1, Ẍ)↔
(

r-upm(1, Ẍ)∧

∀X
( ∧
f∈Fdyn

∀x1x2(X(f, x1, x2)↔ ∃x3(Ẍ(f, x1, x2, x3))) ∧ ¬conUSet(X)
))
∨(

∃Ÿ1Ÿ2

(
r-upm(1, Ÿ1) ∧ ∀Y1

( ∧
f∈Fdyn

∀x1x2(Y1(f, x1, x2)↔

∃x3(Ÿ1(f, x1, x2, x3))) ∧ conUSet(Y1) ∧ [Y1]r-upm(n, Ÿ2)
)
∧∧

f∈Fdyn
∀x1x2x3

(
Ẍ(f, x1, x2, x3)↔ (Ÿ2(f, x1, x2, x3)∨

(Ÿ1(f, x1, x2, x3) ∧ ∀y2y3(¬Ÿ2(f, x1, y2, y3))))
))
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4 Outlook
Open Issues

• The behavioural theory of distributed adaptive systems still needs to be written
up in an integrated way

• Agents in the theory are assumed to be deterministic; extensions to capture
non-determinism are open

• In particular, the case of unbounded parallelism in combination with un-
bounded choice appears to be at least as challenging as the behavioural
theory of parallel algorithms

• The completeness of the extended logic for concurrent reflective algorithms is
open

• Further extend the theory towards probabilistic choice with arbitrary distribu-
tion (not just equal distribution)

• In all cases the logic needs to be extended by integration probabilistic logic
concepts

Distributed Adaptive Systems – Theory, Specification, Reasoning 41/44



Hybrid Systems

• In hybrid systems the sequential time postulate should become a continuous
time postulate turning runs into continuous functions from R to the set of
states

• Using the usual topology on R, product topology, discrete topology the set
of states can be easily turned into a topological space

• Showing an equivalence to discrete runs (as before) with continuous functions
as values should be possible

• With this equivalence an extension to hybrid ASMs appears to be straight-
forward

• A crucial problem concerns conditions, under which a discretisation of an (ob-
served) continuous function can be used as surrogate for the continuous function
itself

• Concerning the logic it is crucial to integrate functional (such as derivatives),
maybe be looking into higher-order categorical logic
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Complexity

• Specifications in (concurrent, reflective) ASMs may also be exploited for analysing
and classifying complexity

• State of the art in complexity theory still refers to Turing machines

• In descriptive complexity theory many proofs construct logical formulae de-
scribing the behaviour of a particular Turing machine, which could be sim-
plified using ASMs and other rigorous methods

• Complexity classes based on “alternating” Turing machines refer to paral-
lelism

• Alternating sequences of quantifiers in descriptive complexity are closely
linked to the interaction of choice and unbounded parallelism
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Thank you
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