The University of Southampton
Biological Sciences
Phone:
(023) 8059 3436
Email:
A.R.Kraaijeveld@soton.ac.uk

Dr Lex Kraaijeveld Doctoral, PhD

Principal Teaching Fellow in Ecology and Evolution, Director of Programmes (Education), Principal Investigator (Ecology and Evolution)

Dr Lex Kraaijeveld's photo
Related links

Dr Lex Kraaijeveld is a Principal Teaching Fellow in Ecology and Evolution within the Centre for Biological Sciences at the University of Southampton.

Career history

2016-present: Principal Teaching Fellow in Ecology and Evolution. University of Southampton, UK
2014-present: Director of Programmes. University of Southampton, UK.
2006-2016: Lecturer in Ecology and Evolution. University of Southampton, UK.
1996-2005: Postdoctoral Research Fellow. Centre for Population Biology, Imperial College London, Silwood Park, UK.
1994-1996: Postdoctoral Research Associate. Department of Biology, Imperial College London, Silwood Park, UK.

Academic qualifications

1994: PhD. University of Leiden, The Netherlands.

Research

Publications

Teaching

Contact

Research interests

I am interested in the interplay between ecological and evolutionary processes, specifically in the interaction between insects and their parasites or pathogens. A large part of my work uses Drosophila melanogaster and its parasitoids (mostly the braconid Asobara tabida) or pathogens (the entomopathogenic fungus Beauveria bassiana and the microsporidian Tubulinosema kingi) and focuses on the (co)evolution of resistance and counter-resistance.

When Drosophila larvae are attacked by a parasitoid, they can mount a cellular immune reaction against the parasitoid egg which begins with haemocytes aggregating around the egg and, if successful, ends with a melanised (and dead) parasitoid egg. In the field, there is a large amount of genetic variation in the strength of this immune reaction, both between and within populations. One explanation for the existence of so much genetic variation is that resistance is costly. Using artificial selection, we could show that indeed resistance against parasitoids has a cost. Resistance against fungal pathogens is mainly due to a battery of anti-microbial peptides, while the mechanism of resistance against microsporidia is very poorly understood. In both cases, using an experimental evolution approach, we have shown that increased resistance against these pathogens also bears costs.

Additional research interests

I am also interested in exploring what digital organisms can tell us about evolution. After all, all of life on earth essentially represents a sample size of 1. Until we find a way to quickly travel to other planets in search of life, artificial life may be the only way to explore what characteristics might be inherent to life in general as opposed to DNA-based life on earth. I use the TIERRA virtual ecosystem to investigate host-parasite coevolution in digital organisms.

In a completely different field, I am using phylogenetic tools to try and answer the age-old question as to where the game of chess originated: India, China, or somewhere else altogether? Board game rules are not static, but evolve over time as people introduce rule changes. If the game with the new rules increases in popularity, it may drive the old version of the game extinct.

Phd Co-Supervision:
Bethany Shaw: Chronophysiology of Spotted Wing Drosophila, AHDB Horticulture

Research group(s)

Environmental Biosciences

Affiliate research group(s)

Institute for Life Sciences (IfLS), Institute for Complex Systems Simulation (ICSS)

Research project(s)

Diet and immune responses in Drosophila melanogaster

Investigating the effect of nutrition on immunity, using Drosophila melanogaster, its parasites and its pathogens as a model system.

Predictive Adaptive Responses in Drosophila

We study Predictive Adaptive Responses (PARs), using Drosophila melanogaster as a model system, and focusing on diet composition.

Digital life

Computational methods can shed light on evolutionary processes in a way which is not feasible using actual living organsisms.

Evolution of cooperation in microbial biofilms

Bacteria often occur in structured communities in nature, called biofilms, in which they form microcolonies.

Global transcriptomic responses to parasitism

Comparison of genome-wide gene expression of parasitised and unparasitised larvae focuses on genes which play a role in the actual immune response.

Origin and evolution of chess-like board games

This project employs phylogenetic techniques to investigate the origin and subsequent evolution of chess and chess-like board games.

Immunity, neurodegeneration and ageing

Knowing exactly how the nervous system degenerates and becomes more vulnerable with age would further our understanding of how ageing occurs and how to prevent the debilitating neurological effects of ageing.

Physiology, genetics and evolution of predictive adaptive responses in Drosophila

Predictive adaptive responses (PARs) are long-term phenotypic plastic responses, made during development in anticipation of the future adult environment.

Article(s)

Book Section(s)

Conference(s)

Module Co-ordinator

BIOL3010 Topics in Ecology and Evolution
BIOL2001 Evolution

Lecturer

BIOL1004 Patterns of Life
BIOL2001 Evolution
BIOL2004 Pure and Applied Population Ecology
BIOL2008 Quantitative methods in biological and environmental science
BIOL2039 Animal Behaviour
BIOL2038 Microbiology
BIOL3010 Topics in Ecology and Evolution
BIOL3057 Biofilms and Microbial Communities
NATS1004 Independent Learning Skills in Science

Other teaching-related responsibilities

Director of Programmes

Dr Lex Kraaijeveld
Centre for Biological Sciences Faculty of Natural & Environmental Sciences Life Sciences Building 85 University of Southampton Highfield Campus Southampton SO17 1BJ

Room Number: 85/6055

Telephone: (023) 8059 3436
Email: A.R.Kraaijeveld@soton.ac.uk

Share this profileFacebookGoogle+TwitterWeibo

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×