

Finite difference approximations of first order in time, second order in space hyperbolic systems

Gioel Calabrese
gioel@soton.ac.uk

University of Southampton

Collaborators: Carsten Gundlach, Ian Hinder and Sascha Husa

Outline

\square Motivation: Why second order systems?
\square Discretization of second order systems
\triangleright No boundaries

- Mixture of $D_{+} D_{-}$with D_{0} can cause difficulties
- Stability and choice of discrete norm
- Examples: gKWB, NOR, ADM, Z4
\geqslant Boundary treatment
- (Limitations of the) discrete energy method
- Laplace transform method

Outline

\square Motivation: Why second order systems?
\square Discretization of second order systems
\triangleright No boundaries

- Mixture of $D_{+} D_{-}$with D_{0} can cause difficulties
- Stability and choice of discrete norm
- Examples: gKWB, NOR, ADM, Z4
\downarrow Boundary treatment
- (Limitations of the) discrete energy method
- Laplace transform method

Outline

\square Motivation: Why second order systems?
\square Discretization of second order systems
\triangleright No boundaries

- Mixture of $D_{+} D_{-}$with D_{0} can cause difficulties
- Stability and choice of discrete norm
- Examples: gKWB, NOR, ADM, Z4

D Boundary treatment

- (Limitations of the) discrete energy method
- Laplace transform method

Outline

\square Motivation: Why second order systems?
\square Discretization of second order systems
\triangleright No boundaries

- Mixture of $D_{+} D_{-}$with D_{0} can cause difficulties
- Stability and choice of discrete norm
- Examples: gKWB, NOR, ADM, Z4
\geqslant Boundary treatment
- (Limitations of the) discrete energy method
- Laplace transform method

Outline

\square Motivation: Why second order systems?
\square Discretization of second order systems
\triangleright No boundaries

- Mixture of $D_{+} D_{-}$with D_{0} can cause difficulties
- Stability and choice of discrete norm
- Examples: gKWB, NOR, ADM, Z4
\downarrow Boundary treatment
- (Limitations of the) discrete energy method
- Laplace transform method

Outline

\square Motivation: Why second order systems?
\square Discretization of second order systems
\triangleright No boundaries

- Mixture of $D_{+} D_{-}$with D_{0} can cause difficulties
- Stability and choice of discrete norm
- Examples: gKWB, NOR, ADM, Z4

D Boundary treatment

- (Limitations of the) discrete energy method
- Laplace transform method

Outline

\square Motivation: Why second order systems?
\square Discretization of second order systems
\triangleright No boundaries

- Mixture of $D_{+} D_{-}$with D_{0} can cause difficulties
- Stability and choice of discrete norm
- Examples: gKWB, NOR, ADM, Z4
\downarrow Boundary treatment
- (Limitations of the) discrete energy method
- Laplace transform method

Outline

\square Motivation: Why second order systems?
\square Discretization of second order systems
\triangleright No boundaries

- Mixture of $D_{+} D_{-}$with D_{0} can cause difficulties
- Stability and choice of discrete norm
- Examples: gKWB, NOR, ADM, Z4

D Boundary treatment

- (Limitations of the) discrete energy method
- Laplace transform method

Outline

\square Motivation: Why second order systems?
\square Discretization of second order systems
\triangleright No boundaries

- Mixture of $D_{+} D_{-}$with D_{0} can cause difficulties
- Stability and choice of discrete norm
- Examples: gKWB, NOR, ADM, Z4
\downarrow Boundary treatment
- (Limitations of the) discrete energy method
- Laplace transform method

Motivation

- Second order systems have fewer variables, fewer constraints, and typically smaller errors.
- They are used by several groups (e.g. BSSN).
- First order systems are better understood.
\triangleright Improve our understanding of properties of (finite difference approx of) 2nd order systems;
\downarrow identify stable discretizations;
\triangleright and produce discrete boundary prescriptions.

Motivation

- Second order systems have fewer variables, fewer constraints, and typically smaller errors.
- They are used by several groups (e.g. BSSN).
- First order systems are better understood.
\triangleright Improve our understanding of properties of (finite difference approx of) 2nd order systems;
\triangleright identify stable discretizations;
\triangleright and produce discrete boundary prescriptions.

Motivation

- Second order systems have fewer variables, fewer constraints, and typically smaller errors.
- They are used by several groups (e.g. BSSN).
\square First order systems are better understood.
\triangleright Improve our understanding of properties of (finite difference approx of) 2nd order systems;
\triangleright identify stable discretizations;
\triangleright and produce discrete boundary prescriptions.

Motivation

- Second order systems have fewer variables, fewer constraints, and typically smaller errors.
- They are used by several groups (e.g. BSSN).
- First order systems are better understood. We need to catch up:
\triangleright Improve our understanding of properties of (finite difference approx of) 2nd order systems;
\triangleright identify stable discretizations;
\triangleright and produce discrete boundary prescriptions.

Motivation

- Second order systems have fewer variables, fewer constraints, and typically smaller errors.
- They are used by several groups (e.g. BSSN).
- First order systems are better understood. We need to catch up:
\triangleright Improve our understanding of properties of (finite difference approx of) 2nd order systems;
\downarrow identify stable discretizations;
\triangleright and produce discrete boundary prescriptions.

Motivation

- Second order systems have fewer variables, fewer constraints, and typically smaller errors.
- They are used by several groups (e.g. BSSN)
- First order systems are better understood. We need to catch up:
\triangleright Improve our understanding of properties of (finite difference approx of) 2nd order systems;
\triangleright identify stable discretizations;
\triangleright and produce discrete boundary prescriptions.

Motivation

- Second order systems have fewer variables, fewer constraints, and typically smaller errors.
- They are used by several groups (e.g. BSSN)
- First order systems are better understood. We need to catch up:
\triangleright Improve our understanding of properties of (finite difference approx of) 2nd order systems;
\triangleright identify stable discretizations;
\triangleright and produce discrete boundary prescriptions.

Motivation

- Second order systems have fewer variables, fewer constraints, and typically smaller errors.
- They are used by several groups (e.g. BSSN).
- First order systems are better understood. We need to catch up:
\triangleright Improve our understanding of properties of (finite difference approx of) 2nd order systems;
\triangleright identify stable discretizations;
\triangleright and produce discrete boundary prescriptions.
\square Notation: h space step, k time step, $D_{+} v_{j}=\left(v_{j+1}-v_{j}\right) / h$,
$D_{-} v_{j}=\left(v_{j}-v_{j-1}\right) / h, D_{0} v_{j}=\left(v_{j+1}-v_{j-1}\right) /(2 h)$, $D_{+} D_{-} v_{j}=\left(v_{j+1}-2 v_{j}+v_{j-1}\right) / h^{2}$.

Some difficulties

- Standard notion of stability (based on L_{2} norm) fails.
- Standard discretization of well-posed problems can give rise to unstable schemes.

Some difficulties

- Standard notion of stability (based on L_{2} norm) fails.
\triangleright Take $\partial_{t} \phi=\Pi, \partial_{t} \Pi=\partial_{x}^{2} \phi$ and $E(t)=\int\left(\phi^{2}+\Pi^{2}\right) d x$.
- Standard discretization of well-posed problems can give rise to unstable schemes.

Some difficulties

- Standard notion of stability (based on L_{2} norm) fails.
\triangleright Take $\partial_{t} \phi=\Pi, \partial_{t} \Pi=\partial_{x}^{2} \phi$ and $E(t)=\int\left(\phi^{2}+\Pi^{2}\right) d x$. One cannot find a $K(t)$, independent of the initial data, such that the estimate $E(t) \leq K(t) E(0)$ holds.
- Standard discretization of well-posed problems can give rise to unstable schemes.

Some difficulties

- Standard notion of stability (based on L_{2} norm) fails.
\triangleright Take $\partial_{t} \phi=\Pi, \partial_{t} \Pi=\partial_{x}^{2} \phi$ and $E(t)=\int\left(\phi^{2}+\Pi^{2}\right) d x$. One cannot find a $K(t)$, independent of the initial data, such that the estimate $E(t) \leq K(t) E(0)$ holds. A better norm is $\int\left(\phi^{2}+\Pi^{2}+\phi_{x}^{2}\right) d x$.
- Standard discretization of well-posed problems can give rise to unstable schemes.

Some difficulties

- Standard notion of stability (based on L_{2} norm) fails.
\triangleright Take $\partial_{t} \phi=\Pi, \partial_{t} \Pi=\partial_{x}^{2} \phi$ and $E(t)=\int\left(\phi^{2}+\Pi^{2}\right) d x$. One cannot find a $K(t)$, independent of the initial data, such that the estimate
$E(t) \leq K(t) E(0)$ holds. A better norm is $\int\left(\phi^{2}+\Pi^{2}+\phi_{x}^{2}\right) d x$.
- Standard discretization of well-posed problems can give rise to unstable schemes.

Some difficulties

\square Standard notion of stability (based on L_{2} norm) fails.
\triangleright Take $\partial_{t} \phi=\Pi, \partial_{t} \Pi=\partial_{x}^{2} \phi$ and $E(t)=\int\left(\phi^{2}+\Pi^{2}\right) d x$. One cannot find a $K(t)$, independent of the initial data, such that the estimate
$E(t) \leq K(t) E(0)$ holds. A better norm is $\int\left(\phi^{2}+\Pi^{2}+\phi_{x}^{2}\right) d x$.

- Standard discretization of well-posed problems can give rise to unstable schemes.
\downarrow Take the wave equation $\partial_{t}^{2} \phi=\partial_{x}^{2} \phi$ and change coordinates $\left(x^{\prime}=x-\beta t\right)$

$$
\partial_{t}^{2} \phi=2 \beta \partial_{t} \partial_{x} \phi+\left(1-\beta^{2}\right) \partial_{x}^{2} \phi \quad \text { (shifted wave equation) }
$$

Some difficulties

\square Standard notion of stability (based on L_{2} norm) fails.
\triangleright Take $\partial_{t} \phi=\Pi, \partial_{t} \Pi=\partial_{x}^{2} \phi$ and $E(t)=\int\left(\phi^{2}+\Pi^{2}\right) d x$. One cannot find a $K(t)$, independent of the initial data, such that the estimate
$E(t) \leq K(t) E(0)$ holds. A better norm is $\int\left(\phi^{2}+\Pi^{2}+\phi_{x}^{2}\right) d x$.

- Standard discretization of well-posed problems can give rise to unstable schemes.
\triangleright Take the wave equation $\partial_{t}^{2} \phi=\partial_{x}^{2} \phi$ and change coordinates $\left(x^{\prime}=x-\beta t\right)$

$$
\partial_{t}^{2} \phi=2 \beta \partial_{t} \partial_{x} \phi+\left(1-\beta^{2}\right) \partial_{x}^{2} \phi \quad \text { (shifted wave equation) }
$$

The discretization $\left(D_{0} u_{j}=\frac{u_{j+1}-u_{j-1}}{2 h}, D_{+} D_{-} u_{j}=\frac{u_{j+1}-2 u_{j}+u_{j-1}}{h^{2}}\right)$

$$
\frac{d^{2}}{d t^{2}} \phi_{j}=2 \beta \frac{d}{d t} D_{0} \phi_{j}+\left(1-\beta^{2}\right) D_{+} D_{-} \phi_{j}
$$

is unstable for $|\beta|>1$.

Some difficulties

\square Standard notion of stability (based on L_{2} norm) fails.
\triangleright Take $\partial_{t} \phi=\Pi, \partial_{t} \Pi=\partial_{x}^{2} \phi$ and $E(t)=\int\left(\phi^{2}+\Pi^{2}\right) d x$. One cannot find a $K(t)$, independent of the initial data, such that the estimate
$E(t) \leq K(t) E(0)$ holds. A better norm is $\int\left(\phi^{2}+\Pi^{2}+\phi_{x}^{2}\right) d x$.

- Standard discretization of well-posed problems can give rise to unstable schemes.
\triangleright Take the wave equation $\partial_{t}^{2} \phi=\partial_{x}^{2} \phi$ and change coordinates $\left(x^{\prime}=x-\beta t\right)$

$$
\partial_{t}^{2} \phi=2 \beta \partial_{t} \partial_{x} \phi+\left(1-\beta^{2}\right) \partial_{x}^{2} \phi \quad \text { (shifted wave equation) }
$$

The discretization $\left(D_{0} u_{j}=\frac{u_{j+1}-u_{j-1}}{2 h}, D_{+} D_{-} u_{j}=\frac{u_{j+1}-2 u_{j}+u_{j-1}}{h^{2}}\right)$

$$
\frac{d^{2}}{d t^{2}} \phi_{j}=2 \beta \frac{d}{d t} D_{0} \phi_{j}+\left(1-\beta^{2}\right) D_{+} D_{-} \phi_{j}
$$

is unstable for $|\beta|>1$. Who is to blame?

First order systems

- Continuum: A first order system $\frac{\partial u}{\partial t}=P\left(\partial_{x}\right) u$ is strongly hyperbolic iff

$$
\begin{gathered}
K^{-1} \leq \hat{H}(\omega)=\hat{H}^{*}(\omega) \leq K \\
\hat{H}(\omega) \hat{P}(i \omega)+\hat{P}^{*}(i \omega) \hat{H}(\omega) \leq 2 \alpha \hat{H}(\omega)
\end{gathered}
$$

\triangleright The Cauchy problem is well-posed.
\triangleright Estimate in L_{2} follows

$$
\|u(t, \cdot)\| \leq K e^{\alpha t}\|u(0, \cdot)\|
$$

First order systems

Continuum: A first order system $\frac{\partial u}{\partial t}=P\left(\partial_{x}\right) u$ is strongly hyperbolic iff

$$
\begin{gathered}
K^{-1} \leq \hat{H}(\omega)=\hat{H}^{*}(\omega) \leq K \\
\hat{H}(\omega) \hat{P}(i \omega)+\hat{P}^{*}(i \omega) \hat{H}(\omega) \leq 2 \alpha \hat{H}(\omega)
\end{gathered}
$$

\triangleright The Cauchy problem is well-posed.
\triangleright Estimate in L_{2} follows

$$
\|u(t, \cdot)\| \leq K e^{\alpha t}\|u(0, \cdot)\|
$$

First order systems

- Continuum: A first order system $\frac{\partial u}{\partial t}=P\left(\partial_{x}\right) u$ is strongly hyperbolic iff

$$
\begin{gathered}
K^{-1} \leq \hat{H}(\omega)=\hat{H}^{*}(\omega) \leq K \\
\hat{H}(\omega) \hat{P}(i \omega)+\hat{P}^{*}(i \omega) \hat{H}(\omega) \leq 2 \alpha \hat{H}(\omega)
\end{gathered}
$$

\triangleright The Cauchy problem is well-posed.
\triangleright Estimate in L_{2} follows

$$
\|u(t, \cdot)\| \leq K e^{\alpha t}\|u(0, \cdot)\|
$$

First order systems

\square Discrete: The scheme $v^{n+1}=Q v^{n}$ is stable iff

$$
\begin{gathered}
K^{-1} \leq \hat{H}(\xi)=\hat{H}^{*}(\xi) \leq K \\
|\hat{Q}(\xi)|_{\hat{H}} \leq e^{\alpha k}
\end{gathered}
$$

\triangleright Estimate in discrete L_{2}-norm follows

$$
\left\|v^{n}\right\|_{h} \leq K e^{\alpha t}\left\|v^{0}\right\|_{h}
$$

where $\|v\|_{h}^{2}=\sum_{j} v_{j}^{2} h$.
\triangleright Von Neumann necessary condition: $\sigma(\hat{Q}(\xi)) \leq e^{\alpha k}$.

First order systems

- Discrete: The scheme $v^{n+1}=Q v^{n}$ is stable iff

$$
\begin{gathered}
K^{-1} \leq \hat{H}(\xi)=\hat{H}^{*}(\xi) \leq K \\
|\hat{Q}(\xi)|_{\hat{H}} \leq e^{\alpha k}
\end{gathered}
$$

\triangleright Estimate in discrete L_{2}-norm follows

$$
\left\|v^{n}\right\|_{h} \leq K e^{\alpha t}\left\|v^{0}\right\|_{h}
$$

where $\|v\|_{h}^{2}=\sum_{j} v_{j}^{2} h$.
\triangleright Von Neumann necessary condition: $\sigma(\hat{Q}(\xi)) \leq e^{\alpha k}$.

First order systems

- Discrete: The scheme $v^{n+1}=Q v^{n}$ is stable iff

$$
\begin{gathered}
K^{-1} \leq \hat{H}(\xi)=\hat{H}^{*}(\xi) \leq K \\
|\hat{Q}(\xi)|_{\hat{H}} \leq e^{\alpha k}
\end{gathered}
$$

- Estimate in discrete L_{2}-norm follows

$$
\left\|v^{n}\right\|_{h} \leq K e^{\alpha t}\left\|v^{0}\right\|_{h}
$$

where $\|v\|_{h}^{2}=\sum_{j} v_{j}^{2} h$.
\triangleright Von Neumann necessary condition: $\sigma(\hat{Q}(\xi)) \leq e^{\alpha k}$.

Simple sufficient condition

- Assumptions:
\triangleright Method of lines: $\frac{d}{d t} v_{j}=P v_{j}$. In F. space $\frac{d}{d t} \hat{v}=\hat{P}(\xi) \hat{v}$.
$\triangleright 3 \mathrm{RK}, 4 \mathrm{RK}$, or ICN time integrators: $\hat{Q}=\mathcal{P}(k \hat{P})$.
- If there exists a discrete symmetrizer $\hat{H}(\xi)$ of $\hat{P}(\xi)$

$$
\begin{aligned}
& K^{-1} \leq \hat{H}(\xi)=\hat{H}^{*}(\xi) \leq K \\
& \hat{H}(\xi) \hat{P}(\xi)+\hat{P}^{*}(\xi) \hat{H}(\xi)=0
\end{aligned}
$$

(i.e. a conserved energy for the semi-discrete system in F. space) then the von Neumann condition

$$
\sigma(k \hat{P}) \leq \alpha_{0} \quad\left(\text { e.g. } \alpha_{0}=\sqrt{8} \text { for } 4 \mathrm{RK}\right)
$$

is necessary and sufficient for stability $\left(\left\|v^{n}\right\|_{h} \leq K\left\|v^{0}\right\|_{h}\right)$.

Simple sufficient condition

\square Assumptions:
\triangleright Method of lines: $\frac{d}{d t} v_{j}=P v_{j}$. In F. space $\frac{d}{d t} \hat{v}=\hat{P}(\xi) \hat{v}$.
\triangleright 3RK, 4RK, or ICN time integrators: $\hat{Q}=\mathcal{P}(k \hat{P})$.

- If there exists a discrete symmetrizer $\hat{H}(\xi)$ of $\hat{P}(\xi)$

$$
\begin{aligned}
& K^{-1} \leq \hat{H}(\xi)=\hat{H}^{*}(\xi) \leq K \\
& \hat{H}(\xi) \hat{P}(\xi)+\hat{P}^{*}(\xi) \hat{H}(\xi)=0
\end{aligned}
$$

(i.e. a conserved energy for the semi-discrete system in F. space) then the von Neumann condition

$$
\sigma(k \hat{P}) \leq \alpha_{0} \quad\left(\text { e.g. } \alpha_{0}=\sqrt{8} \text { for } 4 \mathrm{RK}\right)
$$

is necessary and sufficient for stability $\left(\left\|v^{n}\right\|_{h} \leq K\left\|v^{0}\right\|_{h}\right)$.

Second order systems

- Standard discretization of second order system of the form

$$
\partial_{t}\binom{u}{v}=\left(\begin{array}{ll}
A^{i} D_{i}^{(1)}+B & C \\
D^{i j} D_{i j}^{(2)}+E^{i} D_{i}^{(1)}+F & G^{i} D_{i}^{(1)}+J
\end{array}\right)\binom{u}{v}
$$

E.g. $D_{i}^{(1)}=D_{0 i}, D_{i j}^{(2)}=D_{0 i} D_{0 j}$ if $i \neq j, D_{i j}^{(2)}=D_{+i} D_{-i}$ if $i=j$.

- If $\partial_{t} \hat{\boldsymbol{v}}=\hat{P}^{\prime} \hat{\boldsymbol{v}}$, where \hat{P}^{\prime} is the principal symbol of the semi-discrete system, admits a conserved energy $\hat{\boldsymbol{v}}^{*} \hat{H} \hat{\boldsymbol{v}}$ and

$$
K^{-1} I_{\Omega} \leq \hat{H} \leq K I_{\Omega}, \quad I_{\Omega} \equiv\left(\begin{array}{cc}
\Omega^{2} & 0 \\
0 & 1
\end{array}\right), \quad \Omega^{2}=\sum_{i=1}^{d}\left|\hat{D}_{+i}\right|^{2}
$$

then, provided that $\sigma\left(k \hat{P}^{\prime}\right) \leq \alpha_{0}$, the fully discrete scheme is stable wrt $\|\boldsymbol{v}\|_{h, D_{+}}^{2} \equiv\|u\|_{h}^{2}+\|v\|_{h}^{2}+\sum_{i=1}^{d}\left\|D_{+i} u\right\|_{h}^{2}$.

Second order systems

- Standard discretization of second order system of the form

$$
\partial_{t}\binom{u}{v}=\left(\begin{array}{ll}
A^{i} D_{i}^{(1)}+B & C \\
D^{i j} D_{i j}^{(2)}+E^{i} D_{i}^{(1)}+F & G^{i} D_{i}^{(1)}+J
\end{array}\right)\binom{u}{v}
$$

E.g. $D_{i}^{(1)}=D_{0 i}, D_{i j}^{(2)}=D_{0 i} D_{0 j}$ if $i \neq j, D_{i j}^{(2)}=D_{+i} D_{-i}$ if $i=j$.

- If $\partial_{t} \hat{\boldsymbol{v}}=\hat{P}^{\prime} \hat{\boldsymbol{v}}$, where \hat{P}^{\prime} is the principal symbol of the semi-discrete system, admits a conserved energy $\hat{\boldsymbol{v}}^{*} \hat{H} \hat{\boldsymbol{v}}$ and

$$
K^{-1} I_{\Omega} \leq \hat{H} \leq K I_{\Omega}, \quad I_{\Omega} \equiv\left(\begin{array}{cc}
\Omega^{2} & 0 \\
0 & 1
\end{array}\right), \quad \Omega^{2}=\sum_{i=1}^{d}\left|\hat{D}_{+i}\right|^{2}
$$

then, provided that $\sigma\left(k \hat{P}^{\prime}\right) \leq \alpha_{0}$, the fully discrete scheme is stable wrt $\|\boldsymbol{v}\|_{h, D_{+}}^{2} \equiv\|u\|_{h}^{2}+\|v\|_{h}^{2}+\sum_{i=1}^{d}\left\|D_{+i} u\right\|_{h}^{2}$.

Second order systems

- Standard discretization of second order system of the form

$$
\begin{aligned}
& \qquad \partial_{t}\binom{u}{v}=\left(\begin{array}{ll}
A^{i} D_{i}^{(1)}+B & C \\
D^{i j} D_{i j}^{(2)}+E^{i} D_{i}^{(1)}+F & G^{i} D_{i}^{(1)}+J
\end{array}\right)\binom{u}{v} \\
& \text { E.g. } D_{i}^{(1)}=D_{0 i}, D_{i j}^{(2)}=D_{0 i} D_{0 j} \text { if } i \neq j, D_{i j}^{(2)}=D_{+i} D_{-i} \text { if } i=j .
\end{aligned}
$$

- If $\partial_{t} \hat{\boldsymbol{v}}=\hat{P}^{\prime} \hat{\boldsymbol{v}}$, where \hat{P}^{\prime} is the principal symbol of the semi-discrete system, admits a conserved energy $\hat{\boldsymbol{v}}^{*} \hat{H} \hat{\boldsymbol{v}}$ and

$$
K^{-1} I_{\Omega} \leq \hat{H} \leq K I_{\Omega}, \quad I_{\Omega} \equiv\left(\begin{array}{cc}
\Omega^{2} & 0 \\
0 & 1
\end{array}\right), \quad \Omega^{2}=\sum_{i=1}^{d}\left|\hat{D}_{+i}\right|^{2}
$$

then, provided that $\sigma\left(k \hat{P}^{\prime}\right) \leq \alpha_{0}$, the fully discrete scheme is stable wrt $\|\boldsymbol{v}\|_{h, D_{+}}^{2} \equiv\|u\|_{h}^{2}+\|v\|_{h}^{2}+\sum_{i=1}^{d}\left\|D_{+i} u\right\|_{\substack{\text { Giee Cal } \\ \text { Gies. }}}^{2}$.

Results

- Generalized KWB system

$$
\begin{aligned}
\partial_{t} A_{i} & =-E_{i} \\
\partial_{t} E_{i} & =-\partial^{k} \partial_{k} A_{i}+r \partial_{i} \partial^{k} A_{k}+\partial_{i} G \\
\partial_{t} G & =r \partial^{k} E_{k}
\end{aligned}
$$

\triangleright Continuum: Cauchy problem is well-posed for $r \in \mathbb{R}$.
\downarrow Discrete: stability wrt D_{+}-norm only for $r<1$; for $r>1$ the von Neumann condition is violated.

- NOR formulation of GR has similar properties

$$
\begin{aligned}
\partial_{t} \gamma_{i j} & =-2 K_{i j} \\
\partial_{t} K_{i j} & =-\frac{1}{2} \partial^{k} \partial_{k} \gamma_{i j}+\frac{r}{2} \partial_{i} \partial_{j} \gamma_{k k}+\partial_{(i} f_{j)} \\
\partial_{t} f_{i} & =r \partial_{i} K
\end{aligned}
$$

Results

- Generalized KWB system

$$
\begin{aligned}
\partial_{t} A_{i} & =-E_{i} \\
\partial_{t} E_{i} & =-\partial^{k} \partial_{k} A_{i}+r \partial_{i} \partial^{k} A_{k}+\partial_{i} G \\
\partial_{t} G & =r \partial^{k} E_{k}
\end{aligned}
$$

Continuum: Cauchy problem is well-posed for $r \in \mathbb{R}$.
\triangleright Discrete: stability wrt D_{+}-norm only for $r<1$; for $r>1$ the von Neumann condition is violated.

- NOR formulation of GR has similar properties

$$
\begin{aligned}
\partial_{t} \gamma_{i j} & =-2 K_{i j} \\
\partial_{t} K_{i j} & =-\frac{1}{2} \partial^{k} \partial_{k} \gamma_{i j}+\frac{r}{2} \partial_{i} \partial_{j} \gamma_{k k}+\partial_{(i} f_{j)} \\
\partial_{t} f_{i} & =r \partial_{i} K
\end{aligned}
$$

Results

- Generalized KWB system

$$
\begin{aligned}
\partial_{t} A_{i} & =-E_{i} \\
\partial_{t} E_{i} & =-\partial^{k} \partial_{k} A_{i}+r \partial_{i} \partial^{k} A_{k}+\partial_{i} G \\
\partial_{t} G & =r \partial^{k} E_{k}
\end{aligned}
$$

\triangleright Continuum: Cauchy problem is well-posed for $r \in \mathbb{R}$.
\downarrow Discrete: stability wrt D_{+}-norm only for $r<1$; for $r>1$ the von Neumann condition is violated.

- NOR formulation of GR has similar properties

$$
\begin{aligned}
\partial_{t} \gamma_{i j} & =-2 K_{i j} \\
\partial_{t} K_{i j} & =-\frac{1}{2} \partial^{k} \partial_{k} \gamma_{i j}+\frac{r}{2} \partial_{i} \partial_{j} \gamma_{k k}+\partial_{(i} f_{j)} \\
\partial_{t} f_{i} & =r \partial_{i} K
\end{aligned}
$$

Results

\square Generalized KWB system

$$
\begin{aligned}
\partial_{t} A_{i} & =-E_{i} \\
\partial_{t} E_{i} & =-\partial^{k} \partial_{k} A_{i}+r \partial_{i} \partial^{k} A_{k}+\partial_{i} G \\
\partial_{t} G & =r \partial^{k} E_{k}
\end{aligned}
$$

\downarrow Continuum: Cauchy problem is well-posed for $r \in \mathbb{R}$.
\triangleright Discrete: stability wrt D_{+}-norm only for $r<1$; for $r>1$ the von Neumann condition is violated.
\square NOR formulation of GR has similar properties

$$
\begin{aligned}
\partial_{t} \gamma_{i j} & =-2 K_{i j} \\
\partial_{t} K_{i j} & =-\frac{1}{2} \partial^{k} \partial_{k} \gamma_{i j}+\frac{r}{2} \partial_{i} \partial_{j} \gamma_{k k}+\partial_{(i} f_{j)} \\
\partial_{t} f_{i} & =r \partial_{i} K
\end{aligned}
$$

Results

- Other systems analyzed: ADM, Z4.
- The approximation

$$
\frac{d}{d t} \phi_{j}(t)=\Pi_{j}(t), \quad \frac{d}{d t} \Pi_{j}(t)=D_{+} D_{-} \phi_{j}(t)
$$

is stable wrt $\|\phi\|_{h}^{2}+\|\Pi\|_{h}^{2}+\left\|D_{+} \phi\right\|_{h}^{2}$. What about using D_{0}^{2} instead of $D_{+} D_{-}$in the scheme, or D_{0} instead of D_{+}in the norm?
\downarrow The D_{0}^{2}-scheme is unstable wrt the D_{+}-norm.
\triangleright Similarly, the standard 2nd o.a. discretization is unstable wrt the D_{0}-norm.
$\triangleright D_{0}^{2}$ in the scheme and D_{0} in the norm is ok, but one has to be careful.

Results

- Other systems analyzed: ADM, Z4.
- The approximation

$$
\frac{d}{d t} \phi_{j}(t)=\Pi_{j}(t), \quad \frac{d}{d t} \Pi_{j}(t)=D_{+} D_{-} \phi_{j}(t)
$$

is stable wrt $\|\phi\|_{h}^{2}+\|\Pi\|_{h}^{2}+\left\|D_{+} \phi\right\|_{h}^{2}$. What about using D_{0}^{2} instead of $D_{+} D_{-}$in the scheme, or D_{0} instead of D_{+}in the norm?
\downarrow The D_{0}^{2}-scheme is unstable wrt the D_{+}-norm.
\triangleright Similarly, the standard 2nd o.a. discretization is unstable wrt the D_{0}-norm.
$\triangleright D_{0}^{2}$ in the scheme and D_{0} in the norm is ok, but one has to be careful.

Results

- Other systems analyzed: ADM, Z4.

- The approximation

$$
\frac{d}{d t} \phi_{j}(t)=\Pi_{j}(t), \quad \frac{d}{d t} \Pi_{j}(t)=D_{+} D_{-} \phi_{j}(t)
$$

is stable wrt $\|\phi\|_{h}^{2}+\|\Pi\|_{h}^{2}+\left\|D_{+} \phi\right\|_{h}^{2}$. What about using D_{0}^{2} instead of $D_{+} D_{-}$in the scheme, or D_{0} instead of D_{+}in the norm?
\triangleright The D_{0}^{2}-scheme is unstable wrt the D_{+}-norm.
\geqslant Similarly, the standard 2nd o.a. discretization is unstable wrt the D_{0}-norm.
$\triangleright D_{0}^{2}$ in the scheme and D_{0} in the norm is ok, but one has to be careful.

Results

- Other systems analyzed: ADM, Z4.

- The approximation

$$
\frac{d}{d t} \phi_{j}(t)=\Pi_{j}(t), \quad \frac{d}{d t} \Pi_{j}(t)=D_{+} D_{-} \phi_{j}(t)
$$

is stable wrt $\|\phi\|_{h}^{2}+\|\Pi\|_{h}^{2}+\left\|D_{+} \phi\right\|_{h}^{2}$. What about using D_{0}^{2} instead of $D_{+} D_{-}$in the scheme, or D_{0} instead of D_{+}in the norm?
\triangleright The D_{0}^{2}-scheme is unstable wrt the D_{+}-norm.
\triangleright Similarly, the standard 2nd o.a. discretization is unstable wrt the D_{0}-norm.
$\triangleright D_{0}^{2}$ in the scheme and D_{0} in the norm is ok, but one has to be careful.

Results

- Other systems analyzed: ADM, Z4.

\square The approximation

$$
\frac{d}{d t} \phi_{j}(t)=\Pi_{j}(t), \quad \frac{d}{d t} \Pi_{j}(t)=D_{+} D_{-} \phi_{j}(t)
$$

is stable wrt $\|\phi\|_{h}^{2}+\|\Pi\|_{h}^{2}+\left\|D_{+} \phi\right\|_{h}^{2}$. What about using D_{0}^{2} instead of $D_{+} D_{-}$in the scheme, or D_{0} instead of D_{+}in the norm?
\triangleright The D_{0}^{2}-scheme is unstable wrt the D_{+}-norm.
\triangleright Similarly, the standard 2nd o.a. discretization is unstable wrt the D_{0}-norm.
$\triangleright D_{0}^{2}$ in the scheme and D_{0} in the norm is ok, but one has to be careful.

Testing stability

\square For a linear scheme with no forcing terms a stability test should be aimed at establishing the existence of K and α, such that

$$
\left\|v^{n}\right\| \leq K e^{\alpha t_{n}}\left\|v^{0}\right\| \quad \text { for } h \leq h_{0}
$$

where, for the NOR system, for example, the norm is

$$
\sum_{i, j=1}^{3}\left\|\gamma_{i j}\right\|_{h}^{2}+\sum_{i, j=1}^{3}\left\|K_{i j}\right\|_{h}^{2}+\sum_{k, i, j=1}^{3}\left\|D_{+k} \gamma_{i j}\right\|_{h}^{2}+\sum_{i=1}^{3}\left\|f_{i}\right\|_{h}^{2}
$$

\square In the non linear case, however, this wouldn't work!
\square Ultimately, we want convergence. Suggestion:
Test for convergence with consistent (but not exact!) initial data.

Testing stability

\square For a linear scheme with no forcing terms a stability test should be aimed at establishing the existence of K and α, such that

$$
\left\|v^{n}\right\| \leq K e^{\alpha t_{n}}\left\|v^{0}\right\| \quad \text { for } h \leq h_{0}
$$

where, for the NOR system, for example, the norm is

$$
\sum_{i, j=1}^{3}\left\|\gamma_{i j}\right\|_{h}^{2}+\sum_{i, j=1}^{3}\left\|K_{i j}\right\|_{h}^{2}+\sum_{k, i, j=1}^{3}\left\|D_{+k} \gamma_{i j}\right\|_{h}^{2}+\sum_{i=1}^{3}\left\|f_{i}\right\|_{h}^{2}
$$

\square In the non linear case, however, this wouldn't work!
\square Ultimately, we want convergence. Suggestion:
Test for convergence with consistent (but not exact!) initial data.

Testing stability

\square For a linear scheme with no forcing terms a stability test should be aimed at establishing the existence of K and α, such that

$$
\left\|v^{n}\right\| \leq K e^{\alpha t_{n}}\left\|v^{0}\right\| \quad \text { for } h \leq h_{0}
$$

where, for the NOR system, for example, the norm is

$$
\sum_{i, j=1}^{3}\left\|\gamma_{i j}\right\|_{h}^{2}+\sum_{i, j=1}^{3}\left\|K_{i j}\right\|_{h}^{2}+\sum_{k, i, j=1}^{3}\left\|D_{+k} \gamma_{i j}\right\|_{h}^{2}+\sum_{i=1}^{3}\left\|f_{i}\right\|_{h}^{2}
$$

\square In the non linear case, however, this wouldn't work!
\square Ultimately, we want convergence. Suggestion:
Test for convergence with consistent (but not exact!) initial data.

Boundary treatment

\square Although the scheme

$$
\frac{d^{2}}{d t^{2}} \phi_{j}=2 \beta \frac{d}{d t} D_{0} \phi_{j}+\left(1-\beta^{2}\right) D_{+} D_{-} \phi_{j}
$$

is unstable for $|\beta|>1$, the approximation

$$
\begin{aligned}
\frac{d}{d t} \phi_{j} & =\beta D_{0} \phi_{j}+\Pi_{j} \\
\frac{d}{d t} \Pi_{j} & =\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}
\end{aligned}
$$

is stable for any $\beta \in \mathbb{R}$.
\square We will use the second approximation in the interior and look for appropriate discrete boundary prescriptions which are
Δ consistent with those of the continuum problem;
$>$ and lead to strong stability.

Boundary treatment

- Although the scheme

$$
\frac{d^{2}}{d t^{2}} \phi_{j}=2 \beta \frac{d}{d t} D_{0} \phi_{j}+\left(1-\beta^{2}\right) D_{+} D_{-} \phi_{j}
$$

is unstable for $|\beta|>1$, the approximation

$$
\begin{aligned}
\frac{d}{d t} \phi_{j} & =\beta D_{0} \phi_{j}+\Pi_{j} \\
\frac{d}{d t} \Pi_{j} & =\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}
\end{aligned}
$$

is stable for any $\beta \in \mathbb{R}$.
\square We will use the second approximation in the interior and look for appropriate discrete boundary prescriptions which are
Δ consistent with those of the continuum problem;
\triangleright and lead to strong stability.

Boundary treatment

\square Although the scheme

$$
\frac{d^{2}}{d t^{2}} \phi_{j}=2 \beta \frac{d}{d t} D_{0} \phi_{j}+\left(1-\beta^{2}\right) D_{+} D_{-} \phi_{j}
$$

is unstable for $|\beta|>1$, the approximation

$$
\begin{aligned}
\frac{d}{d t} \phi_{j} & =\beta D_{0} \phi_{j}+\Pi_{j} \\
\frac{d}{d t} \Pi_{j} & =\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}
\end{aligned}
$$

is stable for any $\beta \in \mathbb{R}$.
\square We will use the second approximation in the interior and look for appropriate discrete boundary prescriptions which are
\downarrow consistent with those of the continuum problem;
$>$ and lead to strong stability.

Boundary treatment

\square Although the scheme

$$
\frac{d^{2}}{d t^{2}} \phi_{j}=2 \beta \frac{d}{d t} D_{0} \phi_{j}+\left(1-\beta^{2}\right) D_{+} D_{-} \phi_{j}
$$

is unstable for $|\beta|>1$, the approximation

$$
\begin{aligned}
\frac{d}{d t} \phi_{j} & =\beta D_{0} \phi_{j}+\Pi_{j} \\
\frac{d}{d t} \Pi_{j} & =\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}
\end{aligned}
$$

is stable for any $\beta \in \mathbb{R}$.
\square We will use the second approximation in the interior and look for appropriate discrete boundary prescriptions which are
\downarrow consistent with those of the continuum problem;
$>$ and lead to strong stability.

Boundary treatment (continuum)

\square Quarter space $(x \geq 0, t \geq 0)$ for the shifted wave equation:
\downarrow Evolution equations:

$$
\begin{aligned}
\partial_{t} \phi & =\beta \partial_{x} \phi+\Pi+F^{\phi} \\
\partial_{t} \Pi & =\beta \partial_{x} \Pi+\partial_{x}^{2} \phi+F^{\Pi}
\end{aligned}
$$

\triangleright Initial data: $\phi(x, 0)=f^{\phi}(x), \Pi(x, 0)=f^{\Pi}(x)$
\triangleright Boundary data: $\Pi(0, t)-\partial_{x} \phi(0, t)=g(t)$ if $|\beta|<1$; no BC s in the outflow case $(\beta \geq 1)$

Boundary treatment (continuum)

- Quarter space ($x \geq 0, t \geq 0$) for the shifted wave equation:
\triangleright Evolution equations:

$$
\begin{aligned}
\partial_{t} \phi & =\beta \partial_{x} \phi+\Pi+F^{\phi} \\
\partial_{t} \Pi & =\beta \partial_{x} \Pi+\partial_{x}^{2} \phi+F^{\Pi}
\end{aligned}
$$

\triangleright Initial data: $\phi(x, 0)=f^{\phi}(x), \Pi(x, 0)=f^{\Pi}(x)$
\triangleright Boundary data: $\Pi(0, t)-\partial_{x} \phi(0, t)=g(t)$ if $|\beta|<1$;
no BC s in the outflow case $(\beta \geq 1)$

Boundary treatment (continuum)

- Quarter space $(x \geq 0, t \geq 0)$ for the shifted wave equation:
\downarrow Evolution equations:

$$
\begin{aligned}
\partial_{t} \phi & =\beta \partial_{x} \phi+\Pi+F^{\phi} \\
\partial_{t} \Pi & =\beta \partial_{x} \Pi+\partial_{x}^{2} \phi+F^{\Pi}
\end{aligned}
$$

\triangleright Initial data: $\phi(x, 0)=f^{\phi}(x), \Pi(x, 0)=f^{\Pi}(x)$
\triangleright Boundary data: $\Pi(0, t)-\partial_{x} \phi(0, t)=g(t)$ if $|\beta|<1$;
no BCs in the outflow case $(\beta \geq 1)$

Boundary treatment (continuum)

- Quarter space $(x \geq 0, t \geq 0)$ for the shifted wave equation:
\triangleright Evolution equations:

$$
\begin{aligned}
\partial_{t} \phi & =\beta \partial_{x} \phi+\Pi+F^{\phi} \\
\partial_{t} \Pi & =\beta \partial_{x} \Pi+\partial_{x}^{2} \phi+F^{\Pi}
\end{aligned}
$$

\downarrow Initial data: $\phi(x, 0)=f^{\phi}(x), \Pi(x, 0)=f^{\Pi}(x)$
\triangleright Boundary data: $\Pi(0, t)-\partial_{x} \phi(0, t)=g(t)$ if $|\beta|<1$; no BC s in the outflow case $(\beta \geq 1)$

Boundary treatment (continuum)

\square Quarter space $(x \geq 0, t \geq 0)$ for the shifted wave equation:
\downarrow Evolution equations:

$$
\begin{aligned}
\partial_{t} \phi & =\beta \partial_{x} \phi+\Pi+F^{\phi} \\
\partial_{t} \Pi & =\beta \partial_{x} \Pi+\partial_{x}^{2} \phi+F^{\Pi}
\end{aligned}
$$

\triangleright Initial data: $\phi(x, 0)=f^{\phi}(x), \Pi(x, 0)=f^{\Pi}(x)$
\triangleright Boundary data: $\Pi(0, t)-\partial_{x} \phi(0, t)=g(t)$ if $|\beta|<1$; no BCs in the outflow case $(\beta \geq 1)$

- Strong stability

$$
\|u(\cdot, t)\|^{2} \leq K(t)\left(\|f\|^{2}+\int_{0}^{t}\left(\|F(\cdot, \tau)\|^{2}+\delta|g(\tau)|^{2}\right) d \tau\right)
$$

where $\delta=0,1$, and $u(x, t)=\left(\phi(x, t), \Pi(x, t), \phi_{x}(x, t)\right)^{T}$.

Boundary treatment (discrete)

\square Quarter space semi-discrete problem:
\downarrow Evolution equations:

$$
\begin{aligned}
\frac{d}{d t} \phi_{j} & =\beta D_{0} \phi_{j}+\Pi_{j}+F_{j}^{\phi} \\
\frac{d}{d t} \Pi_{j} & =\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}+F_{j}^{\Pi}
\end{aligned}
$$

\triangleright Initial data: $\phi_{j}(0)=f_{j}^{\phi}, \Pi_{j}(0)=f_{j}^{\Pi}$

Boundary treatment (discrete)

- Quarter space semi-discrete problem:
\downarrow Evolution equations:

$$
\begin{aligned}
\frac{d}{d t} \phi_{j} & =\beta D_{0} \phi_{j}+\Pi_{j}+F_{j}^{\phi} \\
\frac{d}{d t} \Pi_{j} & =\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}+F_{j}^{\Pi}
\end{aligned}
$$

\triangleright Initial data: $\phi_{j}(0)=f_{j}^{\phi}, \Pi_{j}(0)=f_{j}^{\Pi}$

Boundary treatment (discrete)

\square Quarter space semi-discrete problem:
\downarrow Evolution equations:

$$
\begin{aligned}
\frac{d}{d t} \phi_{j} & =\beta D_{0} \phi_{j}+\Pi_{j}+F_{j}^{\phi} \\
\frac{d}{d t} \Pi_{j} & =\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}+F_{j}^{\Pi}
\end{aligned}
$$

\triangleright Initial data: $\phi_{j}(0)=f_{j}^{\phi}, \Pi_{j}(0)=f_{j}^{\Pi}$

Boundary treatment (discrete)

\square Quarter space semi-discrete problem:
\triangleright Evolution equations:

$$
\begin{aligned}
\frac{d}{d t} \phi_{j} & =\beta D_{0} \phi_{j}+\Pi_{j}+F_{j}^{\phi} \\
\frac{d}{d t} \Pi_{j} & =\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}+F_{j}^{\Pi}
\end{aligned}
$$

\triangleright Initial data: $\phi_{j}(0)=f_{j}^{\phi}, \Pi_{j}(0)=f_{j}^{\Pi}$
\square What should one do at the boundary? Start with $\beta>1$.

Boundary treatment (discrete)

\square Quarter space semi-discrete problem:
\triangleright Evolution equations:

$$
\begin{aligned}
\frac{d}{d t} \phi_{j} & =\beta D_{0} \phi_{j}+\Pi_{j}+F_{j}^{\phi} \\
\frac{d}{d t} \Pi_{j} & =\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}+F_{j}^{\Pi}
\end{aligned}
$$

\triangleright Initial data: $\phi_{j}(0)=f_{j}^{\phi}, \Pi_{j}(0)=f_{j}^{\Pi}$
What should one do at the boundary? Start with $\beta>1$.
\triangleright Search the literature
\triangleright Try with the discrete energy method.
\downarrow Try with the Laplace transform method.

Boundary treatment (discrete)

\square Quarter space semi-discrete problem:
\triangleright Evolution equations:

$$
\begin{aligned}
\frac{d}{d t} \phi_{j} & =\beta D_{0} \phi_{j}+\Pi_{j}+F_{j}^{\phi} \\
\frac{d}{d t} \Pi_{j} & =\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}+F_{j}^{\Pi}
\end{aligned}
$$

\triangleright Initial data: $\phi_{j}(0)=f_{j}^{\phi}, \Pi_{j}(0)=f_{j}^{\Pi}$
\square What should one do at the boundary? Start with $\beta>1$.
\downarrow Search the literature
\triangleright Try with the discrete energy method.
\triangleright Try with the Laplace transform method.

Boundary treatment (discrete)

\square Quarter space semi-discrete problem:
\triangleright Evolution equations:

$$
\begin{aligned}
\frac{d}{d t} \phi_{j} & =\beta D_{0} \phi_{j}+\Pi_{j}+F_{j}^{\phi} \\
\frac{d}{d t} \Pi_{j} & =\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}+F_{j}^{\Pi}
\end{aligned}
$$

\triangleright Initial data: $\phi_{j}(0)=f_{j}^{\phi}, \Pi_{j}(0)=f_{j}^{\Pi}$
\square What should one do at the boundary? Start with $\beta>1$.
\triangleright Search the literature
\triangleright Try with the discrete energy method.
\downarrow Try with the Laplace transform method.

The Laplace transform method

\square Quarter space semi-discrete problem $(\beta>1, j \geq 0)$:

$$
\begin{aligned}
& \frac{d}{d t} \phi_{j}=\beta D_{0} \phi_{j}+\Pi_{j}+F_{j}^{\phi} \\
& \frac{d}{d t} \Pi_{j}=\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}+F_{j}^{\Pi} \\
& \phi_{j}(0)=f_{j}^{\phi}, \quad \Pi_{j}(0)=f_{j}^{\Pi} \\
& h^{q_{2}+1} D_{+}^{q_{2}+1} \phi_{-1}=g^{\phi}, \quad h^{q_{1}} D_{+}^{q_{1}} \Pi_{-1}=g^{\Pi} \\
& \|\Pi\|_{h}^{2}+\left\|D_{+} \phi\right\|_{h}^{2}<\infty
\end{aligned}
$$

The Laplace transform method

\square Quarter space semi-discrete problem $(\beta>1, j \geq 0)$:

$$
\begin{aligned}
& \frac{d}{d t} \phi_{j}=\beta D_{0} \phi_{j}+\Pi_{j}+F_{j}^{\phi} \\
& \frac{d}{d t} \Pi_{j}=\beta D_{0} \Pi_{j}+D_{+} D_{-} \phi_{j}+F_{j}^{\Pi} \\
& \phi_{j}(0)=f_{j}^{\phi}, \quad \Pi_{j}(0)=f_{j}^{\Pi} \\
& h^{q_{2}+1} D_{+}^{q_{2}+1} \phi_{-1}=g^{\phi}, \quad h^{q_{1}} D_{+}^{q_{1}} \Pi_{-1}=g^{\Pi} \\
& \|\Pi\|_{h}^{2}+\left\|D_{+} \phi\right\|_{h}^{2}<\infty
\end{aligned}
$$

- Perform a discrete reduction to first order:

$$
X_{j}=D_{+} \phi_{j}
$$

The Laplace transform method

\square Reduced quarter space semi-discrete problem ($\beta>1, j \geq 0$):

$$
\begin{aligned}
& \frac{d}{d t} X_{j}=\beta D_{0} X_{j}+D_{+} \Pi_{j}+D_{+} F_{j}^{\phi} \\
& \frac{d}{d t} \Pi_{j}=\beta D_{0} \Pi_{j}+D_{-} X_{j}+F_{j}^{\Pi} \\
& X_{j}(0)=D_{+} f_{j}^{\phi}, \quad \Pi_{j}(0)=f_{j}^{\Pi} \\
& h^{q_{2}} D_{+}^{q_{2}} X_{-1}=g^{\phi} / h, \quad h^{q_{1}} D_{+}^{q_{1}} \Pi_{-1}=g^{\Pi} \\
& \|\Pi\|_{h}^{2}+\|X\|_{h}^{2}<\infty
\end{aligned}
$$

The Laplace transform method

\square Reduced quarter space semi-discrete problem ($\beta>1, j \geq 0$):

$$
\begin{aligned}
& \frac{d}{d t} X_{j}=\beta D_{0} X_{j}+D_{+} \Pi_{j}+D_{+} F_{j}^{\phi} \\
& \frac{d}{d t} \Pi_{j}=\beta D_{0} \Pi_{j}+D_{-} X_{j}+F_{j}^{\Pi} \\
& X_{j}(0)=D_{+} f_{j}^{\phi}, \quad \Pi_{j}(0)=f_{j}^{\Pi} \\
& h^{q_{2}} D_{+}^{q_{2}} X_{-1}=g^{\phi} / h, \quad h^{q_{1}} D_{+}^{q_{1}} \Pi_{-1}=g^{\Pi} \\
& \|\Pi\|_{h}^{2}+\|X\|_{h}^{2}<\infty
\end{aligned}
$$

The Laplace transform method

\square Reduced quarter space semi-discrete problem $(\beta>1, j \geq 0)$:

$$
\begin{aligned}
& \frac{d}{d t} X_{j}=\beta D_{0} X_{j}+D_{+} \Pi_{j}+D_{+} F_{j}^{\phi} \\
& \frac{d}{d t} \Pi_{j}=\beta D_{0} \Pi_{j}+D_{-} X_{j}+F_{j}^{\Pi} \\
& X_{j}(0)=D_{+} f_{j}^{\phi}, \quad \Pi_{j}(0)=f_{j}^{\Pi} \\
& h^{q_{2}} D_{+}^{q_{2}} X_{-1}=g^{\phi} / h, \quad h^{q_{1}} D_{+}^{q_{1}} \Pi_{-1}=g^{\Pi} \\
& \|\Pi\|_{h}^{2}+\|X\|_{h}^{2}<\infty
\end{aligned}
$$

\square Result: the scheme is stable and second order convergent if $q_{1}, q_{2} \geq 2$.

The Laplace transform method

\square Reduced quarter space semi-discrete problem $(\beta>1, j \geq 0)$:

$$
\begin{aligned}
& \frac{d}{d t} X_{j}=\beta D_{0} X_{j}+D_{+} \Pi_{j}+D_{+} F_{j}^{\phi} \\
& \frac{d}{d t} \Pi_{j}=\beta D_{0} \Pi_{j}+D_{-} X_{j}+F_{j}^{\Pi} \\
& X_{j}(0)=D_{+} f_{j}^{\phi}, \quad \Pi_{j}(0)=f_{j}^{\Pi} \\
& h^{q_{2}} D_{+}^{q_{2}} X_{-1}=g^{\phi} / h, \quad h^{q_{1}} D_{+}^{q_{1}} \Pi_{-1}=g^{\Pi} \\
& \|\Pi\|_{h}^{2}+\|X\|_{h}^{2}<\infty
\end{aligned}
$$

\square Result: the scheme is stable and second order convergent if $q_{1}, q_{2} \geq 2$. Minimum order of extrapolation is

$$
h^{3} D_{+}^{3} \phi_{-1}=0, \quad h^{2} D_{+}^{2} \Pi_{-1}=0
$$

The Laplace transform method

\square Reduced quarter space semi-discrete problem $(\beta>1, j \geq 0)$:

$$
\begin{aligned}
& \frac{d}{d t} X_{j}=\beta D_{0} X_{j}+D_{+} \Pi_{j}+D_{+} F_{j}^{\phi} \\
& \frac{d}{d t} \Pi_{j}=\beta D_{0} \Pi_{j}+D_{-} X_{j}+F_{j}^{\Pi} \\
& X_{j}(0)=D_{+} f_{j}^{\phi}, \quad \Pi_{j}(0)=f_{j}^{\Pi} \\
& h^{q_{2}} D_{+}^{q_{2}} X_{-1}=g^{\phi} / h, \quad h^{q_{1}} D_{+}^{q_{1}} \Pi_{-1}=g^{\Pi} \\
& \|\Pi\|_{h}^{2}+\|X\|_{h}^{2}<\infty
\end{aligned}
$$

\square Result: the scheme is stable and second order convergent if $q_{1}, q_{2} \geq 2$. Minimum order of extrapolation is

$$
\phi_{-1}=3 \phi_{0}-3 \phi_{1}+\phi_{2}, \quad \Pi_{-1}=2 \Pi_{0}-\Pi_{1}
$$

Proof of strong stability

- Three main parts of the proof:

1. Verifying the Kreiss condition to obtain an estimate for the $F=0, f=0$ case.
2. Estimate the solution of the problem with modified $B C s$ in terms of f and F.
3. Put things together to derive estimate for the original problem.

Proof of strong stability

- Three main parts of the proof:

1. Verifying the Kreiss condition to obtain an estimate for the $F=0, f=0$ case.
2. Estimate the solution of the problem with modified $B C s$ in terms of f and F.
3. Put things together to derive estimate for the original problem.

Proof of strong stability

\square Three main parts of the proof:

1. Verifying the Kreiss condition to obtain an estimate for the $F=0, f=0$ case.
2. Estimate the solution of the problem with modified BCs in terms of f and F.
3. Put things together to derive estimate for the original problem.

Proof of strong stability

- Three main parts of the proof:

1. Verifying the Kreiss condition to obtain an estimate for the $F=0, f=0$ case.
2. Estimate the solution of the problem with modified $B C s$ in terms of f and F.
3. Put things together to derive estimate for the original problem.

Proof of strong stability

\square Three main parts of the proof:

1. Verifying the Kreiss condition to obtain an estimate for the $F=0, f=0$ case.
2. Estimate the solution of the problem with modified BCs in terms of f and F.
3. Put things together to derive estimate for the original problem.
\square The strong stability estimate

$$
\|v(t)\|_{D_{+}}^{2} \leq K(t)\left(\|f\|_{D_{+}}^{2}+\int_{0}^{t}\left(\|F(\tau)\|_{D_{+}}^{2}+|g(\tau)|^{2}\right) d \tau\right)
$$

where $\|v(t)\|_{D_{+}}^{2}=\|\phi\|_{h}^{2}+\|\Pi\|_{h}^{2}+\left\|D_{+} \phi\right\|_{h}^{2}$, can be used to prove convergence (i.e. derive estimates for the error).

The Kreiss condition (*)

\square Solve the Laplace transformed problem for ($f=0$ and $F=0$) and express the solution in terms of the boundary data:

$$
\hat{\Pi}_{j}=\sum_{k=\Pi, X} c_{j k}^{\Pi} \hat{g}^{k}, \quad \hat{X}_{j}=\sum_{k=\Pi, X} c_{j k}^{X} \hat{g}^{k}
$$

Verify the Kreiss condition $\left(\left|\hat{\Pi}_{j}\right|^{2}+\left|\hat{X}_{j}\right|^{2} \leq K\left(\left|\hat{g}^{\Pi}\right|^{2}+\left|\hat{g}^{X}\right|^{2}\right)\right)$ by plotting

$$
N=\left(\sum_{\substack{ \\j=-1,0 \\ k=\Pi, X}}\left(\left|c_{j k}^{\Pi}\right|^{2}+\left|c_{j k}^{X}\right|^{2}\right)\right)^{1 / 2}
$$

The Kreiss condition (*)

Other cases

\square Similar result holds for the boundary conditions $(|\beta|<1)$

$$
\begin{aligned}
& \Pi_{0}-D_{0} \phi_{0}=g \\
& h^{2} D_{+}^{2} \Pi_{-1}=0
\end{aligned}
$$

Other cases

\square Similar result holds for the boundary conditions $(|\beta|<1)$

$$
\begin{aligned}
& \phi_{-1}=\phi_{1}+2 h\left(g-\Pi_{0}\right) \\
& \Pi_{-1}=2 \Pi_{0}-\Pi_{1}
\end{aligned}
$$

Other cases

- Similar result holds for the boundary conditions $(|\beta|<1)$

$$
\begin{aligned}
& \Pi_{0}-D_{0} \phi_{0}=g \\
& h^{2} D_{+}^{2} \Pi_{-1}=0
\end{aligned}
$$

- Fourth order accuracy
- Outflow case:

$$
\begin{array}{ll}
h^{5} D_{+}^{5} \phi_{-1}=0 & h^{4} D_{+}^{4} \Pi_{-1}=0 \\
h^{5} D_{+}^{5} \phi_{-2}=0 & h^{4} D_{+}^{4} \Pi_{-2}=0
\end{array}
$$

\triangleright Time-like case:

$$
\begin{array}{ll}
\Pi_{0}-D_{0}\left(1-\frac{h^{2}}{6} D_{+} D_{-}\right) \phi_{0}=g & h^{4} D_{+}^{4} \Pi_{-1}=0 \\
h^{5} D_{+}^{5} \phi_{-2}=0 & h^{4} D_{+}^{4} \Pi_{-2}=0
\end{array}
$$

Other cases

- Similar result holds for the boundary conditions $(|\beta|<1)$

$$
\begin{aligned}
& \Pi_{0}-D_{0} \phi_{0}=g \\
& h^{2} D_{+}^{2} \Pi_{-1}=0
\end{aligned}
$$

- Fourth order accuracy
\triangleright Outflow case:

$$
\begin{array}{ll}
h^{5} D_{+}^{5} \phi_{-1}=0 & h^{4} D_{+}^{4} \Pi_{-1}=0 \\
h^{5} D_{+}^{5} \phi_{-2}=0 & h^{4} D_{+}^{4} \Pi_{-2}=0
\end{array}
$$

\downarrow Time-like case:

$$
\begin{array}{ll}
\Pi_{0}-D_{0}\left(1-\frac{h^{2}}{6} D_{+} D_{-}\right) \phi_{0}=g & h^{4} D_{+}^{4} \Pi_{-1}=0 \\
h^{5} D_{+}^{5} \phi_{-2}=0 & h^{4} D_{+}^{4} \Pi_{-2}=0
\end{array}
$$

Other cases

- Similar result holds for the boundary conditions $(|\beta|<1)$

$$
\begin{aligned}
& \Pi_{0}-D_{0} \phi_{0}=g \\
& h^{2} D_{+}^{2} \Pi_{-1}=0
\end{aligned}
$$

- Fourth order accuracy
- Outflow case:

$$
\begin{array}{ll}
h^{5} D_{+}^{5} \phi_{-1}=0 & h^{4} D_{+}^{4} \Pi_{-1}=0 \\
h^{5} D_{+}^{5} \phi_{-2}=0 & h^{4} D_{+}^{4} \Pi_{-2}=0
\end{array}
$$

Time-like case:

$$
\begin{array}{ll}
\Pi_{0}-D_{0}\left(1-\frac{h^{2}}{6} D_{+} D_{-}\right) \phi_{0}=g & h^{4} D_{+}^{4} \Pi_{-1}=0 \\
h^{5} D_{+}^{5} \phi_{-2}=0 & h^{4} D_{+}^{4} \Pi_{-2}=0
\end{array}
$$

Conclusion

\square Subtle difficulties arise in the discretization of first order in time, second in space systems
\triangleright Standard discretization of well-posed problems can give rise to unstable schemes. Not just β 's fault!
\downarrow With the standard discretization the discrete norm better contain D_{+}operators.
\downarrow Testing stability

- Boundary treatment
\triangleright Limitations of the discrete energy method.
\triangleright Strong stability proofs for the 2nd and 4th order accurate case.

Conclusion

\square Subtle difficulties arise in the discretization of first order in time, second in space systems
\triangleright Standard discretization of well-posed problems can give rise to unstable schemes. Not just β 's fault!
\downarrow With the standard discretization the discrete norm better contain D_{+}operators.

- Testing stability
- Boundary treatment
\triangleright Limitations of the discrete energy method.
\triangleright Strong stability proofs for the 2nd and 4th order accurate case.

Conclusion

\square Subtle difficulties arise in the discretization of first order in time, second in space systems
\triangleright Standard discretization of well-posed problems can give rise to unstable schemes. Not just β 's fault!
\triangleright With the standard discretization the discrete norm better contain D_{+}operators.
\downarrow Testing stability

- Boundary treatment
\triangleright Limitations of the discrete energy method.
\triangleright Strong stability proofs for the 2nd and 4th order accurate case.

Conclusion

\square Subtle difficulties arise in the discretization of first order in time, second in space systems
\triangleright Standard discretization of well-posed problems can give rise to unstable schemes. Not just β 's fault!
\downarrow With the standard discretization the discrete norm better contain D_{+}operators.
\downarrow Testing stability

- Boundary treatment
\triangleright Limitations of the discrete energy method.
\triangleright Strong stability proofs for the 2nd and 4th order accurate case.

Conclusion

- Subtle difficulties arise in the discretization of first order in time, second in space systems
\triangleright Standard discretization of well-posed problems can give rise to unstable schemes. Not just β 's fault!
\downarrow With the standard discretization the discrete norm better contain D_{+}operators.
\triangleright Testing stability
- Boundary treatment
\triangleright Limitations of the discrete energy method.
\triangleright Strong stability proofs for the 2nd and 4th order accurate case.

Conclusion

\square Subtle difficulties arise in the discretization of first order in time, second in space systems
\triangleright Standard discretization of well-posed problems can give rise to unstable schemes. Not just β 's fault!
\downarrow With the standard discretization the discrete norm better contain D_{+}operators.
\downarrow Testing stability
\square Boundary treatment
\downarrow Limitations of the discrete energy method.
\downarrow Strong stability proofs for the 2nd and 4th order accurate case.

Conclusion

\square Subtle difficulties arise in the discretization of first order in time, second in space systems
\triangleright Standard discretization of well-posed problems can give rise to unstable schemes. Not just β 's fault!
\downarrow With the standard discretization the discrete norm better contain D_{+}operators.
\downarrow Testing stability
\square Boundary treatment
\downarrow Limitations of the discrete energy method.
\downarrow Strong stability proofs for the 2nd and 4th order accurate case.

Conclusion

\square Subtle difficulties arise in the discretization of first order in time, second in space systems
\triangleright Standard discretization of well-posed problems can give rise to unstable schemes. Not just β 's fault!
\downarrow With the standard discretization the discrete norm better contain D_{+}operators.
\downarrow Testing stability

- Boundary treatment
\triangleright Limitations of the discrete energy method.
\triangleright Strong stability proofs for the 2nd and 4th order accurate case.

