
MATH3017: Mathematical Programming

“Nothing happens in the universe that does not have a sense of either certain maximum or
minimum”– Leonhard Euler, Swiss Mathematician and Physicist, 1707–1783.





About the course

Unlike the title might suggest, this module is not about “programming” (many recent publications
instead use the expression Mathematical Optimization to refer to the topic). But instead, we will be
discussing mathematical problems that can be modeled as a minimization or maximization of a
given function under some constraints. As basic example of problem, imagine a company which
wants to minimize its cost or maximize its profit under a number of constraints, including budget
limitations and salary costs for its employees.

You have probably had some taste of the topic in your first year calculus modules while studying the
Fermat rule, as an application of the notion of derivative. However, the Fermat rule will not be used
in this course as we will be working on optimization problems with constraints, something which is
not taken into account in the Fermat rule. Additionally, we will be dealing with problems involving
only affine linear functions; to be precise, our focus will be on linear programming or linear
optimization. Problems involving nonlinear functions are studied in MATH3016 (Optimization).
Students who have taken MATH2013 (Introduction to Operational Research) will already be
familiar with some of the topics that will be covered in this module. In fact some of the concepts
and methods from MATH2013 will be recalled and extended.

Having taken MATH2014 (Algorithms) could also be an advantage, especially for Chapter
4 (Network problems) and Chapter 5 (Integer programming). A combination of this module
(MATH3017) and the aforementioned ones will allow you to build a strong body of knowledge
in Operational Research, which is one the most attractive areas of mathematics for companies
interested in analytical skills for optimal decision making. The course will also enable you to build
critical knowledge which can be useful in understanding important topics in new and challenging
applications of optimization, including emerging areas such as data science.

Focus here will be on the practical aspects of the concepts and methods, providing a broad taste of
the underlying mathematics. Precisely, in Chapter 1, we will introduce the linear programming
problem and its different forms. Attention will then be given to the graphical approach for solving
problems with two variables. In Chapter 2, we will focus on one of the most powerful methods to
solve linear programming problems, i.e., the simplex method. Next, we will discuss the duality
theory of linear programming and its applications to some specific issues. Also, we will study



the variation of linear programs under some specific types of perturbations on the problem data.
Chapter 4 will be concerned with the applications of linear programming to problems that can be
modeled using networks. There, we will discuss the implementation of a version of the simplex
method tailored to this class of problem. Finally, in Chapter 5, we will study integer programming
problems, i.e., linear programs where the variables are integers. There, most of the attention will be
on applications, links with linear programs and one of the key techniques adapted to this class of
problem, i.e., the branch and bound method.

The students taking this module will also be introduced to a software to solve optimization
problems, namely Xpress-IVE. Two lectures will be devoted to this on March 10th and 17th. We
will also have a tutorial each week (Fridays at 9:00AM) to discuss the exercises that will be given
in the problem sheets. This will also be the ideal opportunity to ask any question on the material to
be discussed in the lectures, though this can also be done during my office hour that will be on
Wednesdays from 13:00 to 14:00. The assessment of the module will be 80% by the final exam,
while 20% will be dedicated to a coursework that you will get in week 5. Further details on key
dates is given on the next page.

The topics covered in the course have been studied in a large number of books and an important
number of them can be found in the university library. As useful reference, I will suggest F.S.
Hillier & G.J. Lieberman, Introduction to Operations Research, 9th Ed. McGraw-Hill, 2010
(available in the Hartley library) and R. Vandrbei, Linear Programming: Foundation and Extension,
4th Ed., Springer 2014 (can be accessed freely online).

How you are going to get feedback: There are various ways you could get feedback on your
progress on the module. As key component, I strongly recommend you to work on the weekly
problems and submit them so that they are marked and help us assess where you are struggling so
that more emphasis is put on that during the tutorials. You will get the problem sheet one week
before the tutorial - they will not be assessed as part of your final mark. But they will help you to
practice all the components of the lectures and also prepare you towards your final exam. You are
also encouraged to come to my office hours to discuss any particular aspect of lectures/material
you might be struggling to understand. No appointment is needed to come to my office hour. But
you can also contact me by email to arrange different meeting times to discuss your difficulties.
Another key element of individual feedback will be based on your coursework assessment. Details
on the submission and feedback release dates are also given in the table on the next page. Finally, I
will also be able to provide some brief element of feedback by email (efforts will be made to reply
to emails by the next working day after reception) if you have any quick questions.
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drafts of the first three chapters and related material.

Instructor
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1. Introduction to linear programming

In this chapter, we start with a few interesting problems that can be modeled by linear programming.
Many other examples can be found in standard text books on optimization; see, e.g., the ones
recommended. We then give a formal definition of a linear programming problem (LP). We finish
this chapter by introducing the graphical method for LPs with just two variables. It will motivate us
to study the simplex method in next chapter.

1.1 Linear programming models

1.1.1 Modeling: examples
� Example 1.1 (Cycle Trade) A manufacturing company makes three products: Bicycles, mopeds,
and child seats. For one period of production, the following data is available:

Bicycles Mopeds Child seats Resource
Unit profit (in £) 125 459 50
Capital (in £) 320 1200 120 100 000
Storage (unit) 0.5 1 0.5 200

The problem is to decide how many units of each of the products should be produced in order to
maximize the total profit. To obtain the model, we use the following steps:

Step 1: Set up the variables: Let x1, x2, and x3 denote the number of bicycles, mopeds, and child
seats to be produced, respectively.

Step 2: Set up the objective function: The profit, which is to be maximized, is

f (x1,x2,x3) := 125x1 +459x2 +50x3.

Step 3: Set up the constraints:
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Constraint 1 (capital): The total cost should be under budget. That is

320x1 +1200x2 +120x3 ≤ 100000.

Constraint 2 (storage): The storage space should not be exceeded. That is

0.5x1 + x2 +0.5x3 ≤ 200.

Constraint 3 (nonnegativity constraints):

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Step 4: Set up the LP problem: Putting together the items above, we have the following model:

maximize f = 125x1 +459x2 +50x3
subject to 320x1 +1200x2 +120x3 ≤ 100000,

0.5x1 + x2 +0.5x3 ≤ 200,
x1 ≥ 0, x2, x3 ≥ 0.

�

� Example 1.2 (Diet Problem) A nutritionist is planning a menu consisting of two main foods A
and B. Each ounce of A contains 2 units of fat, 1 unit of carbohydrate, and 4 units of protein. Each
ounce of B contains 3 units of fat, 3 units of carbohydrates, and 3 units of protein. The nutritionist
wants the meal to provide at least 18 units of fat, at least 12 units of carbohydrate, and at least 24
units of protein. If an ounce of A costs 20 pence and an ounce of B costs 25 pence, how many
ounces of each food should be served to minimize the cost of the meal yet satisfy the nutritionist’s
requirement? Proceeding as above, we successively have the following steps:

Step 1: Set up the variables: Let x1 and x2 denote the number of ounces of food A and B, which
are to be served.

Step 2: Set up the objective function: The cost of the meal, which is to be minimized, is

f (x1,x2) := 20x1 +25x2.

Step 3: Set up the constraints:

Constraint 1: The number of units of fat in the meal is no less than 18:

2x1 +3x2 ≥ 18.

Constraint 2 (carbohydrate constraint):

x1 +3x2 ≥ 12.

Constraint 3 (protein constraint):

4x1 +3x2 ≥ 24.

Constraint 4 (nonnegativity constraint):

x1 ≥ 0, x2 ≥ 0.

Step 4: Set up the LP problem: Finally, we have

minimize f = 20x1 +25x2
subject to 2x1 +3x2 ≥ 18,

x1 +3x2 ≥ 12,
4x1 +3x2 ≥ 24,
x1 ≥ 0, x2 ≥ 0.

�
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1.1.2 Different forms of the problem
Here, we discuss different expressions of the linear programming problem.

The standard form
The following form of the linear programming problem is referred to as the standard form:

maximize z = c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 +a12x2 + · · ·+a1nxn ≤ b1,
a21x1 +a22x2 + · · ·+a2nxn ≤ b2,
...
am1x1 +am2x2 + · · ·+amnxn ≤ bm,
x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.

(1.1)

Common terminologies used in linear programming are as follows:
(a) The function being maximized, c1x1 + . . .+ cnxn, is called the objective function.
(b) The linear inequalities in the restrictions are referred to as constraints. For example, the first

constraint is a11x1 + . . .+a1nxn ≤ b1. There are in total m constraints in problem (1.1).
(c) The constraints x j ≥ 0, j = 1, . . . ,n are often called nonnegativity constraints.
(d) The input constants, ai j, bi, c j (i = 1, . . . ,m, j = 1, . . . ,n), are often referred to as parameters.

They are often called coefficients in the LP. For example, c1 is the coefficient of variable x1
in the objective function.

(e) x1, . . . ,xn are called variables of the LP. n is the number of variables and m is the number of
constraints not including the nonnegativity constraints.

Standard form in matrix-vector format
It is convenient to write linear programming problems in matrix notation. Let

A =


a11 · · · a1n

a21 · · · a2n
...

...
...

am1 · · · amn

 , x =


x1
x2
...

xn

 , b =


b1
b2
...

bm

 and c =


c1
c2
...

cn

 .
We can write the standard linear programming problem as

maximize z = cT x
subject to Ax≤ b,

x≥ 0.
(1.2)

Other forms
Linear programming problems may appear in different forms other than the standard form. But no
matter what forms an LP may be formulated to, it can always be converted into the standard form.
Common forms are the following:

(a) Minimizing rather than maximizing the objective function leads to the same optimal solution.
Precisely, we have the following equivalence:

mincT x ⇐⇒ max−cT x.

(b) Some constraints with a greater-than-or-equal-to inequality: Consider the inequality

ai1x1 +a12x2 + · · ·+ainxn ≥ bi

for some i. This can be converted to a less-than-or-equal-to inequality by multiplying both
sides of the inequality by −1:

−ai1x1−a12x2−·· ·−ainxn ≤−bi.
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(c) Some constraints are in equation form: For a given i, the equality
ai1x1 +a12x2 + · · ·+ainxn = bi

is equivalent to
{

ai1x1 +a12x2 + · · ·+ainxn ≤ bi,
−ai1x1−a12x2−·· ·−ainxn ≤−bi.

(d) If the nonnegativity constraints for some decision variables are absent, we have

xi unrestricted in sign ⇐⇒ xi := xi1− xi2, xi1 ≥ 0, xi2 ≥ 0.

For example, we have

min z = 2x1−3x2
s.t. x1 +2x2 ≥ 10

x1 ≥ 0, x2 is free
⇐⇒

max z′ =−2x1 +3(x3− x4)
s.t. −x1−2(x3− x4)≤−10,

x1 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Generalization: conic linear programming
Before we discuss the graphical method to solve the LP introduce above, we present an interesting
extension of the problem. To proceed, consider let us examine the structure of the standard LP in
(1.2). Then, we have the following mathematical elements:

(i) We have a finite-dimensional space ℜn, the variable x ∈ℜn and the inner product (•) in ℜn

defined for any x and y in ℜn by

x•y = xT y = 〈x,y〉.

The objective function is the inner product of c and x.
(ii) Furthermore, we have the non-negative orthant:

ℜ
n
+ := {x ∈ℜ

n | x≥ 0} .

The non-negative orthant is actually a closed convex cone satisfying the properties:
(P1) If x ∈ℜn

+, then λx ∈ℜn
+ for any λ ≥ 0.

(P2) If x and y both are in ℜn
+, then

x+y ∈ℜ
n
+.

We now have a new formulation of the LP:

maximize z = c•x

subject to ai •x≤ bi, i = 1, . . . ,m,

x ∈C = ℜn
+,

(1.3)

where ai is the ith row vector of A and C is a closed convex set.
From what we have learnt over the past two years, we know that there are many spaces, many
inner products and many types of convex cones. We can supply them to (1.3) and this would lead
to different problems. But they are all linear!. Therefore (1.3) is often called the conic linear
programming.
Replacing the cone C (which is a non-negative orthant in (1.3)) with a different type of cone, we
can get a different class of optimization problem. For example, we have:

� Example 1.3 Let us consider the second-order cone or ice-cream cone in three dimensions:

Q3
+ :=

{
(x1,x2,x3) ∈ℜ

3 |
√

x2
2 + x2

3 ≤ x1

}
.



1.2 Graphical method 5

You can verify that Q3
+ is a closed convex cone. Then, we have the following example of second-

order cone programming (SOCP) problem:

max 2x1 +3x2 + x3
s.t. x1 + x2 + x3 ≤ 10,

(x1,x2,x3) ∈Q3
+.

�

1.2 Graphical method
Before properly going into the graphical method for two variables LPs, we first define the concepts
of solution for problem (1.2).

1.2.1 Terminology for solutions in LP
Standard terminologies for solutions in LP are as follows:

(a) A feasible solution is a point satisfying all the constraints of the problem.
(b) The feasible region is the set of all feasible solutions.
(c) An optimal solution is a feasible solution that maximizes the objective function in (1.2).

Below are representations of the feasible regions of two examples of LPs:

Figure 1.1: Feasible region (shaded) for the con-

straints: x1 ≥ 0, x2 ≥ 0, x1 ≤ 4 and x2 ≤ 4

Figure 1.2: Feasible region (shaded) defined by

x1 ≥ 0, x2 ≥ 0, 4x1 +3x2 ≤ 12 and 2x1 +5x2 ≤ 10

1.2.2 Graphical method
We use the following example to introduce the graphical method:

max z = 12x1 +15x2
s.t. 4x1 +3x2 ≤ 12,

2x1 +5x2 ≤ 10,
x1 ≥ 0, x2 ≥ 0.

(1.4)

Steps of the graphical method for LPs with two variables:
S.1 Draw each constraint on a graph to decide the feasible region.
S.2 Draw the objective function on the graph.
S.3 Decide which corner point yields the largest (the smallest for minimization problem) objective

function value. The corner point is the optimal solution.
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Figure 1.3: Graphical method: The optimal solution of problem (1.4) is x1 = 15/7, x2 = 8/7 with
the optimal objective function value z = 300/7

An important theoretical result comes out of the graphical method is the following.

Theorem 1.2.1 For a linear programming problem, at least one corner point is the optimal
solution provided that the LP has an optimal solution.

Our final result is about a way to construct new optimal solutions from existing ones.

Theorem 1.2.2 If x∗1 and x∗2 are two different optimal solutions of the LP (1.2), then any point
of the form

x∗(ρ) = ρx∗1 +(1−ρ)x∗2 for 0≤ ρ ≤ 1,

is also an optimal solution of the problem.

Proof. Since x∗i for i = 1,2 are optimal solutions, they must give the same objective function value

z∗ = cT x∗i for i = 1,2.

They are also feasible:

x∗i ≥ 0 and Ax∗i ≤ b for i = 1,2.

We prove that for all 0≤ ρ ≤ 1, the point x∗(ρ) is also feasible, i.e.,

x∗(ρ)≥ 0 and Ax∗(ρ) = ρAx∗1 +(1−ρ)Ax∗2 ≤ b

and give the same objective function value for all 0≤ ρ ≤ 1, i.e.,

cT x∗(ρ) = ρcT x∗1 +(1−ρ)cT x∗2 = ρz∗+(1−ρ)z∗ = z∗.

�

1.3 Exercises
1. A general model for the diet problem (Example 1.2). Consider the the following elements:

n The number of possible foods indexed by j = 1,2, . . . ,n
m The number of nutritional categories indexed by i = 1,2, . . . ,m
x j The amount of food j to be included in the diet (measured in number of servings)
p j The cost of one serving of food j
b The minimum daily requirement of nutrient i
Ai j the amount of nutrient i contained in one serving of food j.
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The diet problem is to determine a diet that achieved all the nutritional requirements of the
individual while minimizing the total cost. Find a linear program for the above general model
of the diet problem.

2. A firm produces three types of refined chemicals: A, B. and C. At least 4 tonnes of A, 2
tonnes of B and 1 tonne of C have to be produced each day. The inputs used are compounds
X and Y. Each tonne of X yields 1/4 tonnes of A, 1/4 tonnes of B and 1/12 tonnes of C.
Each tonne of Y yields 1/2 tonnes of A, 1/10 tonnes of B and 1/12 tonnes of C. Compound
X costs £250 per tonne, compound Y costs £400 per tonne. The cost of processing each
tonne of X and Y is £250 and £200 respectively.

(a) Formulate the problem of minimizing the total daily cost as a linear programming
problem.

(b) Find the optimal solution graphically.
3. Convert the following linear programming to the standard form.

min z = 3x1 +4x2 +5x3
s.t. x1 + x2 + x3 = 10,

2x1 + x2 + x3 ≥ 1,
x1 ≥ 0, x2 ≥ 0, x3 is unrestricted.

4. Decide whether the following linear programming problems are feasible. If so, find their
optimal solutions.

(a)


max 2x1 +4x2
s.t. x1 + x2 ≤ 1,

x1 + x2 ≥ 2,
x1 ≥ 0, x2 ≥ 0.

(b)


min y1−2y2
s.t. y1− y2 ≥ 2,

y1− y2 ≥ 4,
y1 ≥ 0, y2 ≥ 0.

(c)


max x1− x2
s.t. x1 + x2 ≥ 1,

2x1−3x2 ≥ 5,
x1 ≥ 0, x2 ≥ 0.

(d)


min −y1−5y2
s.t. −y1−2y2 ≥ 1,

−y1 +3y2 ≥−1,
y1 ≥ 0, y2 ≥ 0.

What conclusion can you draw from the solutions of the problem pair (a) and (b); and of the
pair (c) and (d)?

5*. Let us consider the space of 2×2 symmetric matrices, denoted by S 2:

S 2 =

{
X =

[
X11 X12
X21 X22

]
| X12 = X21

}
.

For example,

X =

[
2 3
3 5

]
belongs to S 2. We now consider all 2× 2 symmetric matrices whose eigenvalues are
non-negative. We collect all of such matrices in the set S 2

+:

S 2
+ =

{
X ∈S 2 | all eigenvalues of X are non-negtaive

}
.

We define an inner product in S 2 by

X •Y = Trace(XY ).

(i) Prove that S 2
+ is a closed convex cone.
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(ii) Now consider the following conic linear programming:

max X11

s.t. I •X ≤ 1,

X ∈S 2
+,

where I is the identity matrix in S 2. Find the optimal solution of the above conic linear
programming problem.



2. The simplex method

In this chapter, we introduce the simplex method in linear programming. The importance of
the method has been well documented in most of textbooks and research papers in Operational
Research. It was ranked one of the top ten methods in the last century by SIAM (the Society of
Industrial and Applied Mathematics). It was one of the first numerical methods tested by the first
generation digital computers in the 1950s. Two variants of the simplex method will be introduced.
The first is the standard simplex method for the standard linear programming problem. The second
called the two-phase simplex method handles the case where it is not possible to start the standard
simplex method.

2.1 Under-determined system of linear equations

2.1.1 An example
We would like to solve the following system of linear equations:{

2x1−3x2 + x3 = 6,

4x1 +5x2 + x4 = 20.
(2.1)

We solve this system for x3 and x4:{
x3 =−2x1 +3x2 +6,

x4 =−4x1−5x2 +20.
(2.2)

In the setting of (2.2), the variables x3 and x4 are called basic variables and the variables are x1
and x2 nonbasic variables. A particular solution is

x1 = x2 = 0, x3 = 6 and x4 = 20.

That is, let the nonbasic variables be zero and the basic variables take the values of the corresponding
constant terms.
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Now we want to change the role of x1 with x3. That is, we want x1 become basic variable and x3
nonbasic. From the first equation of (2.2), we have

x1 =
3
2

x2−
1
2

x3 +3. (2.3)

Substituting it into the second equation of (2.2), we then have

x4 =−11x2 +2x3 +8. (2.4)

The equations in (2.2) can be put in the following tableau:

x1 x2 rhs
x3 = −2 3 6

x4 = −4 −5 20

Equations (2.3) and (2.4) can be put into the following tableau:

x3 x2 rhs
x1 = −1/2 3/2 3

x4 = 2 −11 8

Later in this chapter, we introduce the simplex method based on similar representations of the LPs.

2.1.2 Geometric interpretation
Now let us return to the linear system (equations) considered in the last subsection while including
the the nonnegativity constraints

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0. (2.5)

The (2.1) is equivalent to the following system of inequalities{
2x1−3x2 ≤ 6,

4x1 +5x2 ≤ 20.
(2.6)

We plot its feasible region in Figure 2.1 below.

Figure 2.1: Feasible region of the system (2.6)
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The first solution x with x1 = 0, x2 = 0, x3 = 6, and x4 = 20 corresponds to the corner point (0,0)
of the feasible region. The meaning of x3 = 6 measures how far the constraint 2x1− 3x2 = 6 is
from (0,0). We say that x3 is the slack value of the first constraint. Similarly, x4 is the slack value
of the second constraint.
The second solution x with x1 = 3, x2 = 0, x3 = 0, and x4 = 8 corresponds to the corner point (3,0)
of the feasible region. The slack value x3 is 0, meaning the corner point is on the line of the first
constraint.
Next, we introduce the Jordan exchange that will allow us to move from one corner point to the
adjacent one.

2.2 Jordan exchange
2.2.1 General case∗

Let us generalize the above procedure to the case where there are n independent variables (x1, . . . ,xn)
and m dependent variables (y1, . . . ,ym), i.e.,

yi = Ai1x1 + . . .+Ainxn for i = 1, . . . ,m.

Then, we have the following tableau representation of the system:

x1 · · · xs · · · xn

y1 = A11 · · · A1s · · · A1n
...

...
...

...
...

...
...

yr = Ar1 · · · Ars · · · Arn
...

...
...

...
...

...
...

ym = Am1 · · · Ams · · · Amn

Suppose we want to exchange xs with yr. That is, the dependent variable yr becomes independent,
while xs changes from being independent to being dependent. The process is carried out by the
following three steps:

Step 1: Solve the rth equation

yr = Ar1x1 + . . .+Arsxs + . . .+Arnxn

for xs in terms of yr as well as x1, . . ., xs−1, xs+1, . . ., xn. Assuming Ars 6= 0, this gives

xs =
1

Ars
yr +

n

∑
j=1
j 6=s

−Ar j

Ars
x j. (2.7)

Step 2: Substitute (2.7) into all the remaining equations:

yi =
n

∑
j=1
j 6=s

Ai jx j +Ais

 1
Ars

yr +
n

∑
j=1
j 6=s

−Ar j

Ars
x j


=

n

∑
j=1
j 6=s

(
Ai j−

Ais

Ars

)
x j +

Ais

Ars
yr. (2.8)

Step 3: Write the new system in a new tableau form as follows
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x1 · · · xs−1 yr xs+1 · · · xn

y1 = B11 · · · · · · B1s · · · · · · B1n
...

...
...

...
...

...
...

...
...

yr−1 =
...

...
...

...
...

...
...

xs = Br1 · · · · · · Brs · · · · · · Brn

yr+1 =
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
ym = Bm1 · · · · · · Bms · · · · · · Bmn

with the following relations:

Brs =
1

Ars
(pivot), (2.9)

Br j =
−Ar j

Ars
, ∀ j 6= s (pivot row), (2.10)

Bis =
Ais

Ars
, ∀ i 6= r (pivot column), (2.11)

and

Bi j =

(
Ai j−

Ais

Ars
Ar j

)
= (Ai j−BisAr j) , ∀ i 6= r, j 6= s (other elements). (2.12)

2.2.2 A numerical example
Now we apply the Jordan exchange to the first tableau in of Subsection 2.1.1:

x1 x2 rhs
x3 = −2 3 6

x4 = −4 −5 20

We would like to exchange x1 and x3. That is, x1 to become the basic variable and x3 to become the
non-basic variable. Therefore, the number at the intersection of the x1 column and x3 row is the
pivotal number. We use a box to surround the number −2.

First, we swap the position between x1 and x3. In the new tableau, the pivotal number is replaced
by 1/(−2) and the rest numbers in the pivotal row are replaced by

− old number
pivotal number

=−old number
−2

.

The rest of the numbers in the pivotal column are replaced by

old number
pivotal number

=
old number
−2

.

We get a tableau like this:
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x3 x2 rhs
x1 = −1/2 3/2 3

x4 = 2 x y

There are two numbers to be updated, which are x and y. The formula to calculate x is

x = α−β × γ,

where

α = The number corresponding to x in the old tableau (i.e., α =−5),

β = The number in the new tableau at the intersection of the pivotal column

and the row containing x (i.e., β = 2),

γ = The number in the old tableau at the intersection of the pivotal row

and the column corresponding to x (i.e., γ = 3).

Hence,

x =−5−2×3 =−11.

Similarly, y can be calculated by

y = 20−2×6 = 8.

This leads to the complete new tableau:

x3 x2 rhs
x1 = −1/2 3/2 3

x4 = 2 −11 8

2.3 The simplex method
2.3.1 The phase II procedure

We start the description of the phase II simplex method with a few examples. As first example, we
add an objective function to the linear systems made of (2.5) and (2.6):

� Example 2.1

max z = 3x1 + x2
s.t. 2x1−3x2 ≤ 6,

4x1 +5x2 ≤ 20,
x1 ≥ 0, x2 ≥ 0.

As before, we introduce two slack variables x3 and x4, each for one inequality constraint:

x3 =−2x1 +3x2 +6,

x4 =−4x1−5x2 +20.
(2.13)

Note that the slack values are always nonnegative (the bigger side minus the smaller side). With the
two new variables introduced, the objective function becomes

z = 3x1 + x2 +0x3 +0x4. (2.14)
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We put (2.13) and (2.14) into a tableau:

Tableau 1

x1 x2 rhs
x3 = -2 3 6

x4 = −4 −5 20

z = 3 1 0

R Let us recall the following about the variables:
• x1 and x2 are called nonbasic variables of this tableau (they are independent);
• x3 and x4 are called basic variables of this tableau (they are dependent).

We use the following rules to update to the next (new) tableau:

Rule-1: Choose the entering variable. Select the largest positive number in the z-row (exclud-
ing the right-hand side constant); the corresponding column variable (nonbasic variable) is the
entering variable to the basics. For our example,

x1 is the entering variable.

Rule-2: Choose the leaving variable. Consider the constraint rows only (not including z-row).
Calculate all the ratios between each right-hand constant and its corresponding negative number in
the column under the chosen entering variable x1:

6
−2

= −3 ←

20
−4

= −5

The basic variable corresponding to the largest ratio is the leaving variable. In the case of our
example,

x3 is the leaving variable.

Rule-3: Choose the pivot element. The number at the intersection of the column under the
entering variable and the row corresponding to the leaving variable is the pivot element.
The number is often frame-boxed. In this example, it is −2.

Rule-4: Perform one Jordan exchange at the chosen pivot element to get a new tableau:

Tableau 2

x3 x2 rhs
x1 = −1/2 3/2 3

x4 = 2 -11 8

z = −3/2 11/2 9

Feasible solution to this tableau:

x1 = 3, x2 = 0, x3 = 0, x4 = 8 with z = 9.
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Repeating the 4 rules above to this new tableau, we have

Entering variable: x2;
Leaving variable: x4.

The pivot element is frame-boxed. We do one Jordan exchange to get a new tableau:

Tableau 3

x3 x4 rhs
x1 = −5/22 −3/22 45/11

x2 = 2/11 −1/11 8/11

z = −1/2 −1/2 13

Basic feasible solution from this tableau:

x1 =
45
11

, x2 =
8
11

, x3 = 0, x4 = 0 with z = 13.

There are no positive numbers under the basic variables in the z row in the above tableau. We
cannot repeat the 4 rules above. So stop. An optimal solution is found, which is

x1 =
45
11

, x2 =
8
11

with z = 13.

�

Next, we apply the simplex method to solve the problem in Subsection 1.2.2, where it is solved
using the graphical method.

� Example 2.2 We first start by recalling the problem:

max z = 12x1 +15x2
s.t. 4x1 +3x2 ≤ 12,

2x1 +5x2 ≤ 10,
x1 ≥ 0, x2 ≥ 0.

We then introduce two slack variables x3 and x4, each for one inequality constraint:

x3 =−4x1−3x2 +12,
x4 =−2x1−5x2 +10.

(2.15)

With the two new variables introduced, the objective function becomes

z = 12x1 +15x2 +0x3 +0x4. (2.16)

We put (2.15) and (2.16) into a tableau:
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Tableau 1

x1 x2 rhs
x3 = −4 −3 12

x4 = −2 -5 10

z = 12 15 0

R Similarly to the previous example, we have

• x1 and x2 as nonbasic variables of this tableau (they are independent);
• x3 and x4 as basic variables of this tableau (they are dependent).

Repeating the 4 rules above to this new tableau, it holds that

Entering variable: x2,
Leaving variable: x4.

The pivot element is frame-boxed. Do one Jordan exchange to get a new tableau:
Tableau 2

x1 x4 rhs
x3 = -14/5 3/5 6

x2 = −2/5 −1/5 2

z = 6 −3 30

Feasible solution to this tableau:

x1 = 0, x2 = 2, x3 = 6, x4 = 0, with z = 30.

Repeating the 4 rules above to this new tableau:

Entering variable: x1
Leaving variable: x3

The pivot element is frame-boxed. Do one Jordan exchange to get a new tableau:

Tableau 3

x3 x4 rhs
x1 = −5/14 3/14 15/7

x2 = 1/7 −2/7 8/7

z = −15/7 −12/7 300/7

Feasible solution from this tableau:

x1 =
15
7
, x2 =

8
7
, x3 = 0, x4 = 0, with z =

300
7

.
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There are no positive numbers in the z row in the above tableau. We cannot repeat the 4 rules above.
So stop. An optimal solution is found, which is

x1 =
15
7
, x2 =

8
7

with z =
300

7
.

�

Before we move on, we give one more example that has three variables.

� Example 2.3 Consider the LP with 3 variables:

max z = 60x1 +30x2 +20x3
s. t. 8x1 +6x2 + x3 ≤ 48,

4x1 +2x2 +1.5x3 ≤ 20,
2x1 +1.5x2 +0.5x3 ≤ 8,
x2 ≤ 5,
x1,x2,x3 ≥ 0.

In the following, we leave out some details (e.g., we omit the process of introducing slack variables,
applying the 4 rules to get a new tableau). Hence, we just list the tableaus we need to find the
optimal solution. To proceed, we start with the first tableau:

Tableau 1

x1 x2 x3 rhs
x4 = −8 −6 −1 48

x5 = −4 −2 −1.5 20

x6 = -2 −1.5 −0.5 8

x7 = 0 −1 0 5

z = 60 30 20 0

Tableau 2

x6 x2 x3 rhs
x4 = 4 0 1 16

x5 = 2 1 -0.5 4

x1 = −0.5 −0.75 −0.25 4

x7 = 0 −1 0 5

z = −30 −15 5 240

Tableau 3

x6 x2 x5 rhs
x4 = 8 2 −2 24

x3 = 4 2 −2 8

x1 = −3/2 −5/4 0.5 2

x7 = 0 −1 0 5

z = −10 −5 −10 280
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The optimal solution is the point

(x1,x2,x3) = (2,0,8) with z = 280.

�

Unbounded Case
The above three examples show that the simplex method terminates at an optimal solution. However,
there is a possibility that there exist no negative ratios found in Rule 2. Consequently, the simplex
method will not be able to proceed. When this happens, we can safely claim that the problem
is unbounded from above. We actually can get more valuable information than just claiming the
problem is unbounded. Let us take a look at the following example.

� Example 2.4 Show that the following LP is unbounded from above, and find vectors u and v
such that u+λv is feasible for all λ ≥ 0. Find a feasible point of this form with objective value 98.

max z = 2x1 +3x2− x3
s.t. −x1− x2− x3 ≤ 3,

x1− x2 + x3 ≤ 4,
−x1 + x2 +2x3 ≤ 1,
x1, x2, x3 ≥ 0.

Solution: Let us introduce three slack variables x4, x5, and x6 by

x4 = x1 + x2 + x3 +3
x5 =−x1 + x2− x3 +4
x6 = x1− x2−2x3 +1.

Tableau 1

x1 x2 x3 rhs
x4 = 1 1 1 3

x5 = −1 1 −1 4

x6 = 1 -1 −2 1

z = 2 3 −1 0

Tableau 2

x1 x6 x3 rhs
x4 = 2 −1 −1 4

x5 = 0 −1 −3 5

x2 = 1 −1 −2 1

z = 5 −3 −7 3

According to Rule-1, x1 should be the entering variable. But we cannot find negative numbers in
the x1 column. So we cannot apply Rule-2. Tableau 2 gives a set of feasible points:

x3 = x6 = 0, x1 = λ , and


x4(λ ) = 2λ +4,
x5(λ ) = 5,
x2(λ ) = λ +1,

with λ ≥ 0.
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For the original three variables, we have

x(λ ) =

 λ

λ +1
0

=

 0
1
0

+λ

 1
1
0

 .
So by setting

u =

 0
1
0

 and v =

 1
1
0

 ,
we obtain the direction of unboundedness in the specified form. From Tableau 2, we also have

z = 5λ +3.

Therefore, the value z = 98 is obtained by setting λ = 19. The corresponding value of x is

x = u+19v =

 19
20
0

 .
�

Identify all optimal solutions
The Simplex method described above is able to find an optimal solution or to identify that the
problem is unbounded. Our next question is to identify the whole solution set if the problem has
multiple solutions. As before, we use an example to illustrate the procedure.

� Example 2.5 Find all the solutions of the following linear program:

max z = 4x1 +5x2
s.t. 2x1−3x2 ≤ 6,

4x1 +5x2 ≤ 20,
x1, x2 ≥ 0.

Solution: Let us introduce two slack variables x3 and x4 by

x3 =−2x1 +3x2 +2,
x4 =−4x1−5x2 +20.

Tableau 1

x1 x2 rhs
x3 = −2 3 6

x4 = −4 -5 20

z = 4 5 0
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Tableau 2

x1 x4 rhs
x3 = −22/5 −3/5 18

x2 = −4/5 -1/5 4

z = 0 −1 20

This is an optimal tableau (why?). It tells a system of linear equations:

x3 = −22/5x1 − 3/5x4 + 18,
x2 = −4/5x1 − 1/5x4 + 4,
z = 0x1 − x4 + 20.

The optimal solution is

x1 = 0, x2 = 4, x3 = 18, x4 = 0 with z = 20.

There is more information from the optimal tableau. For example, if we let x4 = 0 and let x1 to
increase, the objective function value does not change at all because the contribution of x1 to the
objective is 0 (look at the objective function in the optimal tableau).
But we cannot increase x1 arbitrarily large. We need to ensure x2 ≥ 0 and x3 ≥ 0. We then have
(note that x4 = 0):

0≤ x2 =−4/5x1 +4 =⇒ x1 ≤ 5 and

0≤ x3 =−22/5x1 +18 =⇒ x1 ≤
45
11

.

Hence, we conclude that if x1 is in the range

0≤ x1 ≤
45
11

,

x2 and x3 both are nonnegative. The objective value is z = 20, which is optimal.
The optimal solutions form a set:{

(x1,x2) 0≤ x1 ≤
45
11

, x2 =−4/5x1 +4
}
.

�

2.3.2 The phase I procedure
Any tableau in the Phase II procedure is called a feasible tableau in the sense that we can read a
special type of feasible point of the linear programming problem. However, it is not always the
case that we can easily start from a feasible tableau. Take a look at the following example.

� Example 2.6 Consider the problem

max z = 3x1 + x2
s.t. 2x1−3x2 ≥ 6,

4x1 +5x2 ≤ 20,
x1 ≥ 0, x2 ≥ 0.

Like before, we introduce slack variables

x3 = 2x1−3x2−6,
x4 = −4x1−5x2 +20.
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If we let x1 = x2 = 0, then x3 =−6 and x4 = 20 (x1 violates the nonnegativity requirement for the
slack variables). One way to remedy this problem is to add a big (positive) number (denoted by x0)
to −6 to make it positive, leading to

x3 = 2x1−3x2 + x0−6.

Now treat x0 ≥ 0 as a new variable and solve the following auxiliary problem:

max z0 =−x0
s.t. x3 = 2x1−3x2 + x0−6,

x4 =−4x1−5x2 +20,
xi ≥ 0, i = 0,1,2,3,4.

(2.17)

We would like to solve the auxiliary problem (2.17) by the simplex method (Phase-II):

Tableau 0

x1 x2 x0 rhs
x3 = 2 −3 1 −6

x4 = −4 −5 0 20

z = 3 1 0 0

z0 = 0 0 −1 0

Special pivot in the phase I procedure:
• (Rule-1′) Choose x0 as the entering variable.
• (Rule-2′) Choose the most negative number in the rhs column. The corresponding row

variable is the leaving variable.
• (Rule-3′) The number at the intersection is the pivot element.
• (Rule-4′) Perform Jordan exchange at the pivot element.

This leads to the following tableau:

Tableau 1

x1 x2 x3 rhs
x0 = -2 3 1 6

x4 = −4 −5 0 20

z = 3 1 0 0

z0 = 2 −3 −1 −6

Apply phase II simplex method to Tableau 1 with respect to the objective function z0 and we get

Tableau 2

x0 x2 x3 rhs
x1 = −1/2 3/2 1/2 3

x4 = 2 −11 −2 8

z = −3/2 11/2 3/2 9

z0 = −1 0 0 0

The following information is revealed by Tableau 2:
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• All coefficients in z0 are non-positive. Phase II procedure should stop and the auxiliary
problem is solved.
• x0 is a non-basic variable, which means x0 takes value 0.
• The objective value of z0 is also 0.

Strike out the x0 column as well as the z0 row to get a new tableau:

Tableau 3

x2 x3 rhs
x1 = 3/2 1/2 3

x4 = -11 −2 8

z = 11/2 3/2 9

The procedure up to here is called phase I procedure. Tableau 3 provides an initial BFS for the
original problem. Continue to Phase-II procedure with the objective z. This tableau is not optimal,
we need to carry out the phase II simplex method:

Tableau 4: x2 entering and x4 leaving:

x4 x3 rhs
x1 = -3/22 5/22 45/11

x2 = −1/11 -2/11 8/11

z = −1/2 1/2 13

Tableau 5: x2 leaving and x3 entering:

x4 x2 rhs
x1 = −1/4 −5/4 5

x3 = −1/2 −11/2 4

z = −3/4 −11/4 15

All variable coefficients in z-row are non-negative. Stop. Phase-II is complete. We have found an
optimal solution to the original problem:

x1 = 5, x2 = 0 with z = 14.

�

Phase I and phase II combined together is called two-phase simplex method and is capable of
solving any type of linear programming problems.

R The following remarks are very useful in understanding the two phase simplex method:
(R1) If the right-hand-side of the original problem is not all positive (i.e., there is a negative

constant), then we have to use phase I simplex method to find an initial feasible tableau
for the original problem. Otherwise, phase II simplex method is sufficient for the
original problem.

(R2) When the Phase I simplex method is needed. A new problem is constructed and this
problem is called an auxiliary problem.

(R3) A special pivot has to be executed at the beginning of the phase I simplex method.
(R4) If at the final tableau of phase I method, the optimal value z0 < 0, then the original

problem has no feasible solution. If z0 = 0, then strike out the x0 column and z0 row to
get a new tableau, which is a feasible tableau for the original problem. From this new
tableau, phase II simplex method can be used.
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(R5) The procedure that uses phase I and phase II simplex methods is called two-phase
simplex method.

2.3.3 Finite termination and complexity
Basic feasible solutions

The concept is best introduced with the canonical form of LP:

max z = cT x

s.t. A x = b, x≥ 0,
(2.18)

where c,x ∈ℜ`, b ∈ℜm, and A ∈ℜm×` (we often let n := `−m).

Definition 2.3.1 Given A ∈ℜm×`, consider the column submatrix AB for some subset
B⊆ {1,2, . . . , `}. If AB is invertible, it is called a basis matrix.

� Example 2.7 Consider LP in the standard form:

max z = c̄T x
s.t. Ax≤ b, x≥ 0,

(2.19)

where A ∈ℜm×n, x, c̄ ∈ℜn, and b ∈ℜm.
By introducing slack variables xn+1, . . . ,xn+m, we have

A

 x1
...

xn

+ I

 xn+1
...

xn+m

= b.

Let the parameters c and A be respectively defined by

c =
[

c̄
0

]
and A = [A, I].

It follows that the standard form can be rewritten in the canonical form. An obvious basis matrix is
when B = {n+1, . . . ,n+m} and AB = I, which is obviously nonsingular. �

Suppose we have a basis matrix AB. Then the equation in problem (2.18) can be written as

ANxN +ABxB = b,

where N := {1,2, . . . , `}\B and xN is the subvector of x consisting those elements belonging to B.
This equation gives

xB =−A −1
B ANxN +A −1

B b. (2.20)

If we let xN = 0 in (2.20), we arrive at a particular solution:

(
xB

xN

)
=

(
(AB)

−1b
0

)
. (2.21)
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Definition 2.3.2 Any point of the form (2.21) is called a basic solution of problem (2.18). If If
(AB)

−1b≥ 0, it is called a basic feasible solution (BFS).

Note that the columns of A corresponding to the basic variables xB (i.e., the columns in AB) are
linearly independent.

� Example 2.8 Consider a linear programming of (2.18) with

A =

[
−1 2 2
0 1 0

]
, b =

[
3
0

]
.

Find all the basic solutions as well as all the basic feasible solutions.
Answer: Possible basis matrices are[

−1 2
0 1

]
and

[
2 2
1 0

]
.

The corresponding basic solutions are −3
0
0

 and

 0
0
3
2

 ,
of which the latter is the only basic feasible solution. �

The simplex method moves from one BFS to another BFS. This gives us the following results.

Theorem 2.3.1 If the simplex method fails to terminate, then it must cycle.

Proof. There are at most n!/(m!(n−m)!) of choosing m basic variables from n. Thus, if the
Simplex method fails to terminate, then some basis appears in two different iterations. The above
analysis shows that these tableaus are identical, and cycling occurs. �

Theorem 2.3.2 For any linear programming problem,
(a) if it has no optimal solution, it is either infeasible or unbounded,
(b) if it is feasible, then it has a basic feasible solution,
(c) if it has an optimal solution, then it has a basic optimal solution.

Proof. Phase I of the simplex method either finds that the problem is infeasible, or it produce a
basic feasible solution. Phase-II either finds that the problem is unbounded, or it produces a basic
optimal solution. �

Beale’s example and Bland’s rule

We once again consider the standard problem (2.19). Suppose we have a BFS x, which must have
the form

x =
[

xB

0

]
.

Recall for a BFS, xB ≥ 0. If, furthermore, each of the components of xB is positive (i.e, xB > 0) x is
said nondegenerate. Otherwise it is said degenerate. An LP is nondegenerate if all of its basic
feasible solutions are nondegenerate.



2.3 The simplex method 25

� Example 2.9 (Degenerate example)

max z = 3x1 +5x2
s.t. 2x1 +3x2 ≤ 6,

x1 +2x2 ≤ 4,
x1,x2 ≥ 0.

BASIC BASIC FS COMMENT z
x1,x2 (0,2,0,0) Degenerate 10
x1,x4 (3,0,0,1) Nondegenerate 9
x2,x3 (0,2,0,0) Degenerate 10
x2,x4 (0,2,0,0) Degenerate 10
x3,x4 (0,0,6,4) Nondegenerate 0

�

For nondegenerate LPs, no cycling can occur. But for degenerate problems, it can happen.

� Example 2.10 (Beale’s example)

max z = 3/4x1−150x2 +1/50x3−6x4
s.t. 1/4x1−60x2−1/25x3 +9x4 ≤ 0,

1/2x1−90x2−1/50x3 +3x4 ≤ 0,
x3 ≤ 1,
x1,x2,x3,x4 ≥ 0.

Pivot column: Based on the largest coefficient in the z-row

Pivot row: When there are equal ratios, select the one nearest the top of the tableau.

The following bases are generated:

x5 x1 x1 x3 x3 x5 x5
x6 x6 x2 x2 x4 x4 x6
x7 x7 x7 x7 x7 x7 x7

Smallest subscript pivoting rule (Bland):
(Rb-1) Pivot column: From all the variables whose corresponding coefficients are positive in the

z-row, choose the one with the smallest subscript.
(Rb-2) Pivot row: When there are equal ratios, select the one containing a basic variable with the

smallest subscript.
(Rb-3) The number at the intersection is the pivot element.
(Rb-4) Perform Jordan exchange at the pivot element.

Bland shows that this method avoids cycling. �

Klee-Minty’s example and Smale’s average complexity
The well-known Klee-Minty example is a problem with a large number of iterations.

� Example 2.11 (Klee-Minty example) Consider the problem

max z = ∑
n
j=1 10n− jx j

s.t. 2∑
i−1
j=1 10i− jx j + xi ≤ 100i−1, i = 1, . . . ,n,

x j ≥ 0, j = 1, . . . ,n.
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The optimal solution is:

x1 = . . .= xn−1 = 0, xn = 100n−1.

Using the “text book” pivoting rule, 2n tableaus are generated (2n corresponds to an exponential
complexity). For n = 3, the problem above becomes

max z = 100x1 +10x2 + x3
s.t. x1 ≤ 1,

20x1 + x2 ≤ 100,
200x1 +20x2 + x3 ≤ 10000,
x1, x2, x3 ≥ 0.

Base in successive tableaus are (they are total 23 = 8 iterations):

x4 x1 x1 x4 x4 x1 x1 x4
x5 x5 x2 x2 x2 x2 x4 x5
x6 x6 x6 x3 x3 x3 x3 x3

This Klee-Minty problem shows that in the worst case the Simplex method takes as many as 2n

iterations (exponential time) to find a solution. However, extensive computation shows that it works
well on average. So one has to answer the question: Why does the Simplex method work efficiently
in practice? It took a Fields Medalist’s effort to answer this question. Steve Smale in his 1983
paper (S. Smale, On the average number of steps of the Simplex method for linear programming.
Mathematical Programming 27 (1983), pp. 241–262) shows that for a random problem with m
constraints the number of the iterations grows in proportion to n, the number of variables. �

2.4 Exercises

1. Consider the problem

max z = cT x
s.t. Ax≤ b, x≥ 0,

with the parameters respectively defined by

A =


0 1
1 1
1 −2
−1 1

 , b =


5
9
0
3

 and c =
[

1
2

]
.

(i) Solve the problem graphically.
(ii) Solve the problem by the Simplex method. In addition, trace the path that the Simplex

method takes on your figure.
2. Solve the following problem by the Simplex method.

max z = 6x1 +5x2− x3 +4x4
s.t. 3x1 +2x2−3x3 + x4 ≤ 120,

3x1 +3x2 + x3 +3x4 ≤ 180,
x j ≥ 0, j = 1,2,3,4.
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3. Show that the following LP is unbounded from above, and find vectors u and v such that
u+λv is feasible for all λ ≥ 0. Find a feasible point of this form with objective value 120:

max z = 3x1 +2x2− x3
s.t. −x1− x2− x3 ≤ 3,

−x1 + x2 + x3 ≤ 4,
x1− x2 +2x3 ≤ 1,
x1, x2, x3 ≥ 0.

4. Consider the following problem:

max z = x1 + x2 + x3 + x4,
s.t. x1 + x2 ≤ 10,

x3 + x4 ≤ 15,
x j ≥ 0, j = 1,2,3,4.

Use the simplex method to find all the optimal solutions.
5. Solve the following linear programming problem by the two phase simplex method:

max z = 2x1 + x2
s.t. x1 +2x2 ≤ 3,

4x1 +3x2 ≥ 3,
x1 ≥ 0, x2 ≥ 0.

6. Solve the following linear programming problem by the two phase simplex method:

max z = 2x1 + x2
s.t. x1 +2x2 ≤ 3,

3x1 + x2 = 6,
4x1 +3x2 ≥ 3,
x1 ≥ 0, x2 ≥ 0.





3. Duality theory and sensitivity analysis

In this chapter, we study the dual problem in linear programming. It is a common question that we
often ask ourselves when we study a new problem: Does it have a dual form? If yes, we would
like to know whether it has a number of appealing properties. For instance, the dual problem of
a linear programming problem is still a linear programming problem; the dual form of the dual
problem is the original problem; the solution of the dual problem has some relationship with that of
the original problem. In order to describe those relationships, we often call the original problem the
primal problem so that we are sure which problem we are referring to. The first task is to investigate
what form the dual problem should take given that the primal problem is known.

3.1 The dual problem
3.1.1 Mathematical derivation

Let us start with an example:

max z = x1 +2x2 + x3
s.t. 2x1 + x2− x3 ≤ 2,

4x1 + x2 + x3 ≤ 6,
x1,x2,x3 ≥ 0.

(3.1)

We denote the optimal objective function value by z∗. Then it is easy to see that any feasible
solution provides a lower bound for z∗. For example, the point x with

x1 = 0, x2 = 2, x3 = 0

gives a lower bound

x1 +2x2 + x3 = 4≤ z∗.

We can derive an upper bound. Using the second constraint,

z∗ = max{x1 +2x2 + x3},
≤ max{2(4x1 + x2 + x3)} ≤ 2×6 = 12.
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So, 12 is an upper bound. We may obtain a tighter bound using both constraints

z∗ = max{x1 +2x2 + x3},

≤ max
{

1
2
(2x1 + x2− x3)+

3
2
(4x1 + x2 + x3)

}
,

≤ 1
2
×2+

3
2
×6 = 10.

Thus, an improved bound is 10. To obtain the best upper bound using this technique, using
multipliers y1 and y2 of the two constraints, where

y1 ≥ 0, y2 ≥ 0. (3.2)

The chain of (in)equalities

z∗ = max{x1 +2x2 + x3}
≤ max{y1(2x1 + x2− x3)+ y2(4x1 + x2 + x3)}
≤ 2y1 +6y2

is valid provided that

2y1 +4y2 ≥ 1, (3.3)

y1 + y2 ≥ 2, (3.4)

−y1 + y2 ≥ 1. (3.5)

The best upper bound is obtained if we solve

min 2y1 +6y2
s.t. (3.2), (3.3), (3.4), (3.5).

(3.6)

Table 3.1: Relations between primal and dual problems

Problem (3.1) Relationships Problem (3.6)

Maximization =⇒ Minimization

Objective coefficients =⇒ Right hand side constants

Right hand side constants =⇒ Objective coefficients

Matrix of =⇒ Transpose of Matrix of

constraint coefficients constraint coefficients

≤ constraint type =⇒ Non-negativity of variables

Non-negativity of variables =⇒ ≥ constraint type

Problem (3.1) and problem (3.6) have striking physical symmetry, which can be clearly seen if we
put them into the matrix-vector format. To proceed, let

A =

[
2 1 −1
4 1 1

]
, b =

[
2
6

]
, c =

 1
2
1

 , x =

 x1
x2
x3

 , y =

[
y1
y2

]
.
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Then problem (3.1) and problem (3.6) respectively have the forms

(Primal problem)


max z = cT x
s.t. Ax≤ b

x≥ 0
and

min ω = bT y
s.t. AT y≥ c

y≥ 0

 (Dual problem).

Let us now consider the general problems, where

A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 , b =

 b1
...

bm

 , c =

 c1
...

cn

 , x =

 x1
...

xn

 , y =

 y1
...

ym

 .
Definition 3.1.1 We call the linear programming problem

max z = cT x
s.t. Ax≤ b

x≥ 0
(3.7)

the primal problem and call the following problem obtained by following the rules in Table 3.1

min ω = bT y
s.t. AT y≥ c

y≥ 0
(3.8)

the dual problem.

We note that the number of the dual variables (i.e., m) equals the number of the inequality constraints
in the primal problem. We have the following interesting result.

Theorem 3.1.1 The dual of the dual is the primal.

Proof. Considering (3.7), its dual (3.8) can be put in the max form

max −bT y
s.t. −AT y≤−c,

y≥ 0.

The dual of the latter problem according to Table 3.1 is

min −cT x
s.t. −Ax≥−b,

x≥ 0,

which is equivalent to

max cT x
s.t. Ax≤ b,

x≥ 0.

The is exactly the primal problem. �

In view of Theorem 3.1.1, the words primal and dual are used interchangeably. This justifies the
following definition.
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Definition 3.1.2 Consider the following two problems
max z = cT x
s.t. Ax≤ b

x≥ 0

∣∣∣ min ω = bT y
s.t. AT y≥ c

y≥ 0

 .

We call one of the two problems the primal problem and the other its dual problem. By
convention, the original problem is often called the primal problem.

In this course, we always call the maximization problem the primal problem.

3.1.2 Dealing with equality constraints
We may have noticed that the rules in Table 3.1 only apply to the standard linear programming
problem. It cannot be applied directly to problems with equality constraints. But we already know
that through simple operations, any form of the linear programming problem can be put into the
standard form. We work with an example to see what form the dual problem appears when the
equality constraints are present.

� Example 3.1 Suppose we have the following LP with equality constraints:

max z = cT x
s.t. A1x≤ b,

A2x = b̄,
x≥ 0,

with A1 ∈ℜm1×n, A2 ∈ℜm2×n, b ∈ℜm1 and b̄ ∈ℜm2 . We want to find its dual problem.
To proceed, we can write the constraints in the equivalent form: A1

A2
−A2

x≤

 b
b̄
−b̄

 .
Let u,v, v̄ denote vectors of dual variables. According to the rules in Table 3.1 the dual problem is

min ω = bT u+ b̄v− b̄v̄,
s.t. AT

1 u+AT
2 v−AT

2 v̄≥ c,
u,v, v̄≥ 0.

Let w = v− v̄. Then the dual problem can be written as

min ω = bT u+ b̄w
s.t. AT

1 u+AT
2 w≥ c,

u≥ 0.

�

We can observe that the dual variable for the equality constraint is free. Therefore, we have a new
rule concerning the equality constraints:

Table 3.2: Relations between primal and dual problems

Primal problem Relationships Dual problem

= constraint type =⇒ Free variables
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� Example 3.2 The dual of the problem

max z = 2x1 + x2
s.t. x1 +2x2 ≤ 3,

3x1 + x2 = 6,
4x1 +3x2 ≥ 3, −→ −4x1−3x2 ≤−3,
x1 ≥ 0, x2 ≥ 0,

is

min ω = 3y1 +6y2−3y3
s.t. y1 +3y2−4y3 ≥ 2,

2y1 + y2−3y3 ≥ 1,
y1 ≥ 0, y3 ≥ 0.

Note that y2 is a free variable (no restrictions). �

3.2 Links with the primal problem and applications
In this section, we discuss the relationships between the primal and dual problems, and highlight
some applications on the simplex method and other properties.

3.2.1 From primal to dual optimal solution
Let us consider the following example.

� Example 3.3 Solve the following linear program using the simplex method:

max z = x1 +2x2 + x3
s.t. 2x1 + x2− x3 ≤ 2,

4x1 + x2 + x3 ≤ 6,
x1, x2, x3 ≥ 0.

We would like to formulate the dual of this problem and read off an optimal solution of the dual
problem from the final tableau.
The dual of this problem is

min ω = 2y1 +6y2
s.t. 2y1 +4y2 ≥ 1,

y1 + y2 ≥ 2,
−y1 + y2 ≥ 1,
y1, y2 ≥ 0.

This is a standard LP. After introducing slack variables, we have our initial feasible tableau, which
also represents the dual problem after introducing the dual slack variables.
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Tableau 1

−y3 = −y4 = −y5 = w =
x1 x2 x3 rhs

y1 x4 = −2 −1 1 2

y2 x5 = −4 −1 −1 6

rhs z = 1 2 1 0

Tableau 2

−y3 = −y1 = −y5 = w =
x1 x4 x3 rhs

y4 x2 = −2 −1 1 2

y2 x5 = −2 1 −2 4

rhs z = −3 −2 3 4

Tableau 3 (Optimal tableau)

−y3 = −y1 = −y2 = w =
x1 x4 x5 rhs

y4 x2 = −3 −1/2 −1/2 4

y5 x3 = −1 1/2 −1/2 2

rhs z = −6 −1/2 −3/2 10

Therefore, an optimal solution for the primal problem is:

x1 = 0, x2 = 4, x3 = 2 with z∗ = 10.

The dual optimal solution can be read from the final tableau:

y1 = 1/2 and y2 = 3/2.

The resulting dual objective value is

ω = 2× 1
2
+6× 3

2
= 10 = z∗.

The weak duality theorem stated in the next section ensures that we read the dual optimal solution
correctly. �

We now demonstrate why the objective function in the final tableau contains valuable solution
information for the dual problem. We would like to discuss it on general terms.
Let us consider the general primal problem

max z = cT x
s.t. Ax≤ b,

x≥ 0,

with the matrix A ∈ℜm×n. We assume (without loss of any generality) that we have b≥ 0. The
initial feasible tableau of the problem is:
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Tableau-P

x1 x2 · · · xn rhs
xn+1 = −A11 −A12 · · · −A1n b1

... =
...

...
...

...
...

xn+m = −Am1 −Am2 · · · −Amn bm

z = c1 c2 · · · cn 0

Now consider the dual problem

min ω = bT y
s.t. −AT y≤−c,

y≥ 0.

This problem can be put into a tableau:

Tableau-D

ym+1 = ym+2 = · · · ym+n = ω =
y1 A11 A21 · · · Am1 b1

...
...

...
...

...
...

ym A1n A2n · · · Amn bm

rhs −c1 −c2 · · · −cn 0

Tableau-P and Tableau-D can be put into one tableau.

Tableau-U

−ym+1 = −ym+2 = · · · −ym+n = ω =
x1 x2 · · · xn rhs

y1 xn+1 = −A11 −A12 · · · −A1n b1

...
... =

...
...

...
...

...

ym xn+m = −Am1 −Am2 · · · −Amn bm

rhs z = c1 c2 · · · cn 0

We note the correspondence of the primal and dual variables in this Tableau-U.

(primal variables)


x1 ↔ ym+1
x2 ↔ ym+2
...

...
...

xn ↔ ym+n

 (dual slack variables) (3.9)

and

(primal slack variables)


xn+1 ↔ y1
xn+2 ↔ y2

...
...

...
xn+m ↔ ym

 (dual variables) (3.10)
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After a sequence of Jordan exchanges from Tableau-P (exchanges of basic and nonbasic variables)
we arrive at the following tableau:

Tableau-O (Optimal tableau)

−yB̂ = ω =
xN rhs

yN̂ xB = H h

rhs z = p α

It follows from this optimal tableau (for the primal problem) that x with

xB = h≥ 0, xN = 0,

is an optimal solution and p≤ 0, z = α .

It is also obvious that x with

yB̂ =−p≥ 0, yN̂ = 0 (3.11)

is a feasible solution to the dual problem. Moreover, the objective function value is

ω = α.

By the weak duality theorem stated below, we know that (3.11) is an optimal solution of the dual
problem. The final hurdles is to find the indexes of B̂ by

B̂ ↔ N (through the relationship (3.9) and (3.10)).

The technique developed above also leads to the so-called Dual Simplex Method, which we describe
below.

3.2.2 Dual simplex method
Let us consider the primal-dual pair

(Primal)


max z = cT x
s.t. Ax≤ b

x≥ 0
|

min ω = bT y
s.t. −AT y≤−c

y≥ 0

 (Dual)

Adding primal slack variables xn+1, . . . ,xn+m and dual slack variables ym+1, . . . ,ym+n, we obtain:

Tableau-U

−ym+1 = −ym+2 = · · · −ym+n = ω =
x1 x2 · · · xn rhs

y1 xn+1 = −A11 −A12 · · · −A1n b1

...
... =

...
...

...
...

...

ym xn+m = −Am1 −Am2 · · · −Amn bm

rhs z = c1 c2 · · · cn 0
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This tableau is a special case of the general tableau:

Tableau-G

−yB̂ = ω =
xN rhs

yN̂ xB = H h

rhs z = pT α

where the sets b and N form a partition of {1,2, . . . ,n+m} (containing m and n indices respectively),
while the sets B̂ and N̂ for a partition of {1,2, . . . ,n+m} (containing n and m indices respectively).
The initial tableau above has B = {n+1, . . . ,n+m} and B̂ = {m+1, . . . ,m+n}.
To proceed with the description of the dual simplex method, we make the following assumption:

p≤ 0.

Then, for the Tableau-G, we have the following key rules for the dual simplex method:
(Step 1) (Pivot row selection): The pivot row is any r with hr < 0. If none exist, the current tableau is

dual optimal.
(Step 2) (Pivot column selection): The pivot column is any column s such that

ps

Hrs
= max

j

{
p j/Hr j | Hr j > 0

}
.

If Hr j ≤ 0 for all j, the dual objective is unbounded below.
We now illustrate the method with the following example:

� Example 3.4 Use the dual Simplex method to solve the following problem:

max −x1− x2
s.t. 3x1 + x2 ≥ 2,

3x1 +4x2 ≥ 5,
4x1 +2x2 ≥ 8,
x1 ≥ 0, x2 ≥ 0.

The initial tableau is obtained as

Tableau 1

−y4 = −y5 = w =
x1 x2 rhs

y1 x3 = 3 1 −2

y2 x4 = 3 4 −5

y3 x5 = 4 2 −8

rhs z = −1 −1 0

x5 (y3) – is the leaving (entering) variable,
x1 (y4) – is the entering (leaving variable.

Hence, the second tableau follows as
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Tableau 2

−y3 = −y5 = w =
x5 x2 rhs

y1 x3 = 3/4 −1/2 4

y2 x4 = 3/4 5/2 1

y4 x1 = 1/4 −1/2 2

rhs z = −1/4 −1/2 −2

The primal optimal solution is

x1 = 2,x2 = 0 with z =−2

and the dual optimal solution is

y1 = y2 = 0, y3 = 1/4 with w =−2.

�

R Note that if the primal simplex method were employed, we would have had to apply a phase I
procedure first, and the computational effort would have been greater.

The dual simplex method is often used in the situation illustrated in the following example.

� Example 3.5 (i) First solve the following problem using the simplex method:

max 2x1 +3x2 +2x3
s.t. x1 +2x2 +4x3 ≤ 8,

2x1 + x2 + x3 ≤ 6,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(ii) Next, the following new constraint is added to the above problem:

x1 + x3 ≥ 3.

Then we would like to find an optimal solution to the new problem.

To solve the question, we first start with (i), by introducing two slack variables x4 and x5. Then, we
have as initial tableau

Tableau 1

x1 x2 x3 rhs
x4 = −1 −2 −4 8

x5 = −2 −1 −1 6

z = 2 3 2 0
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Tableau 2

x1 x4 x3 rhs
x2 = −1/2 −1/2 −2 4

x5 = −3/2 1/2 1 2

z = 1/2 −3/2 −4 12

Tableau 3

x5 x4 x3 rhs
x2 = 1/3 −2/3 −7/3 10/3

x1 = −2/3 1/3 2/3 4/3

z = −1/3 −4/3 −11/3 38/3

The optimal solution is

x1 =
4
3
, x2 =

10
3
, x3 = 0, z =

38
3
.

Now we proceed it (ii), by adding the new constraint. Introduce a new slack variable x6 and express
it in terms of the nonbasic variables:

x6 = x1 + x3−3

= −2
3

x5 +
1
3

x4 +
2
3

x3 +
4
3
+ x3−3

= −2
3

x5 +
1
3

x4 +
5
3

x3−
5
3
.

Append this equation to the final optimal tableau in (ii) we have

Tableau 4

x5 x4 x3 rhs
x2 = 1/3 −2/3 −7/3 10/3

x1 = −2/3 1/3 2/3 4/3

x6 = −2/3 1/3 5/3 −5/3

z = −1/3 −4/3 −11/3 38/3
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Tableau 5

x5 x4 x6 rhs
x2 = −3/5 −1/5 −7/5 1

x1 = −2/5 1/5 2/5 2

x3 = 2/5 −1/5 3/5 1

z = −9/5 −3 −11/5 9

The optimal solution is

x1 = 2, x2 = 1, x3 = 1, z = 9.

�

3.2.3 The weak and strong theorems in duality theory
Let us consider the primal and the dual problems:

Primal problem Dual problem

max z = cT x min ω = bT y
s.t. Ax≤ b s.t. AT y≥ c

x≥ 0 y≥ 0

Let x and y be feasible solutions of the primal and dual problems respectively. Then

z = cT x≤ yT Ax≤ yT b = ω.

The gives the following so-called weak duality theorem:

Theorem 3.2.1 (Weak duality theorem) Suppose x and y are the feasible solutions of the
primal and dual problems respectively. Then, we must have

z = cT x≤ bT y = ω.

That is, we always have

z∗ ≤ ω
∗,

where z∗ is the optimal objective function value of the primal problem and ω∗ is the optimal
objective function value of the dual problem.

We now discuss one of the most fundamental theorems of linear programming.

Theorem 3.2.2 (Strong duality theorem)
(a) Both primal and dual problems are feasible and consequently both have optimal solutions

with equal extrema.
(b) Exactly one of the problems is infeasible and consequently the problem has an unbounded

objective function.
(c) Both primal and dual problems are infeasible.

Proof. (a) This has been proved in the previous section.
(b) Consider the case in which exactly one of the problems is infeasible. Suppose that the other prob-
lem has a bounded objective. The the simplex method with the smallest-subscript rule (Bland’s rule)
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will terminate at a primal-dual optimal tableau (Tableau-O in the previous section), contradicting
infeasibility. Hence, the feasible problem cannot have a bounded objective.
(c) We can illustrate this case by setting A = 0, b =−1 and c = 1. �

3.2.4 Applications of duality
Farkas Lemma
The Farkas Lemma is often used in linear programming to prove the strong duality theorem. In
this section, we show how one can prove the Farkas Lemma from the strong duality. The Farkas
Lemma is well known in dealing with linear equations and is in fact an example of a theorem of the
alternative.

Let us consider n points a1,a2, . . . ,an, in ℜm. We collect them in the matrix

A = [a1, a2, . . . ,an].

We consider the set C spanned by those points in the following way:

C = {x1a1 + x2a2 + · · ·+ xnan | x1 ≥ 0, x2 ≥ 0, . . . ,xn ≥ 0}
= {Ax | x≥ 0} .

Suppose there exists another point b ∈ℜm. Then exactly one of the following two claims is true:
(I’) b ∈ C .

(II’) There exists a vector 0 6= y ∈ℜm, which defines the hyperplane

H := {v ∈ℜ
m | 〈y, v〉= 0} ,

such that b is on the negative side of H and C is on the positive side of H.
The claim (II’) is an example of a separation theorem. The above two claims are actually the
content of the Farkas Lemma:

Theorem 3.2.3 (Farkas Lemma) Let A∈ℜm×n and b∈ℜm. Then exactly one of the following
systems has a solution.

(I) Ax = b and x≥ 0.
(II) AT y≥ 0 and 〈b,y〉< 0.

Proof. Consider the linear program:

max 〈0, x〉
s.t. Ax = b, x≥ 0

(3.12)

and its dual problem

min 〈b, y〉
s.t. AT y≥ 0.

(3.13)

If (I) has a solution, then any feasible point of (I) is an optimal solution of the primal problem (3.12)
with the optimal objective being 0. According to the strong duality theorem, we must have that the
optimal objective of the dual problem is also 0, which means

〈b, y〉 ≥ 0, AT y≥ 0.

Hence 〈b,y〉< 0 is not possible for any y satisfying AT y≥ 0. That is, (II) cannot not hold.
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Now suppose (I) does not hold. Then the primal problem is infeasible. The strong duality theorem
says that the dual problem is unbounded from below. This means that there exists y ∈ℜm such that

〈b,y〉< 0 and AT y≥ 0.

That is, (II) has a solution. We completed the proof of the Farkas Lemma. �

We note that (II) is just an equivalent statement in (II’). (II) means that b 6∈ C . Therefore, it follows
from (II’) that there exists 0 6= y ∈ℜm such that

〈b,y〉< 0 and 〈y,z〉 ≥ 0, ∀ z ∈ C .

We further have

0≤ 〈y,z〉= 〈y,Ax〉= 〈AT y,x〉, ∀ x≥ 0,

which is equivalent to say that AT y≥ 0. Hence, (II) and (II’) are equivalent.

Theorem of complementary slackness
Consider the following primal and dual problems:

Primal problem Dual problem

max z = cT x min ω = bT y
s.t. Ax+ s = b s.t. AT y− t = c

x≥ 0, s≥ 0 y≥ 0, t≥ 0

Theorem 3.2.4 (Theorem of complementary slackness) Let (x∗,s∗) and (y∗, t∗) be respec-
tively the optimal solutions of the primal and dual problems. Then,

y∗i s∗i = 0 for i = 1, . . . ,m,
x∗jt
∗
j = 0 for j = 1, . . . ,n.

Proof. Using the feasibility of the optimal solution, we have

z∗ = cT x∗ = ((y∗)T A− (t∗)T )x∗ = (y∗)T (b− s∗)− (t∗)T x∗

= ω
∗− (y∗)T s∗− (t∗)T x∗.

From the strong duality theorem theorem, z∗ = ω∗. Thus,

(y∗)T s∗+(t∗)T x∗ = 0,

which is

y∗1s∗1 + · · ·+ y∗ms∗m + t∗1 x∗1 + · · ·+ t∗n x∗n = 0.

By non-negativity, each individual term in this equation is zero. �

� Example 3.6 For the problem

max z = 24x1 +20x2 +9x3
s.t. 8x1 +2x2−3x3 ≤ 7,

4x1 +5x2 +3x3 ≤ 17,
x1 +3x2 +4x3 ≤ 16,
x1,x2,x3 ≥ 0,
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determine whether the following solution is optimal:

x1 = 2, x2 = 0, x3 = 3.

Solution: The dual of the problem is

min ω = 7y1 +17y2 +16y3
s.t. 8y1 +4y2 + y3 ≥ 24,

2y1 +5y2 +3y3 ≥ 20,
−3y1 +3y2 +4y3 ≥ 9,
y1,y2,y3 ≥ 0.

Let s1,s2,s3 be slack variables for the primal problem and t1, t2, t3 be slack variables for the dual
one. For the proposed solution, we have

s1 = 0, s2 = 0, s3 = 2, z = 75.

Using complementary slackness,

x jt j = 0 yields t1 = 0, t3 = 0,

yisi = 0 yields y3 = 0.

Thus, the dual constraints become

8y1 +4y2 = 24,
2y1 +5y2− t2 = 20,
−3y1 +3y2 = 9.

Solving the first and third equations gives

y1 = 1, y2 = 4.

Substituting in the second equation gives

t2 = 2.

Thus, we have a feasible dual solution and

ω = 7y1 +17y2 = 7+68 = 75 = z.

The weak duality theorem shows that the proposed primal solution is optimal. �

Existence of strictly complementary solutions
This part is the continuation of the preceding subsection on the complementarity theorem. If we
introduce the Hadamard product between vectors (i.e., the componentwise product):

u◦v =


u1v1
u2v2

...
unvn

 for all u,v ∈ℜ
n.

Then Theorem 3.2.4 says that

y∗ ◦ s∗ = 0 and x∗ ◦ t∗ = 0

with

x∗ ≥ 0, y∗ ≥ 0, s∗ ≥ 0, t∗ ≥ 0.

This result can be further strengthened to

y∗+ s∗ > 0 and x∗+ t∗ > 0.

But it only holds for certain pairs.
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Theorem 3.2.5 (Strict complementarity theorem) Suppose the primal problem has an optimal
solution (this assumption means that the dual problem also has an optimal solution by the strong
duality theorem). Then there exist a pair of primal solution (x∗,s∗) and a pair of the optimal dual
solution (y∗, t∗) such that

x∗ ◦ t∗ = 0, y∗ ◦ s∗ = 0

and

y∗+ s∗ > 0 and x∗+ t∗ > 0.

Proof. Step 1 (Construction of a new LP problem). Let us consider a new (primal) problem:

max
x,y,s,t,ε

ε

s.t. Ax+ s = b, x≥ 0, s≥ 0, (3.14)

−AT y+ t =−c, y≥ 0, t≥ 0, (3.15)

cT x−bT y = 0, (3.16)

−x− t+ εe≤ 0, (3.17)

−y− s+ εe≤ 0, (3.18)

ε ≤ 1, (3.19)

where e is the vector of all ones. We note that Constraint (3.14) is just the primal constraints and
(3.15) is just the dual constraints. And (3.16) just requires that the primal objective and the dual
objective should be equal.
If follows from Theorem 3.2.4 that

x∗, y∗, s∗, t∗, ε = 0

satisfy the constraints in the new problem. Since ε ≤ 1 by the constraint (3.19), the new
problem is bounded above and hence it must have an optimal solution. Since ε = 0 is fea-
sible, the optimal objective ε∗≥ 0. From now on, we assume that the optimal objective value ε∗= 0.

Step 2: (The dual problem). Let us define the new matrix

A =



A 0 I 0 0
0 −AT 0 I 0
cT −bT 0 0 0
−I 0 0 −I e
0 −I −I 0 e
0 0 0 0 1

 and b =


b
−c
0
0
1

 , x =


x
y
s
t
ε

 .

Then the primal problem takes the following form

max ε = [0,1]x

s.t. Ax



=
=
=
≤
≤
≤

 b and x≥ 0, y≥ 0, s≥ 0, t≥ 0, ε is free.
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Introducing the slack variables corresponding to the constraints in (3.14) to (3.19): u, v, τ , w, z,
and ρ . The dual problem becomes

min 〈b,u〉−〈c,v〉+ρ

s.t. AT u+ τc−w≥ 0, (3.20)

−Av− τb− z≥ 0, (3.21)

u− z≥ 0, (3.22)

v−w≥ 0, (3.23)

〈e,w+ z〉+ρ = 1, (3.24)

u, v, τ are free, w≥ 0, z≥ 0, ρ ≥ 0.

Step 3 (Deriving a contradiction). By the strong duality theorem, the dual problem must have
an optimal solution u∗, v∗, τ∗, w∗, z∗ and ρ∗. To simplify the notation, we drop the ∗ from the
solution notation.

Pre-multiplying vT with (3.20) and pre-multiplying uT with (3.21) and adding them together, we
get the inequality

τ(〈c,v〉−〈b,u〉)−〈w,v〉−〈z,u〉 ≥ 0. (3.25)

We recall that the optimal primal objective ε∗ = 0, the last constraint (3.19) is in active. Hence,

ρ = 0.

Moreover, the dual objective is also zero due to the strong duality theorem:

0 = 〈b,u〉−〈c,v〉+ρ.

It follows that

〈b,u〉= 〈c,v〉.

It then follows from (3.25) that

〈w,v〉+ 〈z,u〉 ≤ 0. (3.26)

We also note from (3.22) that (since z≥ 0)

u≥ z =⇒ 〈u,z〉 ≥ ‖z‖2 ≥ 0. (3.27)

Similarly, it follows from (3.23) that (since w≥ 0)

v≥ w =⇒ 〈w,v〉 ≥ ‖w‖2 ≥ 0. (3.28)

The inequality in (3.26) implies

〈u,z〉= 0 and 〈w,v〉= 0,

which in turn implies that (see 3.27 and (3.28))

z = 0, w = 0.

The last constraint (3.24) yields

1 = 〈e,w+ z〉+ρ = 0.

This is a contradiction, which implies that our assumption ε∗ = 0 cannot hold. Therefore ε∗ > 0.

The result ε∗ > 0 exactly implies the strict complementarity theorem holds. �
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Numerical examples
We note that the solutions obtained in Example 3.6 satisfy the strict complementarity condition.
We now give one more example.

� Example 3.7 Find a strictly complementary optimal solution of the LP below:

max z = 7x1 +2x2 + x3
s.t. 2x1 + x2− x3 ≤ 2,

4x1 + x2 + x3 ≤ 6,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Solution: We first consider the dual problem:

min ω = 2y1 +6y2
s.t. 2y1 +4y2 ≥ 7,

y1 + y2 ≥ 2,
−y1 + y2 ≥ 1,
y1 ≥ 0, y2 ≥ 0.

The dual problem has two variables and hence can be solved by the graphical method, which yields
that the dual optimal solution is

y∗1 =
1
2
, y∗2 =

3
2
, ω

∗ = 10.

By the complementary slackness theorem, we know that the two linear constraints in the primal
problems are equations at its optimal solution (i.e., the corresponding slack values are zero):{

2x1 + x2 − x3 = 2,
4x1 + x2 + x3 = 6.

(We note that the slack values of the dual problem at its optimal solution are all zeros, i.e., t∗ = 0.
Hence, we cannot claim that any of the x values must be zero).
The optimal objective of the dual problem is 10. Therefore, by the strong duality theorem, we must
have that the optimal value of the primal problem is also 10:

7x1 +2x2 + x3 = 10.

Therefore, we have a 3×3 linear equations:
2x1 + x2 − x3 = 2,
4x1 + x2 + x3 = 6,
7x1 + 2x2 + x3 = 10.

Unfortunately, the system is singular and has infinitely many solutions.
Case 1: Assume x1 = 0. This gives

x2 = 4, x3 = 2.

This is one of the optimal solutions and is denoted by

x∗1 = (0, 4, 2)T .

Case 2: Assume x2 = 0. This gives

x1 =
4
3
, x3 =

2
3
.
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This is another optimal solution and is denoted by

x∗2 = (4/3, 0, 2/3)T .

Case 3: Assume x3 = 0. This gives

x1 = 2, x2 =−2.

Since x2 < 0, this solution is infeasible.
We can construct many solutions from the two solutions found.

x∗ = ρx∗1 +(1−ρ)x∗2 for all 0≤ ρ ≤ 1.

One of the strictly complementary optimal solution is

x∗ =
1
2

x∗1 +
1
2

xr∗2 =
1
2

 0
4
2

+ 1
2

 4/3
0

2/3

=

 2/3
2

4/3

 .
We must have

x∗+ t∗ > 0.

�

3.3 Sensitivity analysis
3.3.1 Canonical form and feasible tableaux

We recall the standard form of the linear programming problem

max z = cT x
s.t. Ax≤ b, x≥ 0,

(3.29)

where A ∈ℜm×n, and now define another form of linear programming problem, that we have seen
in the context of the feasible tableaus: is in this form.

Definition 3.3.1 The following problem is known as the canonical form of the linear program-
ming problem:

max z = cT x
s.t. A x = b, x≥ 0.

(3.30)

Here, A ∈ℜm×`.

We can convert the standard form into the canonical form by defining

A = [A, I]. (3.31)

However, A is not always given in the form of (3.31).
We have mentioned that every feasible tableau defines a linear programming problem in canonical
form. Conversely, we can easily construct tableaux from a canonical form of the LP by specifying
the set B of basic variables. Now look at the problem (3.30). Suppose we have

B⊂ {1,2, . . . , `} and N = {1,2, . . . , `}\B.
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The equation A x = b can be rearranged as

ABxB +ANxN = b (3.32)

and the objective function can be rearranged as

z = cT
BxB + cT

NxN . (3.33)

Assuming A −1
B exists (i.e., AB is invertible), it follows from (3.32) and (3.33) that

xB =−A −1
B ANxN +A −1

B b

and

z =
(
cT

N− cT
BA −1

B AN
)

xN + cT
BA −1

B b.

A tableau is produced:

xN rhs
xB = −A −1

B AN A −1
B b

z = cT
N− cT

BA −1
B AN cT

BA −1
B b

Table 3.3: Compact tableau

This tableau is feasible if

A −1
B b≥ 0,

and it is optimal if

A −1
B b≥ 0 and cT

N− cT
BA −1

B AN ≤ 0. (3.34)

We illustrate those results by an example.

� Example 3.8 Consider the problem

max z =−x1−1.5x2−3x3
subject to x1 + x2 +2x3 ≥ 6,

x1 +2x2 + x3 ≥ 10,
x1, x2, x3 ≥ 0.

By introducing slack variables x4 and x5, we arrive at the canonical form (3.30) with

A =

[
1 1 2 −1 0
1 2 1 0 −1

]
, b =

[
6
10

]
, c =


−1
−1.5
−3
0
0

 .

Consider the base B = {1,2}, for which we have

AB =

[
1 1
1 2

]
, AN =

[
2 −1 0
1 0 −1

]
, A −1

B =

[
2 −1
−1 1

]
.
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The terms from the compact tableau defining the conditions in (3.34) are respectively

A −1
B b =

[
2 −1
−1 1

][
6

10

]
=

[
2
4

]
and

cT
N− cT

BA −1
B AN = [−3 0 0]− [−1 −1.5]

[
2 −1
−1 1

][
2 −1 0
1 0 −1

]
= [−3 0 0]− [−1.5 0.5 0.5] = [−1.5 −0.5 −0.5].

Thus, the basis {1,2} is optimal. �

3.3.2 Perturbations to b and c
� Example 3.9 (Perturbation to rhs – Example 3.8 continued) Suppose now we would like to
perturb the right-hand-side (rhs) b to b̃ in the following way

b̃ = b+
[

ε

0

]
.

Find the range of ε such that the basis B = {1,2} still remains optimal.
Solution: By inspecting Tableau 3.3.1, we see that the bottom row does not change when b is
perturbed to b̃. That is

cT
N− cT

BA −1
B AN ≤ 0

by previous calculation. We only need A −1
B b≥ 0 (see (3.34)) in order to make sure B is optimal.

A −1
B b̃ =

[
2 −1
−1 1

]
b+
[

2 −1
−1 1

][
ε

0

]
=

[
2
4

]
+

[
2ε

−ε

]
≥ 0,

which leads to

−1≤ ε ≤ 4.

This is the range that will make B remain optimal. �

� Example 3.10 (Perturbation to c – Example 3.8 continued) We still let

B = {1,2} and N = {3,4,5}.

We only consider the case where perturbation occurs to c j, j ∈ N. Suppose c3 is perturbed from the
current value to c̃3 = c3 +δ . What is the range of ε such that B remains optimal.
Solution: By inspecting Tableau 3.3.1, we see that the last column does not change when c is
perturbed to c̃. That is

A −1
B b≥ 0

by previous calculation. We only need (see (3.34))

c̃T
N− c̃T

BA −1
B AN ≤ 0

in order to make sure B is optimal.
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We note that only c3 was perturbed, we see that

c̃B = cB.

We have

c̃T
N− c̃T

BA −1
B AN = [δ 0 0]+ cT

N− cT
BA −1

B AN

= [δ 0 0]+ [−1.5 −0.5 −0.5]

= [−1.5+δ −0.5 −0.5]≤ 0.

This leads to

δ ≤ 1.5.

This is the range of ε that keeps the basis B = {1,2} optimal. �

3.3.3 Parametric optimization of the objective function
Let us look at an example first:

max z(t) = x1 + x2 + t(x1− x2)

s.t. x1 + x2 ≤ 6,

x1 ≤ 4,

x2 ≤ 3,

x1 ≥ 0, x2 ≥ 0,

where t ∈ (−∞,∞). Since the problem has just 2 variables, we can solve it using the graphical
method.

From the graph of the problem, we see that the feasible region has 5 vertices (corner points) and
they are:

P1 : (0,0); P2 : (0,3); P3 : (3,3); P4 : (4,2); P5 : (4,0).

It follows from the basic theory of LP, we know for any given t, one of the vertices will solve the
corresponding linear programming. In fact, we can verify the following cases.

Case 1. For t ∈ (−∞,−1], P2 : (0,3) is the optimal solution.
Case 2. For t ∈ [−1,0], P3 : (3,3) is the optimal solution.
Case 3. For t ∈ [0,1], P4 : (4,2) is the optimal solution.
Case 4. For t ∈ [1,∞), P5 : (4,0) is the optimal solution.

In particular, for t =−1, both P2 and P3 are optimal. Therefore, the edge connecting P2 and P3 are
optimal for t =−1. For t = 0, both P3 and P4 are optimal. Therefore, the edge connecting P3 and P4
are optimal for t = 0. And for t = 1, both P4 and P5 are optimal. Therefore, the edge connecting P4
and P4 are optimal for t =−1. Consequently, those values t =−1, 0, 1 are very special and they
cut the whole interval (−∞,∞) into smaller ranges. On each of them, we know the corresponding
optimal solutions and the optimal objective values.

The optimal objective function value is given by

z∗(t) =


3(1− t) for t ≤−1,

6 for −1≤ t ≤ 0,

2t +6 for 0≤ t ≤ 1,

4(1+ t) for t ≥ 1.
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It is obvious that the optimal objective z∗ when regarded as a function of t is a piecewise linear
function. This claim is true for general parametric optimization of the objective function, which
can be stated described as follows.

Consider the problem:

max z(t) = cT x+ tqT x

s.t. Ax≤ b, x≥ 0,
(3.35)

where t is a parameter in (−∞,∞), and as before, c, x ∈ℜn, A ∈ℜm×n, b ∈ℜm and q ∈ℜn. For
any given t, we let z∗(t) be the optimal objective value. For the simplicity of the argument below,
we assume that the problem (3.35) has an optimal solution for any given t.

Theorem 3.3.1 Consider the problem (3.35) and assume that it has an optimal solution for any
given t ∈ (−∞,∞). Then it holds that:

(i) For any λ ∈ (0,1) and t1, t2 ∈ℜ, we have

z∗(λ t1 +(1−λ )t2)≤ λ z∗(t1)+(1−λ )z∗(t2).

(ii) z∗(t) is piecewise linear over (−∞,∞).

Proof. (i) Let F denote the feasible region of the problem (3.35). Then we have the following
chain of inequalities:

z∗(λ t1 +(1−λ )t2) = max
x∈F

(c+(λ t1 +(1−λ )t2)q)T x

= max
x∈F

(λc+(1−λ )c+(λ t1 +(1−λ )t2)q)T x

= max
x∈F

(λ (c+ t1q)T x+((1−λ )(c+ t2q)T x

≤ max
x∈F

(λ (c+ t1q)T x+max
x∈F

((1−λ )(c+ t1q)T x

= λ z∗(t1)+(1−λ )z∗(t2)

(ii) For any given t, by the theory of LP, one of the vertices in F must be optimal. Since F has a
finite number of vertices, the number of optimal vertices is finite. Furthermore, if a vertex is optimal
at t1 and t2 with t1 < t2, then that vertex is also optimal at any point in the interval (t1, t2) (this
follows easily from the linearity of the objective). Hence, the range (−∞,∞) can be partitioined
into a finite number of subintervals separated by “breakpoints” t1, t2, . . . , tM at which the solution
switches from one vertex to another.
Suppose that xi+1 is a vertex that solves the problem over one of these subintervals [ti, ti+1]. Then,
we have

z∗(t) = cT x+ tqT xi+1 for all t ∈ [ti, ti+1].

So, z∗(t) is linear on this interval. z∗(t) is also linear in the next subinterval and is continuous at the
breakpoint ti+1 because xi+1 solves the problem on both intervals. �



52 Chapter 3. Duality theory and sensitivity analysis

3.4 Exercises
1. Find the dual of the following maximization LP:

max z = x1 +2x2
s.t. 3x1 + x2 ≤ 6,

2x1 + x2 = 5,
x1,x2 ≥ 0.

2. Write down the dual of the following minimization LP:

min z = 50y1 +20y2 +30y3 +80y4
s.t. 3y1 + y2 ≥ 6,

400y1 +200y2 +150y3 +500y4 ≥ 500,
2y1 +2y2 +4y3 +4y4 ≥ 10,
2y1 +4y2 + y3 +5y4 ≥ 8,
y1, y2, y3, y4 ≥ 0.

3. Consider the following LP:

max 5x1 +3x2 + x3
s. t. 2x1 + x2 + x3 ≤ 6,

x1 +2x2 + x3 ≤ 7,
x1, x2, x3 ≥ 0.

Graphically solve the dual of this LP. Then use the complementarity slackness theorem to
solve the max problem.

4. Consider the following linear program:

max x1 +4x2 + x3
s.t. 2x1 +2x2 + x3 = 4,

x1− x3 = 1,
x1, x2, x3 ≥ 0.

(i) Verify that an optimal basis for this problem is B = {1,2}, and calculate the correspond-
ing quantities AB, A −1

B , AN , cB, cN , and xB, together with the vector

cT
N− cT

BA −1
B AN .

(ii) Suppose that the right-hand side 1 of the second constraint is replaced by 1+ ε . Calcu-
late the range of ε for which the basis B remains optimal, and give the solution x for
each value of ε in this range.

(iii) Suppose that the coefficient of x3 in the objective is replaced by −1+δ . Find the range
of δ for which the basis B remains optimal.

5. Us the complementarity slackness theorem to check whether xT = [7,0,2.5,0,3,0,0.5] is an
optimal solution of the following linear programming problem:

max z = x1 +2x2 + x3−3x4 + x5 + x6− x7
s.t. x1 + x2− x4 +2x6−2x7 ≤ 6,

x2− x4 + x5−2x6 +2x7 ≤ 4,
x2 + x3 + x6− x7 ≤ 2,
x2− x4−6x6 + x7 ≤ 1,
xi ≥ 0, i = 1, . . . ,7.
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6. Consider the following problem:

max −x1−2x2
s.t. −x1 + x2 ≥ 1,

x1 + x2 ≥ 3,
x1, x2 ≥ 0.

(i) Solve this problem graphically.
(ii) Use the dual simplex method to solve this problem.

(iii) Trace graphically the path taken by the dual simplex method.
7. Use the dual simplex method to solve the following problem:

max −5x1−2x2−4x3
s.t. 3x1 + x2 +2x3 ≥ 4,

6x1 +3x2 +5x3 ≥ 10,
x1, x2, x3 ≥ 0.

8. Use the strong duality theorem and complementarity slackness theorem to find a strictly
complementary solution for the following problem:

max z = 24x1 +22x2 +9x3
s.t. 8x1 +2x2−3x3 ≤ 7,

4x1 +5x2 +3x3 ≤ 17,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.





4. The network simplex method

4.1 The minimum cost network flow problem (MCNFP)

4.1.1 Problem description

Till now our focus has been on a general LP of the form (1.2) or (2.18) without any particular
structure on the parameters c, A/A and b. In this chapter, we will focus our attention on minimum
cost network flow problems which can be modeled as a LP with a particular structure on the matrix
A/A . To make this clear, we consider a practical example from transportation.
Consider a transportation network where each node represents a city. In total, we have 6 cities in
this network and we label them from 1 to 6. We need to find the cheapest way to ship prescribed
amounts of a commodity from cities 1 and 2 to cities 5 and 6, possibly via cities 3 and 4. The
problem can be represented using the following network:

Figure 4.1: Network representation of an example of transportation problem
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Nodes 1 and 2, called supply nodes represent the cities from where the commodities are shipped.
Similarly, nodes 5 and 6 are the demand nodes. Nodes 3 and 4, are known as intermediate nodes.
Now, denote by ci j the unit cost of sending a commodity from city i to city j and xi j, known as
flow, represents the amount of the commodity to be shipped from origin i to destination j; see the
following table for the definition of the remaining items appearing in the network above:

Nodes i, j i, j = 1, . . . ,6
Arcs e = (i, j) (1,2),(1,3),(1,5), . . .
Supply (at source) si s1 = 8, s2 = 6
Demand (at sink) d j d5 = 5, d6 = 9
Supply at intermediate node vi v3 = 0, v4 = 0
Unit costs (in red) ci j c12 = 1, c13 = 2, . . .
Flow xi j Unknown variable

Objective function

Using the above notation, the objective of our problem, as mentioned above, is to minimise the
following function:

c12x12 + c13x13 + c15x15 + c24x24 + c26x26 + c34x34 + c35x35 + c43x43 + c45x45 + c46x46.

Formulating the constraints

Two key assumptions are needed to formulate the constraints of the problem. The first one is that

Total suppy = Total demand. (4.1)

It is clear from Figure 4.1 that this assumption is satisfied in our problem given that the total supply
is 14 = 8+6 (i.e., from nodes 1 and 2), while the total demand is 14 = 5+9 (see nodes 5 and 6).
Provided assumption (4.1) is satisfied, the following principle is used at each node to generate the
constraints:

Flow leaving - Flow entering = Supply. (4.2)

This leads to the following six constraints for the problem:

1 x12 + x13 + x15 = 8,
2 x24 + x26− x12 = 6,
3 x34 + x35− x13− x43 = 0,
4 x43 + x45− x46− x34− x24 = 0,
5 −x15− x35− x45 = −5,
6 −x26− x46 = −9.

Note that at the intermediate nodes 3 and 4, the supply is s3 = s4 = 0, while it corresponds to the
negative value of the demand at nodes 5 and 6; i.e., −5 and −9, respectively.
In summary, the problem is a LP, which can be put in the following canonical form (cf. (2.18)):

min z = c>x
s.t. Ax = b

x≥ 0
(4.3)
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with x = [x12, x13, x15, x24, x26, x34, x35, x43, x45, x46]
>, c = [1, 2, 4, 1, 4, 3, 4, 1, 2, 2]>,

A =



1 1 1 0 0 0 0 0 0 0
−1 0 0 1 1 0 0 0 0 0
0 −1 0 0 0 1 1 −1 0 0
0 0 0 −1 0 −1 0 1 1 1
0 0 −1 0 0 0 −1 0 −1 0
0 0 0 0 −1 0 0 0 0 −1

 and b =



8
6
0
0
−5
−9

 .

The matrix A is usually called node-arc incidence matrix, given that each row corresponds to a
node while each column corresponds to an arc.

R The following two remarks on the problem above are very important:

• Observe that each variable occurs exactly twice: one with +1 as coefficient (corre-
sponding to the leaving flow) and the other with −1 as coefficient (representing the
entering flow). This is clearly reflected in the structure of the matrix A.

• If the total supply in the problem is not equal to the total supply as assumed above, then
a dummy node is usually added to balance the problem. For the problem represented in
Figure 4.1, if the demand at node 6 is reduced to 7, then the problem can be modified
as follows:

The transportation problem discussed here reflects a general formulation of a minimum cost network
flow problem (MCNFP) that will be solved in this chapter. Before introducing the corresponding
version of the simplex method, we first discuss other more specific classes of applications.

4.1.2 Other applications of the MCNFP model
Production planning problem

During a four months planning period, the demand and production capacity relating to a product is
as follows:

Months 1 2 3 4
Demand 80 200 150 200
Maximum umber produced in regular shift 100 150 140 120
Maximum umber produced in overtime shift 50 70 70 60

Regular production costs £10 per unit; overtime production costs £15 per unit. Each unit held in
stock at the end of a month costs £3 for storage. The question is how to find a production plan
which meets demand at minimum total cost?
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For each month i, let ui be the production in regular shift, vi be the production in overtime shift and
si be the end-of-month inventory. Assuming that s4 = 0, the problem can take the form:

min z = 10(u1 +u2 +u3 +u4)+15(v1 + v2 + v3 + v4)+3(s1 + s2 + s3)
s.t. u1 + v+1− s1 = 80,

u2 + v2 + s1− s2 = 200,
u3 + v3 + s2− s3 = 150,
u4 + v4 + s3 = 200,
0≤ u1 ≤ 100,
0≤ u2 ≤ 150,
0≤ u3 ≤ 140,
0≤ u4 ≤ 120,
0≤ v1 ≤ 50,
0≤ v2 ≤ 70,
0≤ v3 ≤ 70,
0≤ v4 ≤ 60,
si ≥ 0, i = 1,2,3.

Multiplying the first four constraints by −1 and adding slack variables ti, i = 1, . . . ,8, to the
right-hand-side inequality constraints, we obtain the following problem:

min z = 10(u1 +u2 +u3 +u4)+15(v1 + v2 + v3 + v4)+3(s1 + s2 + s3)
s.t. −u1− v+1+ s1 =−80,

−u2− v2− s1 + s2 =−200,
−u3− v3− s2 + s3 =−150,
−u4− v4− s3 =−200,
u1 + t1 = 100,
u2 + t2 = 150,
u3 + t3 = 140,
u4 + t4 = 120,
v1 + t5 = 50,
v2 + t6 = 70,
v3 + t7 = 70,
v4 + t8 = 60,
−t1− t2− t3− t4− t5− t6− t7− t8 =−130,
u≥ 0, v≥ 0,s≥ 0,

where the last equality results from adding all the previous equations together. Proceeding as in the
case of the problem in Figure 4.1, we have the following network representation:
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Shortest path problem

The problem of finding the shortest (in terms of time, cost, distance, etc.) path between two nodes
of a given graph is a very interesting class of problem in operational research. The problem has
many applications with the most notable one being the localization algorithms used in google maps
or satellite navigation systems. As an illustration, consider the following network:

where we want to find the shortest path from node 1 to node 7, representing two different cities,
for example. Regarding node 1 as a supply node with a supply of 1 and node 7 as a demand node
with a demand of 1. Let distances be costs per unit of flow. Then, we have, for example, that path
1−2−5−7 returns the cost 3+4+5 = 12. Proceeding similarly for all the possible routes leading
from node 1 to node 7 (e.g., 1−3−5−7, 1−3−5−6−7), we can easily identify the route/path
with the smallest cost. The number of possible paths can grow exponentially depending on the size
of the problem. Hence, a possible approach to deal with the problem is to use the minimum cost
network flow modeling approach (4.3) described above to write down the problem as a LP problem.

Assignment problem

The assignment problem also has many applications and has been successfully applied to solve ....
problems. To have a taste of the model, assume that there are n jobs to be assigned to n workers.
The cost of assigning job j to worker i is ci j. The aim is to find an assignment (one job per worker)
that minimizes the total cost. The network representation of the problem is as follows:

To formulate the mathematical model, let xi j = 1 if worker i does job j and xi j = 0 otherwise. Then
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we have the linear program

min z = ∑
n
i=1 ∑

n
j=1 ci jxi j

s.t. ∑
n
j=1 xi j = 1, i = 1, . . . ,n,

∑
n
i=1 xi j = 1, j = 1, . . . ,n,

xi j ≥ 0, i = 1, . . . ,n, j = 1, . . . ,n.

Replacing the second set of constraints by −∑
n
i=1 xi j =−1, j = 1, . . . ,n, i.e., multiplying them by

−1, we can easily check that the new problem has the form (4.3) with the corresponding matrix A
having the property stated in Remark 4.1.1.

Transportation problem
A special case of the minimum cost network flow problem in which there are no intermediate nodes
and all arcs are directed from supply to demand nodes.

Clearly, from assumption (4.1), we have have ∑
n
i=1 ai = ∑

n
j=1 b j. Proceeding as in the other cases,

the problem can be written in the form (4.3). To practice the process, you can write this problem
down while identifying the corresponding form of matrix A.

Converting some LPs into MCNFPs
Some linear programs can be transformed into a minimum cost network flow problem (MCNFP).
As illustration, consider the following example

min z = 6x1 +3x2 +7x3 +4x4 +3x5
s.t. 2x1 + x2 + x3 = 12,

x2 + x3 + x4 = 8,
x3 + x4− x5 = 2,
xi ≥ 0, i = 1, . . . ,5.

Let x′1 = 2x1 and denote the first constraints from (1) to (3). Then, replace (2) by (2)–(1) and
multiplying (3) by −1. Hence, we have the new problem

min z = 6x1 +3x2 +7x3 +4x4 +3x5
s.t. 2x1 + x2 + x3 = 12,

−x′1 + x =−4,
−x3− x4 + x5 =−2,
−x2− x5 =−6,
x′1, xi ≥ 0, i = 2, . . . ,5.

This problem can easily be written in the form (4.3) and as in the previous example, it can be
represented in the following network:
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R The network simplex method is much simpler and efficient, as it will be clear in the next
section. Hence, the reason to reformulate an LP into a MCNFP. It is important to note that
not all LPs can be converted to MCNFPs.

4.2 The network simplex method
Before presenting the algorithm, we first present the crucial concept of a tree, which corresponds to
a basic feasible solution in the context of a general LP.

Definition 4.2.1 A tree is a connected network with no cycle.

• A network is connected if there is at least one path connecting any pair of nodes.
• A cycle is a path/route in a network which begins and ends at a given node.
• For a network with n nodes, a tree will have n−1 arcs.
• In a tree, the addition of one extra arc produces a unique cycle.
• For a tree, the corresponding columns of the node-arc incidence matrix are linearly inde-

pendent; so the corresponding arcs are acyclic. But the cycle formed by adding an extra arc
forms a linearly dependent system; see the following case from the example in Figure 4.1:

The network simplex method is based on dual of the LP model of the MCNFP. Hence, to proceed,
we consider the max form of problem (4.3) and its corresponding dual as

max ZP =−c>x
s.t. Ax = b

x≥ 0
and

min ZD = b>y
s.t. A>y≥−c,

respectively. In the context of the example in Figure 4.1, this leads to the following dual problem:

min ZD = 8y1 +6y2−5y5−9y6
s.t. yi− y j ≥−ci j, for all arcs (i, j).
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• yi is the unit price of a commodity at node i;
• yi + ci j− y j is called the reduced unit cost for variable xi j;
• the objective is to maximize the total return;
• the constraints ensure that it is not possible to buy at node i and sell at node j and make a

profit.

4.2.1 The phase II procedure
To illustrate the algorithm, we apply it on the problem represented in Figure 4.1.

Iteration 1
Step 1. Start with a basic feasible solution associated with a tree T. Calculate the current value of
the dual variables using the information that variables corresponding to arcs in the tree solution
have zero reduced unit cost.

• The first dual variable y1 is arbitrarily set to 0.
• The pink numbers on the nodes represent the calculated values of y1, . . . ,y6.
• The values on each arc in the tree represent the corresponding cost.
• In the blue boxes, we have the corresponding components of x based on the initial tree:

x15 = x12 = x26 = x43 = x45 = 0, x13 = 8, x24 = 6, x34 = 3, x35 = 5, x46 = 9.

Step 2. Compute reduced unit costs for all non-basic or out of tree arcs. If all the reduced unit
costs are nonnegative, the current solution is optimal. Otherwise, choose an arc with the smallest
negative reduced unit cost to enter the basis.

As −3 is the smallest negative reduced unit cost, arc (1,2) enters the basis. This then creates a
cycle that has to be identified to proceed with next step.
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Step 3. Decide the leaving arc by sending a flow of θ around the cycle in the direction of entering
arc. Choose θ as large as possible, subject to non-negativity constraints on the flows.

(1,2) entering the basis leads to the above cycle. Because of the non-negativity constraints on the
flows, the only possible choice for θ is θ = 3. Hence, the leaving arc is (3,4).

Step 4. Iterate until all the reduced unit cost are nonnegative (Based on the duality theory from
Chapter 3, this implies that an optimal solution has been found.)

Iteration 2
Repeating the process from steps 1–3 above, we have the following tree (considered without arc
(1,5)) and the corresponding table of reduced unit costs:

Given that arcs (1,5) and (4,5) have the same reduced unit costs, we arbitrarily chose (1,5) as
entering arc. This leads to the following cycle:

Hence, θ = 5 and arc (3,5) is arbitrarily chosen as leaving arc.

R We do not need to recalculate all the dual variables, e.g., following the same path as in Step 1
of the previous iteration, it would be clear that y1, y3 and y5 remain unchanged.
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Iteration 3
Repeating the process again, we have

No negative reduced unit costs, so current solution tree is optimal.

The minimum cost z = 3×1+0×2+5×4+9×1+9×2 = 50.

R The zero reduced cost, arc (4,5), suggests an alternative optimal solution.

4.2.2 The phase I procedure
As stated in step 1 of phase 2 of the network simplex method, a basic feasible solution associated
with a tree is necessary. The following algorithm allows us to compute such a point. To illustrate
how the algorithm works, we consider the following example:

Step 1. Let bi be the supply at node i, where bi < 0 if i is a demand node. For our example, we
obviously have b1 = 7, b2 = 5, b3 = 0;b4 =−3, b5 =−4 and b6 =−5.
Step 2. Choose any node u and form a tree solution by setting flows as follows:
• For each node i, where bi > 0 and i 6= u, set a flow of bi in arc (i,u);
• For each node j, where b j ≤ 0 and j 6= u, set a flow of −b j in arc (u, j).

Taking u = 3, we can form the following tree solution based on this rule:
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If any of these arcs (i,u) and (u, j) do not exist in the original network, then they are called artificial
arcs.

Step 3. This leads to a new problem, where the objective is to minimize z′ = ∑i ∑ j c′i jxi j with the
new costs defined by

c′kl =

{
1 if (k, l) is an artificial arc;
0 if (k, l) is an original arc.

For the example above, we get the following graph formulation of the problem:

Step 4. Solve the problem using the network simplex method (described in Phase II) and suppose
we obtain z as the value of the optimal solution. Then we have one of the following options:
• If z′ > 0, then the original problem is infeasible;
• If z′ = 0, and all artificial arcs are non-basic, then a feasible tree solution is found. We

proceed with phase II to solve the original problem;
• If z′ = 0, but an artificial arc is basic, then the original problem is decomposed into sub

problems, which are solved separately.

Next, we provide a detailed implementation of the Simplex Method - Phase I on the example above.

Iteration 1
Step 1. Form the tree solution and calculate the current value of the dual variables using the
information that variables corresponding arcs in the tree solution have zero reduced unit cost.

Step 2. Compute reduced unit costs for all non-basic or out of tree arcs. If all the reduced unit
costs are nonnegative, the current solution is optimal. Otherwise, choose an arc with the smallest
negative reduced unit cost to enter the basis.
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Step 3. Decide the leaving arc by sending a flow of θ round the cycle in the direction of entering
arc. Choose θ as large as possible, subject to non-negativity constraints on the flows.

The leaving arc is (3,4). Since this is an artificial arc, it can be removed.

Step 4. Iterate until all the reduced unit cost are nonnegative.

Iteration 2
Repeating the process above, we successively have the following:

Obviously, the entering arc is (4,5),
leading to this corresponding cycle on
the right. We arbitrarily chose (3,5) as
leaving arc.

Iteration 3
Proceeding similarly to the previous iteration, we have the following tree solution and corresponding
table of reduced unit costs:
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Thus we obtain z′ = 0, but with an artificial arc (1,3) in the tree solution.
Use the y’s to partition nodes into sets:

S = {1,4,5} T = {2,3,6}

The problem decomposes because:
(a) For the nodes of T, total supply is equal to total demand;
(b) There are no arcs from nodes of S to nodes of T.

Theorem 4.2.1 (Decomposition theorem) If phase1 ends with a tree solution containing artifi-
cial arcs which each have a zero flow, then the problem decomposes.

Proof. Let (u, v) be an artificial arc in the tree solution. Let

S = {k| yk ≤ yu} and T = {k| yk > yu}.

Since u ∈ S and v ∈ T (yv = yu + c′uv = yu +1), S and T are non-empty.

There are no original arcs (i, j), where i ∈ S and j ∈ T since for such arc we would have
yi + c′i j− y j = yi− y j < 0, which is not possible at the end of phase 1.

For any original arc (i, j), where i ∈ S and j ∈ T , we have yi + c′i j− y j = yi− y j > 0.

So It cannot be in the tree solution; thus, it has zero flow. Since all artificial arcs have zero flow,
there is no flow from nodes of S to nodes of T, or from nodes of T to nodes of S. Therefore, for
nodes of T (and S), the total supply is equal to the total demand. We see that the two conditions
from decomposition are satisfied. �

4.2.3 Implementation strategies
Detecting unbounded problems

Having found an entering arc, and the
corresponding cycle, if there are no −θ

terms in the adjusted flow, the problem
is unbounded. (The cycle has a negative
cost per unit of flow.)
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Degeneracy

Even though one may tend to think of
each iteration as reducing the value of
the objective function, this is not always
the case: sometimes θ = 0 is forced in
the new feasible solution.

Cycling
Cunningham shows that the following approach avoids cycling.
• Node u ( of phase 1) is a fixed root node.
• Choose an entering arc in the usual way and find the corresponding cycle if u lies on the

cycle, set v = u; otherwise choose node v to be the node where a path from node u joins the
cycle.
• Moving round the cycle in the direction of the entering arc, starting from node v, choose the

first candidate leaving arc.

Computing values of the dual variables
Update y1, . . .yn from their values at the previous iteration, rather than compute them from scratch.

Integrality of the solution
Suppose all supplies and demands are integers. Then the initial phase 1 solution is integer-valued.
Since θ is an integer (it is the value of a flow in some arc), flows remain integer-valued throughout
the algorithm.
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4.3 Exercises

1. Formulate the following network problem as a linear program:
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2. Consider the following network representation of a transportation problem:
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Supplies Demands

Develop a linear programming model for the transportation cost minimization problem.
3. Consider Phase II of the network simplex method.

(a) Discuss the analogies that you find between this phase of the method and the simplex
method for a general linear program discussed in the previous chapters of the course.

(b) Present the simplifications that appear in the network simplex method.
4. Consider the network problem
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where

c17 = 8, c18 = 7, c12 = 2, c32 = 6, c38 = 2,
c47 = 6, c48 = 5, c45 = 8, c85 = 7, c65 = 9, c68 = 8, c87 = 0.

Starting with a solution in which x18, x38, x48, x85, x68 and x87 take positive values, and the
last constraint is satisfied as a strict inequality, use the network simplex method to find the
minimum value of z.

5. Show that the following linear programming problem can be formulated as a minimum cost
network flow problem:

Minimize z = 5x1 +8x2 +11x3 +10x4 +4x5 +9x6 +6x7 +8x8 +7x9
subject to x1 + x2 = 15

x2 + x3 + x4 = 20
x4 + x5 = 12
x6 + x7 + x8 = 27
x8 + x9 = 14
x3 + x7 ≤ 18
x1, . . . ,x9 ≥ 0.

Starting with a solution in which x1, x2, x4, x7 and x8 take positive values, and the constraint
x3 + x7 ≤ 18 is satisfied as a strict inequality, use the network simplex method to solve the
problem.

6. Solve the first problem of Problem Sheet 8 using the two phase network simplex method.
7. Ace Manufacturing has orders for three similar products:

Product Orders (units)
A 2000
B 500
C 1200

Three machines are available. Machine capacities for the next week, and the unit costs, are
as follows:

Machine Capacity (units)
1 1500
2 1500
3 1000

Product
Machine A B C

1 £1.00 £1.20 £0.90
2 £1.30 £1.40 £1.20
3 £1.10 £1.00 £1.20

Formulate a linear programming model to minimize the cost and show that it is a minimum
cost network flow problem.

8. Scott and Associates, Inc., is an accounting firm that has three new clients. Project leaders will
be assigned to the three clients. Based on the leaders’ different backgrounds and experience,
the various leader-client assignments differ in term of projected completion times. The
possible assignments and the estimated completion times in days are given in the following
table.
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Project Client
Leader 1 2 3
Jackson 10 16 32

Ellis 14 22 40
Smith 22 24 34

(a) Develop a network representation of this problem.
(b) Formulate the problem as a linear program.

9. The distribution system for the Herman Company consists of three plants, two warehouses,
and four customers. The following tables how plant capacity and the shipping cost (in £)
from each plant to each warehouse, and customer demand and shipping costs per unit (in £)
from each warehouse to each customer.

Warehouse
Plant 1 2 Capacity

1 4 7 450
2 8 5 600
3 5 6 380

Customer
Warehouse 1 2 3 4

1 6 4 8 4
2 3 6 7 7

Demand 300 300 300 400

(a) Develop a network model for this problem.
(b) Formulate a linear programming model for the problem.





5. Integer programming

In the previous chapters, we have discussed only problems where the components of the variables
can take any value from the real line. There are however many classes of optimization problems
where this cannot be possible. Integer (linear) programming problems arise when variables
correspond to numbers of workers, machines, etc., which cannot be split. Also, it is possible
to model do/don’t decisions by variables, which take the values zero or one. The main classes
of of such problems include: (a) Pure integer programming problems, where all variables are
constrained to take integer values; (b) Mixed integer programming problems, where some variables
are constrained to take integer values; and (c) Zero-one programming problems, where all variables
take the values zero or one. After presenting a few applications of integer programming (Section
5.1), we will discuss connections with linear programming problems studied in the previous chapters
(Section 5.2). Next, we will introduce one of the main solution methods for integer programming
problems and implement special versions of the method on Knapsack problems and zero-one-type
problems (Section 5.3).

5.1 Some applications

5.1.1 The Knapsack problem

The Knapsack problem is a very interesting class of problem in its own right and has been applied
in various areas. It refers to the common problem of problem of packing your most valuable items
in a knapsack/rucksack without overloading your luggage. To illustrate its usefulness, we introduce
an application in portfolio optimization.
A company has £b to invest on a selection of n projects. Each project i requires an investment of
£ai and gives a return of £ci. How the money should be invested to maximize the total profit? Let

xi =

{
1 if the company invests in project i,
0 otherwise.

Then it suffices to solve the following optimization problem, where the components of the variable



74 Chapter 5. Integer programming

x can take only the value 0 or 1:

max z = ∑
n
i=1 cixi

s.t. ∑
n
i=1 aixi ≤ b,

xi ∈ {0,1}, i = 1, . . . ,n.

5.1.2 The plant location problem
Consider a supplier who serves n towns. Depots can be sited in any of the towns. For each town i,
the fixed annual cost of running a depot is bi, and the cost of supplying a customer at town j is ci j.
The question is: where should the depots be located to minimize the costs? To model the problem,
define variables by

yi =

{
1 if a depot is located in town i,
0 otherwise,

and

xi j =

{
1 if a customer in town j is supplied from a depot in town i,
0 otherwise.

To find the optimal locations of the depots, the following problem should be solved:

min z = ∑
n
i=1 ∑

n
j=1 ci jxi j +∑

n
i=1 biyi

s.t. ∑
n
i=1 xi j = 1, j = 1, . . . ,n,

xi j ≤ yi, i, j = 1, . . . ,n,
xi j ∈ {0,1}, i, j = 1, . . . ,n,
yi ∈ {0,1}, i = 1, . . . ,n.

5.1.3 Modeling of specific type of conditions
A number of specific conditions often appear when modeling the feasible set of many mathematical
programming problems. Here we consider the “Either-Or Constraints” and “If-Then Constraints”
and show how they can be reformulated in to standard forms of constraints using integer variables.

Either-or constraints
We are given two constraints of the form:

f (x)≤ 0, (5.1)

g(x)≤ 0, (5.2)

where f and g are real-valued functions. We want to ensure that at least one of (5.2) and (5.2) is
satisfied, often called either-or constraints. Adding the following two constraints to the conditions
above will ensure that at least one of (5.2) and (5.2) is satisfied:

f (x)≤My, g(x)≤M(1− y).

Here, y is a 0−1 variable, and M is a number chosen large enough to ensure that f (x)≤M and
g(x)≤M hold for all values of x that satisfy the other constraints in the problem.

If-then constraints
Suppose we want to ensure that f (x)≥ 0 implies that g(x)≥ 0. Then, we can include the following
constraints in the formulation:

f (x)≤M(1− y), −g(x)≤My,

where similarly to the previous case, y is also a 0−1 variable, and M is a number chosen large
enough to ensure that f (x)≤M and −g(x)≤M for all values of x that satisfy the other constraints
in the problem.
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5.2 Relationships to linear programming

5.2.1 Linear programming relaxation
Most solution methods to solve integer linear programming problems rely on the corresponding
linear programming relaxation. Hence, before we discuss solution algorithms, it is important to
look at some key links betweens integer linear programs (IP) and their linear programming (LP)
relaxations. To proceed, we consider the problem

max/min z = c>x
s.t. Ax = b,

x≥ 0 integer,

where “x≥ 0 integer” means that each component of the vector x is non-negative and integer-valued.
Then, the LP relaxation of this problem is

max/min z = c>x
s.t. Ax = b,

x≥ 0.

Theorem 5.2.1 We have the following relationships between (IP) and (LP):
1. If (IP) is a minimization, the optimal objective value for (LP) is less than or equal to the

optimal objective for (IP), i.e., it is a lower bound.
2. If (IP) is a maximization, the optimal objective value for (LP) is greater than or equal to

that of (IP), i.e., it is an upper bound.
3. If (LP) is infeasible, then so is (IP).
4. If (LP) is optimized by integer variables, then that solution is feasible and optimal for (IP).
5. If the objective function coefficients are integer, then for minimization (resp. maximiza-

tion), the optimal objective for (IP) is greater than or equal to the “round up” (resp. less
than or equal to the “round down”) of the optimal objective for (LP).

Proof. Denote by F IP and F LP the feasible sets of (IP) and (LP), respectively. Similarly, let zIP

and zLP represent the optimal values of problems (IP) and (LP), respectively. Given that (LP) is less
constrained than (IP), we obviously have

F IP ⊆F LP. (5.3)

1. Denote by x̄ and x an optimal solution for (LP) and (IP), respectively. We have zLP = c>x̄≤
c>x for all x ∈F LP. From (5.3), it follows that x ∈F LP. Hence, zLP = c>x̄≤ c>x = zIP.

2. Proceeding in a way similarly to 1, we can show that zIP ≤ zLP in the maximization case.
3. Obviously follows from (5.3).
4. Let us suppose that we are dealing here with a maximization problem and let x̄ be an optimal

solution of (LP). We have zLP = c>x̄ ≥ c>x for all x ∈F LP. It follows from (5.3) that the
latter holds for all x ∈F IP. Now assuming that x̄ ∈F IP, it holds that zLP = c>x̄ = zIP.

5. We proceed only with the minimization case as the maximization one can be obtained in
a similar way. It follows from 1 that zLP ≤ zIP. We assume that zLP is fractional. Hence,
there exists a real number 0 < ε < 1 such that zLP = a− ε , where a is the value obtained
by rounding up zLP. We claim that a ≤ zIP. Otherwise, we have a− 1 < a− ε ≤ zIP < a.
This is impossible given that zIP is an integer, as the coefficients of the objective function are
integers.

�
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Another interesting aspect of the link between (LP) and (IP) is that when we think about both
problems naively, it sounds like just solving the former and taking the closest integer optimal
solution (by rounding up or down) would give an optimal solution to the latter. The following
example shows that this is usually not true:

max z = x1 +5x2
s.t. x1 +10x2 ≤ 20,

x1 ≤ 2,
x1, x2 ≥ 0.

(5.4)

The optimal solution of the (LP) form of (5.4) is (2,1.8) and the corresponding optimal value is

Figure 5.1: Comparing the optimal solution of (LP) and (IP) for example (5.4)

zLP = 11. Rounding up or down the optimal solution, we respectively get the points (2,1) and (2,2)
with optimal values 7 and 12, respectively. None of them corresponds to the optimal value of the
(IP) version of problem (5.4), which is 10 with optimal solution (0,2).
It is however important to mention that for problem with large variables, rounding the optimal
solutions of the linear relaxation remains a viable approach as slight changes might be seen as
insignificant for the decision maker. The main challenge with such an approach is that it may not be
straightforward to round the fractional variables so that all constraints of the problem are satisfied.
Such techniques are out of the scope of this lecture. Instead, for the remaining part of this notes, we
will focus our attention on the branch and bound method to obtain an optimal solution for integer
programs. This is very efficient, although it may have a very large computation time requirements.

5.2.2 Unimodularity
For some IPs, the optimal solution to the LP relaxation will also be the optimal solution to the
IP. Suppose the constraints of the IP are written as Ax = b. If the determinant of every square
submatrix of A is +1, −1, or 0, we say that the matrix A is unimodular. If A is unimodular and each
element of b is an integer, then the optimal solution to the LP relaxation will assign all variables
integer values and will therefore be the optimal solution to the IP. It can be shown that the constraint
matrix of any MCNFP is unimodular. Hence, as we saw in the previous chapter (cf. integrality),
any MCNFP in which each node’s net outflow and each arc’s capacity are integers will have an
integer-valued solution.
As a general rule, the more an IP looks like an MCNFP, the easier the problem is to solve by
branch-and-bound methods. Thus, in formulating an IP, it is good to choose a formulation in which
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as many variables as possible have small coefficients, e.g., of +1, −1, and 0. To illustrate this
consider the following illustration of the feasible set of a problem:

Figure 5.2: The bold lines are delimiting the feasible set of the LR problem. The red constraints
show the tightest possible formulation for which an integer solution is guaranteed.

5.3 Branch and bound methods

The branch and bound method is one of the main techniques to solve integer programming problems.
The method find an optimal solution by efficiently enumerating points in the subproblem’s feasible
region. The process exploits the link between the IP and its linear programming relaxation as
described in Theorem 5.2.1.

5.3.1 General branch and bound method for pure IP

Assuming that we are solving a maximization problem, at each node of the search tree, an upper
bound is computed by solving the linear programming relaxation. If this solution is integer valued,
it gives a lower bound on the optimal value of the objective. Otherwise, some x j, which is required
to be an integer, takes a fractional value k j +b j, where k j is an integer and 0 < b j < 1.

Branching creates two new nodes:
• For the first, the constraint x j ≤ k j is added;
• For the second, the constraint x j ≥ k j+1 is

added.
For example (5.4), the box in the picture gives the
values of k2 and b2 for the fractional component.

Besides the above branching rule, there are four strategies that allow the implementation of
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the branch and bound method (with the first one already mentioned in the introduction of this
subsection):
(S1) Bounding rule: Assuming that we are solving a maximization problem, at each node of the

search tree, an upper bound is computed by solving the linear programming relaxation. If
this solution is integer valued, it gives a lower bound on the optimal value of the objective.

(S2) Choosing a branching variable: One way to choose a branching variable, is to select one
which is furthest from taking an integer value.

(S3) Selecting the node to explore next: There are two strategies usually applied:
– The depth-First Search approach which consists to choose one furthest down the search

tree (this economizes on storage space)
– The best-first search approach which consists to choose the node with the largest upper

bound, in case of a maximization problem.
(S4) Fathoming a node: A node is fathomed when it can be discarded–this is usually in one of the

following three cases:
– the linear programming relaxation is infeasible;
– the solution of the linear programming relaxation is integer valued and is not greater

than the current lower bound;
– the upper bound is not greater than the current lower bound.

� Example 5.1 To illustrate the branch and bound method on a pure integer programming problem,
we apply it on the following problem:

max z = 3x1 +3x2 +13x3
s.t. −3x1 +6x2 +7x3 ≤ 9,

5x1−2x2 +6x3 ≤ 7,
x1, x2, x3 ≥ 0. are integers.

(5.5)

Node 0. At the first node, we solve the LP relaxation of the original problem:

max z = 3x1 +3x2 +13x3
s.t. −3x1 +6x2 +7x3 ≤ 9,

5x1−2x2 +6x3 ≤ 7,
x1, x2, x3 ≥ 0.

(5.6)

This can also be labeled as sub-problem 0. Solving problem (5.6) with the simplex method
described in Chapter 2, we get the optimal solution X = (0,0.10,1.20) and the corresponding
optimal value Z = 15.90 represents an upper bound for (5.5). Based on (S2) above, branching is
done on x3. This leads to 2 new subproblems; cf. nodes 1 and 2.

Node 1. At node 1, Subproblem 1 is obtained by adding constraint x3 ≤ 1 to problem (5.6).
Solving this problem by the simplex method, we get x = (0.41,0.54,1) with Z = 15.88.

Node 2. In an attempt to use the best-first search, we also attempt to solve Subproblem 2, obtained
by adding x3 ≥ 2 to problem (5.6). But this problem is infeasible. Hence, the node is fathomed.

Node 3. Subproblem 3 is obtained by adding constraint x3 ≤ 1 and x2 ≤ 0 to problem (5.6).
Solving this problem by the simplex method, we get x = (0.20,0,1) with Z = 13.60.

Node 4. Subproblem 4 is obtained by adding constraint x3 ≤ 1 and x2 ≥ 1 to problem (5.6).
Solving this problem by the simplex method, we get x = (0.85,1,0.79) with Z = 15.85. Based on
the best-first strategy, we first branch from this node. The branching strategy implies the choice of x3.
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Node 5. Subproblem 5 is obtained by adding constraint x3 ≤ 1 and x2 ≥ 1 and x3 ≤ 0 to problem
(5.6). Solving this problem by the simplex method, we get x = (2.50,2.75,0) with Z = 15.75.

Node 6. The subproblem here is obtained by adding the constraints x3 ≤ 1, x2 ≥ 1 and x3 ≥ 1 to
problem (5.6). The problem is infeasible.

Node 7. By the depth-first search, we now move to this node with Subproblem 7 obtained by
adding constraint x3 ≤ 1 and x2 ≥ 1, x3 ≤ 0 and x1 ≤ 2 to problem (5.6). Solving this problem by
the simplex method, we get x = (2,2.50,0) with Z = 13.50.

Node 8. The subproblem here is obtained by adding the constraints x3 ≤ 1, x2 ≥ 1, x3 ≤ 0 and
x1 ≥ 3 to problem (5.6). The problem is infeasible.

Node 9. With the depth-first search, we consider Subproblem 9, which is obtained by adding
constraint x3 ≤ 1 and x2 ≥ 1, x3 ≤ 0, x1 ≤ 2 and x2 ≤ 2 to problem (5.6). Solving this problem, we
get x = (2,2,0) with Z = 12. This node is fathomed based on item 2 of (S4).

Node 10. Subproblem here is obtained by adding the constraints x3 ≤ 1 and x2 ≥ 1, x3 ≤ 0, x1 ≤ 2
and x2 ≥ 3 to problem (5.6). The problem is infeasible.

Node 11. Backtracking to node 3, we get Subproblem 11 by adding constraint x3 ≤ 1, x2 ≤ 0 and
x1 ≤ 0 to (5.6). Solving it, we get x = (0,0,1) with Z = 13 and the node is fathomed.

Node 12. Subproblem 12 is obtained by adding constraint x3 ≤ 1, x2 ≤ 0 and x1 ≥ 1 to problem
(5.6). Solving this problem by the simplex method, we get Z = 7.33 and the node is fathomed.

It is clear from the branch and bound tree that the optimal solution of the problem is x = (0,0,1)
with the optimal value being Z = 13. �
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5.3.2 Branch and bound method for the knapsack problem

In this section, we focus our attention on a branch and bound method tailored to the Knapsack
problem introduced in Section 1. Here, denote by ci = vi and ai = wi the value and weight of each
item, respectively, while b =W is the total capacity of the Knapsack:

max z = ∑
n
i=1 vixi

s.t. ∑
n
i=1 wixi ≤W,

xi ∈ {0,1}, i = 1, . . . ,n.
(5.7)

Instead of implementing the general branch and bound rules discussed in the previous section, in
the context of pure integer problems, we consider the following more efficient ones:
(K1) Bounding rules: Upper and lower bounds are obtained as follows:

– Upper bounding rule: relax the problem by allowing variables to be fractional (see
below how the relaxed problem is solved).

– Lower bounding rule: optimal value of the objective function of LP relaxation or round
down any fractional variables in its optimal solution.

(K2) Branching rule: select an item, j (see below for a selection method), and force the item either
to be included or excluded from the knapsack.

(K3) Selecting the node to explore next: Same as in the pure integer case; i.e., branch from a node
with the largest upper bound (dept first strategy), breaking ties by choosing a node furthest
down the search tree (best first strategy).

(K4) Fathoming a node: Under the same conditions as in (S4) of previous subsection.
To obtain the upper bound, we start by indexing the items in the problem in such a way that the
following condition is satisfied:

v1

w1
≥ v2

w2
≥ . . .≥ vn

wn
.

Then choose index j such that items 1, . . . , j−1 all fit within the knapsack, but items 1, . . . , j will
not all fit. This leads to the following upper bound.

UB = v1 + . . .+ v j−1 + v j(W −w1− ...−w j−1)/w j.

To prove that UB is an upper bound of problem (5.7), it suffices to show that the number corresponds
to an optimal solution of the linear relaxation problem. The conclusion is based on the connections
between IP and LP discussed in Theorem 5.2.1 and the strong duality result.

Proof. The linear programming relaxation of problem (5.7) and its dual are obtained as

max z = ∑
n
i=1 vixi

s.t. ∑
n
i=1 wixi ≤W,

0≤ xi ≤ 1, i = 1, . . . ,n,
and

min z =Wu+∑
n
i=1 yi

s.t. wiu+ yi ≥ vi, i = 1, . . . ,n,
u≥ 0, yi ≥ 0, i = 1, . . . ,n.

(5.8)

One can easily check that the following point is an optimal solution of the linear relaxation problem

x1 = . . .= x j−1 = 1, x j = (W −w1− . . .−w j−1)/w j, x j+1 = . . .= xn = 0. (5.9)

This point leads to the following optimal value for the relaxation problem:

z = v1 + . . .+ v j−1 + v j(W −w1− . . .−w j−1)/w j.
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As for the dual problem, an optimal solution is given by

yi = vi−wiv j/w j ≥ 0, i = 1, . . . , j−1,
yi = 0, i = j . . . ,n,
u = v j/w j.

We can easily verify that this point is feasible for the dual of the relaxation problem in (5.8):

wiu+ yi = wiv j/w j + vi−wiv j/w j = vi for i = 1, . . . , j−1,
w ju+ y j = w jv j/w j +0 = v j,
wiu+ yi = wiv j/w j +0≥ vi for i = j+1, . . . ,n.

Thus, the solution is feasible. Moreover, the objective function value is given by

zD = v jW/w j + v1 + . . .+ v j−1− v j(w1 + . . .+w j−1)/w j

= v1 + . . .+ v j−1 + v j(W −w1− . . .−w j−1)/w j

which is the same as for the primal. Thus, both solutions are optimal. This shows that the upper
bound is valid, based on item (a) of the strong duality result in Theorem 3.2.2. �

R On the upper bound, we have the following observations:
• If all objective function coefficients are integers, then the optimal solution value is also

integer valued. Thus, LB coincides with the upper bound.
• In the upper bound evaluation, suppose that a fraction of item j is included in the

knapsack. Then we select item j for branching. In the case where there is no fractional
item, the solution at that node is exact and there is no need for branching.

� Example 5.2 We consider the following example with 7 items and total weight W = 21.

i 1 2 3 4 5 6 7
vi 17 18 11 10 13 4 1
wi 8 9 6 6 8 3 2

We start by observing that the following holds:

17
8
≥ 18

9
≥ 11

6
≥ 10

6
≥ 13

8
≥ 4

3
≥ 1

2
.

Node 1 Clearly, items 1 and 2 can fit in the Knapsack, but item 3 cannot. Hence, by rule (K2), we
have j = 3 and the LP relaxation

max z = ∑
n
i=1 17x1 +18x2 +11x3 +10x4 +13x5 +4x6x7

s.t. 8x1 +9x2 +6x3 +6x4 +8x5 +3x6 +2x7 ≤ 21,
0≤ xi ≤ 1, i = 1, . . . ,7,

(5.10)

has as solution x1 = 1, x2 = 1, x3 = 4/6 and x4 = x5 = x6 = x7 = 0, cf. (5.9). By the bounding rule
(K1), the upper and lower bounds are respectively obtained as UB = 17+18+[(4/6)11] = 42.33
and LB = 17+18 = 35. Branching is obviously done on x3, as j = 3. This leads to 2 new nodes:
x3 = 1 (or equivalently, 3∈ S, meaning that item 3 is in the knapsack) and x3 = 0 (or similarly 3 /∈ S).
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Node 2 (3 /∈ S). Here, the constraint x3 = 0 is included to the LP relaxation (5.10) [this maintains
the capacity of the knapsack to W = 21] and repeating the same process as above (in node 1), we get
j = 4 and the upper and lower bounds UB = 17+18+[(4/6)10] = 41.66 and LB = 17+18 = 35,
respectively.

Node 3 (3 ∈ S). In an attempt to use the best-first search, cf. (K3), we first look at what happens
at node 3. With the condition x3 = 1 added to problem (5.10), the new knapsack capacity is
W = 15. The resulting problem leads to j = 2 and UB = 17 + [(7/9)18] + 11 = 42.00 and
LB = 17+11 = 28. Based on the best-first search, we first branch from node 3. This leads to nodes
4 and 5.

Node 4 (3 ∈ S, 2 /∈ S). Here, the process starts by adding the constraints x3 = 1 and
x2 = 0 to problem (5.10). This keeps the capacity to W = 15 and we have j = 5.
UB = 17+10+[(1/8)13]+11 = 39.62 and LB = 17+10+11 = 38.

Node 5 (3 ∈ S,2 ∈ S). Similarly to node 4, we add the constraints x3 = 1 and x2 = 1 to
problem (5.10). But here W = 6 and we have j = 1. UB = [(6/8)17] + 18+ 11 = 41.75 and
LB = 18+11 = 29. By the best-first search, we continue branching from this node.

Node 6 (3 ∈ S,2 ∈ S,1 /∈ S). By the best-first search, choosing between nodes 4 and 5, we
first branch from the latter. Hence, adding x3 = 1, x2 = 1 and x1 = 0 to problem (5.10), we
have W = 6. This leads to an integer optimal solution with UB = 10+ 18+ 11 = 39.00 and
LB = 10+18+11 = 39. Hence, the node is fathomed.

Node 7 (3 ∈ S,2 ∈ S,1 ∈ S). Adding the constraints x3 = 1, x2 = 1 and x1 = 1 to problem (5.10)
leads to an infeasible problem (knapsack overfull!). Hence, this node is fathomed. As the current
best lower bound is 39, obtained at node 6, there is no need branching further from node 4, as this
can only lead to smaller upper bounds, which can eventually be less than 39 [This justifies why the
fractional parts have not been included in the search three below]. The search can now continue
from node 2; cf. nodes 8 and 9.

Node 8 (3 /∈ S,4 /∈ S). Adding x3 = 0 and x4 = 0 to problem (5.10), we have W = 21 and j = 5.
Hence, UB = 17+18+[(4/8)13] = 41.5 and LB = 17+18 = 35.

Node 9 (3 /∈ S,4 ∈ S). Adding x3 = 0 and x4 = 1 to problem (5.10), we have W = 15 and j = 2.
Hence, UB = 17+[(7/9)18]+ 10 = 41.00 and LB = 17+ 10 = 27. By the best-first search, we
branch next from node 8, cf. nodes 10 and 11.

Node 10 (3 /∈ S,4 /∈ S,5 /∈ S). Adding the corresponding constraints to problem (5.10), we have
W = 21 and j = 7. Hence, UB = 17+18+4+[(1/2)1] = 39.5 and LB = 17+18+4 = 39. For
the same reason as at node 4, this node is fathomed (cf. discussion above under node 7).

Node 11 (3 /∈ S,4 /∈ S,5 ∈ S). Adding the corresponding constraints to problem (5.10), we have
W = 13 and j = 2. Hence, UB = 17+[(5/9)18]+13 = 40.00 and LB = 17+13 = 30. One way
to proceed here would be by first branching from node 9, corresponding to the best-first search (this
is the step taken here); otherwise, one can first proceed with nodes 14 and 15 (depth-first search)
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and the same result will be obtained.

Node 12 (3 /∈ S,4 ∈ S,2 /∈ S). Adding the corresponding constraints to problem (5.10), we have
W = 15 and j = 5. Hence, UB = 17+ [(7/8)13] + 10 = 38.37 and LB = 17+ 10 = 27. The
upper bound obtained is smaller than the current best lower bound, 39. Hence this node is fathomed.

Node 13 (3 /∈ S,4 ∈ S,2 ∈ S). Adding the corresponding constraints to problem (5.10), we have
W = 6 and j = 1. Hence, UB = [(6/8)17] + 18+ 10 = 40.75 and LB = 18+ 10 = 28. By the
best-first search (considered between nodes 11 and 13, we should now branch from node 13). But
we first proceed with node 11, as this will make no difference, considering their upper bounds, see
discussion under node 7 above.

Node 14 (3 /∈ S,4 /∈ S,5 ∈ S,2 /∈ S). Adding the corresponding constraints to problem (5.10), we
have W = 13 and we have an integer optimal solution leading to UB = 17+4+1+13 = 35.00
and LB = 17+4+1+13 = 35. The upper bound obtained is smaller than the current best lower
bound, 39. Hence this node is fathomed.

Node 15 (3 /∈ S,4 /∈ S,5 ∈ S,2 ∈ S). Adding the corresponding constraints to problem (5.10) leads
to W = 4 and j = 1. Hence, UB = [(4/8)17] + 18+ 13 = 39.5 and LB = 18+ 13 = 31. Node
fathomed for the same reason as node 10.

Node 16 (3 /∈ S,4 ∈ S,2 ∈ S,1 /∈ S). Adding the corresponding constraints to problem (5.10) leads
to W = 6 and j = 5. Hence, UB = [(6/8)13] + 18+ 10 = 37.75 and LB = 18+ 10 = 28. The
upper bound obtained is smaller than the current best lower bound, 39. Hence this node is fathomed.

Node 17 (3 /∈ S,4 ∈ S,2 ∈ S,1 ∈ S). Adding the corresponding constraints to problem (5.10)
leads to an infeasible problem (knapsack overfull!) and node fathomed. The search is now complete.
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The best lower bound defines an optimal solution, which in this case is the lower bound found at
node 6. Thus, items 2, 3 and 4 should be included in the knapsack, giving a total benefit of 39. �

R Compared with branch and bound method for pure integer programming problems, discussed
in the previous subsection, we have the following particularities for the knapsack problem:

• There is at most one fractional component in the solution of a subproblem.
• Solving the linear relation problem is straightforward, using (5.9).

5.3.3 A branch and bound method for general 0-1 problems

The method that we discuss here is known as Balas’ additive algorithm as it was introduced by
Egon Balas in 1965. The method is designed to solve general zero-one programming problems. To
proceed, the objective function should be written as a minimization with non-negative coefficients.
For illustration, let us consider the following example:

min z = 3x1−5x2 +6x3 +9x4 +10x5 +10x6
−2x1−6x2−3x3 +4x4 + x5−2x6 ≥−4,
−5x1 +3x2 + x3 +3x4−2x5 + x6 ≥ 1,
5x1 + x2 +4x3−2x4 +2x5− x6 ≥ 4,
xi ∈ {0,1}, i = 1, . . . ,6.

Given that the coefficient associated to variable x2 is negative in the objective function, we make a
variable change with y2 = 1− x2 and yi = xi for i = 1,3, . . . ,6. This leads to the new problem

min z = 3y1 +5y2 +6y3 +9y4 +10y5 +10y6−5
−2y1 +6y2−3y3 +4y4 + y5−2y6 ≥ 2,
−5y1−3y2 + y3 +3y4−2y5 + y6 ≥−2,
5y1− y2 +4y3−2y4 +2y5− y6 ≥ 3,
yi ∈ {0,1}, i = 1, . . . ,6.

(5.11)

R Three important observations can be made here:

• Why not just set y2 =−x2? Doing so will lead to the constraint y2 ∈ {0,−1}. But as
we want to solve a 0-1 problem y2 = 1− x2 allow us to have y2 ∈ {0,1}.

• In the sequel, the constant −5 that appears in the new objective as a consequence of
the variable change will not influence the optimal solution of the problem. Hence, it
will be ignored in the solution process and taken into account only when calculating
the optimal value of the problem.

• If the problem given is a maximization one, min transformation should be considered
as discussed in Chapter 1 and then proceed as above for resulting negative coefficients.

The branch and bound algorithm based on Balas’ approach has the following key rules:
(B1) Bounding rules: As we are dealing with minimization problems, the lower bounds are key

here and are obtained by setting unfixed variables to zero.
(B2) Branching rule: branching is made on a variable which set to 1, causes the greatest reduction

in total infeasibility (see example below on how to calculate infeasibility).
(B3) Selecting the node to explore next: dept first and best first strategies can be used.
(B4) Fathoming a node: The criteria from the previous cases, see (B4) or (K4), remain valid here.

But a key element in Balas’ method is that infeasibility or an integer-valued solution can be
obtained by fixing additional variables and making logical deductions from the constraints.
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To illustrate the variable fixing process, consider the constraint

2v1−8v2 +5v3 +8v4−4v5 +3v6 ≥ 12, (5.12)

where v1, . . . , v6 are 0-1 variables. Clearly, the term with the most negative coefficient is −8v2. If
we set the variable corresponding to this to 1, i.e., v2 = 1, then (5.12) becomes

2v1 +5v3 +8v4−4v5 +3v6 ≥ 20. (5.13)

The maximum value of the left-hand-side of (5.13) is 18. This clearly means that setting v2 = 1 is
not possible as it leads to an infeasible condition.
If now, we instead fix v2 = 0, then the term with most positive coefficient being 8v4, we set v4 = 0.
This leads to

2v1 +5v3−4v5 +3v6 ≥ 12.

The maximum value of the left-hand-side of this condition is 10 - meaning that this condition is
infeasible. Therefore, we fix v4 = 1 and we have

2v1 +5v3−4v5 +3v6 ≥ 4.

No further variable fixing is possible. In the process of Balas’ algorithm we discuss how to proceed
with the branching step when it is not possible fix a variable and make logical deductions.

� Example 5.3 We apply the algorithm on the transformed problem in (5.11), while ignoring the
constant term −5, as mentioned in the remark above:

min z = 3y1 +5y2 +6y3 +9y4 +10y5 +10y6
−2y1 +6y2−3y3 +4y4 + y5−2y6 ≥ 2,
−5y1−3y2 + y3 +3y4−2y5 + y6 ≥−2,
5y1− y2 +4y3−2y4 +2y5− y6 ≥ 3.

Node 1: At node 1, there is no obvious variable fixing that can be done to stop with the search of
the optimal solution. Hence, the optimal value is set to z = 0 (with y1, . . . ,y6 = 0). To decide on
which component of y to branch, we proceed with the calculation of total infeasibility: For y1, we
set this variable to 1 and all the other components to 0, i.e., y1 = 1, y2 = . . .= y6 = 0. This leads
to 0≥ 4, 0≥ 3 and 5≥ 3 for the first, second and third constraint, respectively. Clearly, we have
infeasibility only for the first and second constraints. Summing 0≥ 4 and 0≥ 3 gives the inequality
0≥ 7. The number 7 here corresponds to the value of the total infeasibility for the first variable, cf.
table below:

Variable set to 1 y1 y2 y3 y4 y5 y6

Infeasibility 7 5 5 5 2 8

The total infeasibility for the other variables is calculated in a similar way. As the smallest
infeasibility is due to y5. Hence, branching is done on this variable.

Node 2: At this node, we have y5 = 1, which leads to problem

min z = 3y1 +5y2 +6y3 +9y4 +10y5 +10y6
−2y1 +6y2−3y3 +4y4−2y6 ≥ 1,
−5y1−3y2 + y3 +3y4 + y6 ≥ 0,
5y1− y2 +4y3−2y4− y6 ≥ 1.
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No obvious variable fixing observed, we proceed as in node 1 with the calculation of the total
infeasibility of each variable:

Variable set to 1 y1 y2 y3 y4 y6

Infeasibility 8 5 4 3 5

Branching is therefore done on variable 4. As the lower bounds are generally weak, we use only
the depth first search strategy and directly create nodes 4 and subsequently 5, before backtracking.

Node 3: With y5 = 1 and y4 = 1, the new problem we have is

min z = 3y1 +5y2 +6y3 +9y4 +10y5 +10y6
−2y1 +6y2−3y3−2y6 ≥−3,
−5y1−3y2 + y3 + y6 ≥−3,
5y1− y2 +4y3− y6 ≥ 3,

and with no variable fixing, total infeasibilities are obtained as

Variable set to 1 y1 y2 y3 y6

Infeasibility 2 4 0 4

Having the total infeasibility as 0 for variable y3 indicates that the points y = (0,0,1,1,1,0) is
feasible for the problem. Hence, generating a node 4, which is feasible.

Node 4: Here, the point y = (0,0,1,1,1,0) is feasible with LB =UB = 25. Hence, this node is
fathomed.

Node 5: Here, y5 = 1, y4 = 1 and y3 = 0. This leads to infeasibility at the third constraint. Hence,
the node is fathomed.

Node 6: Backtracking to node 6, where y5 = 1 and y4 = 0, we can also check easily that the
second constraint is infeasible. Hence node 6 is also fathomed.

Node 7: Further backtracking to node 7, where y5 = 0, no variable fixing seems obvious. Hence,
we consider the resulting problem

min z = 3y1 +5y2 +6y3 +9y4 +10y5 +10y6
−2y1 +6y2−3y3 +4y4−2y6 ≥ 2,
−5y1−3y2 + y3 +3y4 + y6 ≥−2,
5y1− y2 +4y3−2y4− y6 ≥ 3.

Calculating the total infeasibility for each of the variables gives
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Variable set to 1 y1 y2 y3 y4 y6

Infeasibility 7 5 5 5 8

Branching is therefore performed on variable y2 and leads to nodes 8 and 9.

Node 8: With y5 = 0 and y2 = 1, we have the new problem

min z = 3y1 +5y2 +6y3 +9y4 +10y5 +10y6
−2y1−3y3 +4y4−2y6 ≥ 2,
−5y1 + y3 +3y4 + y6 ≥−2,
5y1 +4y3−2y4− y6 ≥ 3.

Proceeding with logical deductions, cf. (B4), starting by observing that constraint 2 can only hold
for y1 = 0, it subsequently follows that the third constraint can only be satisfied if y3 = 1, y4 = 0
and y6 = 0. This leads to a feasible point for the problem, with LB = 11.

Node 9: With y5 = 0 and y2 = 0, we can easily check that the second constraint of the resulting
problem can only be satisfied if y1 = 0. Subsequently, it follows from the third constraint that we
must have y3 = 1, y4 = 0 and y6 = 0. This leads to a feasible point with LB = 12. This completes
the search and the following tree is obtained:

Clearly, the optimal solution is obtained at node 8: y2 = y3 = 1, y1 = y4 = y5 = y6 = 0. This implies
that for the original problem, x1 = 1, x1 = x2 = x4 = x5 = x6 = 0 with z′ = 6. �
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R To conclude this section, we would like to note that the main advantage of Balas’ algorithm is
that the computations at each node of the search tree can be performed very quickly. However,
the variable fixing tests are not very effective towards the top of the search tree. Also, the
lower bounds are weak, and do not effectively restrict the search. Some improvements on
the method have been proposed by other authors. But this is out of the scope of this lecture.
Further references could be provided to students interested in this.

5.4 Exercises
1. Use the Branch and Bound algorithm to solve the following integer programming problems:

(a)

Maximize z = x1 +2x2
subject to x1 + x2 ≤ 5,

x1− x2 ≤ 0,
2x1 +6x2 ≤ 21,
x1,x2 ≥ 0 integers.

(b)

Maximize z = 5x1 +2x2
subject to 3x1 + x2 ≤ 12,

x1 + x2 ≤ 5,
x1,x2 ≥ 0 integers.

2. Use the Branch and Bound algorithm to solve the following (0-1) Knapsack problems:
(a)

Maximize z = 5x1 +8x2 +4x3 +2x4
subject to 4x1 +7x2 +5x3 +3x4 ≤ 12,

xi ∈ {0,1}, i = 1, . . . ,4.

(b)

Maximize 7x1 +5x2 +8x3 +3x4
subject to 4x1 +3x2 +5x3 +2x4 ≤ 6,

xi ∈ {0,1}, i = 1, . . . , 4.

3. Use Balas’ additive algorithm to solve the following zero-one programming problems:
(a)

Minimize z = 7y1 +5y2 +2y3 +6y4 +4y5 +19y6
subject to 4y1 +6y2 +3y3 +7y5 +3y6 ≥ 13,

7y1−5y2 +6y3−3y4 +4y5 +2y6 ≥ 7,
3y1 +2y2−2y3 +4y4−3y5 +7y6 ≥ 4,
yi ∈ {0,1}, i = 1, . . . ,6.

(b)

Minimize z = 8y1 +2y2 +3y3 +7y4 +2y5 +6y6
subject to 3y1 +6y2− y3 +5y4 +3y5 +7y6 ≥ 16,

5y1 +3y2−4y3 +8y4 +6y5−5y6 ≥ 4,
6y1−3y2 +5y3 +5y4−2y5 +3y6 ≥ 6,
yi ∈ {0,1}, i = 1, . . . ,6.
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4. Coach Night is trying to choose the starting lineup for the basketball team. The team consists
of seven players who have been rated (on scale of 1=poor to 3=excellent) according to their
ball-handling, shooting, rebounding, and defense abilities. The positions that each player is
allowed to play and the player’s abilities are listed in the table below.
The five-player starting line-player starting lineup must satisfy the following restrictions:

(a) At least 4 members must be able to play guard, at least 2 members must be able to play
forward, and least 1 member must be able to play center.

(b) The average ball-handling, shooting, and rebounding level of the starting lineup must
be at least 2.

(c) If player 3 starts, then player 6 cannot start.
(d) If player 1 starts, then player 4 and 5 must both start.
(e) Either player 2 or player 3 must start.

Given these constraints, Coach Night wants to maximize the total defensive ability of the
starting team. Formulate an integer programming problem that will help him choose his
starting team.

Player Position Ball-handling Shooting Rebounding Defence
1 G 3 3 1 3
2 C 2 1 3 2
3 G-F 2 3 2 2
4 F-C 1 3 3 1
5 G-F 3 3 3 3
6 F-C 3 1 2 3
7 G-F 3 2 2 1

Table 5.1: for Problem 2

5. A bank is open from 9:00 to 17:00. During each hour of the day, the number of clerks
required is shown in the following table:

Time period Number of clerks
9 : 00−10 : 00 4
10 : 00−11 : 00 3
11 : 00−12 : 00 4
12 : 00−13 : 00 6
13 : 00−14 : 00 5
14 : 00−15 : 00 6
15 : 00−16 : 00 8
16 : 00−17 : 00 8

The bank can hire full-time and part-time clerks. Full-time clerks work from 9:00 to 17:00
except for a one-hour lunch break, which is from 12:00-13:00 or from 13:00-14:00 (the bank
decides the time at which each clerk takes their lunch break). The clerks are paid £8 per
hour (and receive payment for their lunch break). Part-time clerks work for three consecutive
hours and the bank specifies the start time for each of them. Part-time clerks are paid £6 per
hour. No more than five part time clerks can be hired.
Use linear/integer programming to model the problem of finding a minimum cost hiring
policy for clerks.
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