
Binary Neutron Stars: 
Helical Symmetry and Waveless Approximation

John Friedman 

Center for Gravitation and Cosmology
University of Wisconsin-Milwaukee



I. EINSTEIN EULER SYSTEM

II. HELICAL SYMMETRY AND 
WAVELESS APPROXIMATION

III. STATIONARY AND QUASI-STATIONARY 
EQUILIBRIA FOR ROTATING STARS

IV. RESULTS FROM EVOLUTION

A. PROMPT COLLAPSE VS 
HYPERMASSIVE NS

B. GW FROM NS OSCILLATIONS

C. J/M2 FOR FINAL BH



The last 3 minutes
Inspiral



I. EINSTEIN-EULER SYSTEM: 
PERFECT FLUID SPACETIMES

With qαβ = gαβ+ uα uβ the projection    uα , ⊥



Binary NS inspiral is modeled by a perfect-fluid 
spacetime, a spacetime  M,g whose whose metric 
satisfies

with Tαβ a perfect-fluid energy-momentum tensor.

,T u u pq
q g u u

αβ α β αβ
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Barotropic flows: enthalpy and injection energy

A fluid with a one-parameter EOS is called 
barotropic.  Neutron star matter is accurately 
described by a one-parameter EOS because it is 
approximately isentropic: Neutron stars rapidly cool 
far below the Fermi energy (1013K » mp), effectively 
to zero temperature and entropy. 

(There is, however, a composition gradient in neutron 
stars, with the density of protons and electrons 
ordinarily increasing outward, and this dominates a 
departure from a barotropic equation of state in stellar 
oscillations).



1-PARAMETER EOS

Then the Euler eqn
becomes

Introducing h allows one to find a first integral of 
the equation of hydrostatic equilibrium for 
corotating and irrotational binaries stationary in a 
rotating frame: with helical killing vector kα



For corotation,               ,  hydrostatic equilibrium

takes the form

with first integral

where        is a constant 

(     is the injection energy per unit baryon mass needed to 
bring baryons at infinity to the same internal state as that in the 
star, lower them, give them the speed of the baryons in a fluid 
element, open a space to put them, and inject them into the 
star).

tu u kα α=



COMPACT BINARIES: 
QUASISTATIONARY EQUILIBRIA

In the Newtonian limit, because a binary system does 
not radiate, it is stationary in a rotating frame.  
Because radiation appears only in the 2 1/2 post-
Newtonian order  --

to order (v/c)5 x Newtonian theory, 
one computes radiation for most of the inspiral from a 
stationary post-Newtonian orbit.

Time translations in a rotating frame are generated by 
a helical Killing vector kα.  



For irrotational flow, a good approximation at late stages of 
inspiral, uα is not along a Killing vector, but there is still a first 
integral:

We can always write the velocity uα in the 3+1 form 

with vα nα=0. For irrotational flow, 
and the first integral of the relativistic Euler equation is 

( )vtu u kα α α= +

vh α α= ∇ Ψ

vt

h hu
u

α
α+ = E



In the Newtonian limit and in the curved spacetime of 
a rotating star, kα has the form

where tα and φα are timelike and rotational Killing 
vectors.  For a stationary binary system in GR, one 
can choose t and φ coordinates for which kα has this 
form with tα=∂t and φα=∂φ .



In the Newtonian limit and in the curved spacetime of 
a rotating star, kα has the form

where tα and φα are timelike and rotational Killing 
vectors.  For a stationary binary system in GR, one 
can choose t and φ coordinates for which kα has this 
form with tα=∂t and φα=∂φ .

(One can define a helical KV by its helical structure in 
spacetime:  There is a unique period T for which each point P 
is timelike-separated from the 
corresponding point 
a parameter distance 
T later long the orbit.)



kα is timelike near the fluid



kα is spacelike outside the 
light cylinder at ϖ Ω = 1



Although kα is spacelike outside a large cylinder, one 
can, as usual, introduce a 3+1 split associated with a 
spacelike hypersurface Σ. Evolution along kα can again 
be expressed in terms of a lapse and shift,

nα is the future pointing unit normal to Σ
βα a vector on Σ 
In a chart t, xi , for which Σ is a t = constant surface,
the metric is

k nα α αα β= +

where α, βa, and γab are the lapse function, shift 
vector, and 3-D spatial metric of Σ.



Quasiequilibrium models are based on helically 
symmetric spacetimes in which 
a set of field equations and 
the equation of hydrostatic equilibrium, 
are solved for the independent 
metric potentials and 
the fluid density.  

From, e.g., the angular velocity and multipole moments 
of a model, one can compute the energy radiated and 
construct a quasiequilibrium sequence.   

Until recently, these sequences  (and initial data for NS 
binaries) were restricted to spatially conformally flat 
metrics, the IWM (Isenberg-Wilson-Mathews) 
approximation.  



ISENBERG-WILSON-MATHEWS ANSATZ:
SPATIALLY CONFORMALLY FLAT METRIC

fab flat.  

Five metric potentials ψ, α, β a are found from 
five  components of the Einstein equation:
1 Hamiltonian constraint

3 components of the Momentum constraint

Spatial trace of Einstein eq:  γαβ(Gαβ-8π Tαβ), with 0K =



IWM solutions have 5, not 6, metric functions and 
satisfy only 5 of the 6 independent components of the 
Einstein equation.  An IWM spacetime agrees with an 
exact solution only to 1st post-Newtonian order.

Initial data then has some spurious radiation and 
cannot accurately enforce the Ω (r) relation.  
Orbits from the data can be elliptical.  One  improves 
the data by adding the asymptotic equality between 
Komar and ADM mass.  

To do better, we need the remaining metric degree of 
freedom. 



DATA IN WAVELESS APPROXIMATION

Initial value equations are satisfied, and 
time derivatives are artificially dropped in remaining 
field equations to replace hyperbolic equations for the 
tracefree part of the spatial metric by elliptic equations. 

(Shibata, Uryu, Friedman 2004, 
Bonazzola, Gourgoulhon, Grandclement, Novak 2003, 
Schafer, Gopkumar 2003, 
Uryu, Limousin, Shibata, JF 05)

Accurate to 2PN, with accuracy to 3PN 
(ignoring radiation at 2 ½ PN) possible



Metric and extrinsic curvature



Formulation



Impose stationarity conditions:
Fluid: 

Metric 

( ) ( )0t
k a ku g huα

αρ γ− = =L L

0, 0k ab t abK γ= ∂ =L

Then the tracefree Gab equation 

becomes elliptic. 



Separate out flat Laplacian
to solve elliptic eqn iteratively for hab

abhΔ

abhΔ

where

(     +





Numerical solution 
(Uryu, Shibata, Limousin, JF)

n=1   polytrope,
M/R = 0.2, d/R = 1.5

Non-conformally flat parts of 
:ab ab abh fγ= −



Contour lines of hab



• Beig and Ashtekar-Magnon showed that that 
MK=MADM for stationary solutions. By modifying 
Beig’s proof, we obtain sufficient asymptotic 
conditions for the equality. (Shibata, Uryu, JF 04) 
It is, in particular, satisfied in the present waveless
formalism and serves as a check on the accuracy 
of the solution:  (MK-MADM)/MADM < 0.02%



Helically symmetric solutions

Related work on helically symmetric exact solutions for BH’s, NS’s, and 
toy models by 
Blackburn, Detweiler
Detweiler, 
Whelan, Krivan, Price
Whelan, Beetle, Krivan, Price
JF, Uryu, Shibata
Andrade, Beetle, Blinov, Burko,  Bromley, Cranor, Owen, Price
Torre
Klein
Bromley, Owen, Price
JF, Uryu



Two advantanges of helically symmetric solutions 
to the full set of Einstein equations:

Energy in gravitational radiation is controlled
(smaller than that of the outgoing solution, for 
practical grids).

By satisfying a full set of Einstein-Euler equations, 
one enforces a circular orbit. 

Because data obtained by solving the initial value 
equations alone or from an (spatially conformally
flat) approximation satisfy a truncated set of field 
equations, they yield elliptical orbits. 



An exact helically symmmetric solution is 
not asymptotically flat,

because the energy radiated at all past times is present 
on a spacelike hypersurface. 

At a distance of a few wavelengths (larger than the 
present grid size) the energy is dominated by the mass 
of the binary system, and the solution appears to be 
asymptotically flat. 

Only at distances larger than about 104 M is the 
energy in the radiation field comparable to the mass 
of the binary system.



Work in progress by 
Uryu, Price, Beetle, Bromley; 
Shin’ichirou Yoshida, JF, Jocelyn Read, 
Ben Bromley, Koji Uryu
seeks to solve the full equations without truncation 
for a helically symmetric spacetime. 

In a helically symmetric spacetime, the constraints 
remain elliptic, but the dynamical equations have a 
mixed elliptic-hyperbolic character: 
elliptic where kα is spacelike and hyperbolic where kα

is timelike:  



Flat space wave equation with helical symmetry:

In general,
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Problem is not intrinsically elliptic, BUT after  
spherical harmonic decomposition,

have coupled system of elliptic equations 
(Helmholtz eqs), each of form

Toy problems: 

Nonlinear wave equation and two orbiting point 
scalar charges as the source :

3 ( )S S
S

ψ λψ ψ λ ψ

ψ λψ ψ

2= − + = − ∇ +

= − +



Remarkably, for each case, iteration converges for λ 
>>1, when sign of  λ opposite to sign of S.
(Yoshida,Bromley,Read,Uryu,JF).



But for sign of  λ same as sign of S, convergence is 
limited to λ of order unity.

Range of convergence is roughly independent of 
iteration method used:

Newton-Raphson (Bromley)

Successive inversion of
(Yoshida, Read)

Successive inversion of 
(Uryu,Yoshida)

1
( )

n n
Nψ λ ψ

+

=

1
2 2( )

n n
N φψ λ ψ ψ

+

= + Ω ∂Δ



But for sign of  λ same as sign of S, convergence is 
limited to λ of order unity.

Range of convergence is roughly independent of 
iteration method used:

Newton-Raphson (Bromley)

Successive inversion of
(Yoshida, Read)

Successive inversion of 
(Uryu,Yoshida)

1
( )

n n
Nψ λ ψ

+

=
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But extend range of  λ by placing boundary 
closer to the source.

Boundary Minimum lambda for convergence
2.5 -6
5 -4
10 -3
15 -2.5
30 -2.3
60 -2.2



RECENT SUCCESS (Uryu):

USE WAVELESS TO SET B.C. FOR
HELICALLY SYMMETRIC SOLUTION :

WAVELESS OUTSIDE r = π/Ω

HELICALLY SYMMETRIC INSIDE

THEN THE FULL BINARY NEUTRON-STAR 
CODE CONVERGES!









HELICALLY SYMMETRY INSIDE R = π/Ω

z/R



WAVELESS EVERYWHERE



Simulations using parametric EOS:
Realistic EOS (T=0) + Ideal gas (thermal) 
p=pcold + pthermal

pcold : FPS or SLy

pthermal = (Γth - 1) ρεthermal :      εthermal = ε - εcold

Γth = 2,  (also 1.3, 1.65).

Some recent results from 
binary NS merger simulations

(Shibata, Taniguchi, Uryu)



Cold part of the EOS.
• Stiffer on high density side, compared to earlier simulations 

Γ=2 to 2.25.

Haensel & Potekhin (2004)



SLy EOS, merger1.4 1.4M M−



SLy EOS,                          merger.1.3 1.3M M−



SLy EOS, merger.1.35 1.25M M−



Results of simulations
• Merger outcome: 

prompt BH,   or 
nonaxisymmetric rotating hypermassive NS.

• Mass threshold for prompt BH formation : 
for SLy, for FPS

• Dynamics of merger does not depend on the 
the mass ratio for M1/ M2 =0.9 to1.

• J/M2 of BH is 0.7-0.8, whence
oscillation frequency > 6.5 - 7 kHz.

2.7 2.5M M> >



Implications
• Reliable templates for late inspiral, joining 

the PN waveform are close. 
• Once we find gravitational waves from 

binary neutron stars, it will be important to 
look for the last part of the train: 
GW from oscillations at 3-4 kHz. 

• Observing the frequencies of quasinormal
modes would constrain the EOS.



Results of simulations

• Merger products: prompt BH, or nonaxisymmetric rotating 
hypermassive NS.  
(In earlier Γ=2 results, hypermassive NS were nearly axisymmetric.)

• Mass threshold for prompt BH formation : 
for SLy, for FPS

• Dynamics of merger does not depend on the the mass ratio for 
M1/ M2 =0.9 to1.

• When a BH forms, the disk mass depends weakly on the mass ratio,
M1/ M2 =0.9 to 1, Mdisk < 1% . 

• J/M2 of BH is 0.7-0.8, whence
QNM frequency > 6.5 - 7 kHz.

2.7 2.5M M> >



Hypermassive NS as a strong GW and 
neutrino emitter.

• A nonaxisymmetric rotating hypermassive NS is a strong 
emitter of quasi-periodic GW around 3 - 4 kHz.

• Effective GW amplitude will be 
hf = 1.8x10-21,  (dE/df/1051 erg/Hz)1/2 , 100Mpc/r . )

• Hypermassive NS collapses to BH in <100 ms, 
because GW emission carries J away.  
Neutrino cooling may not govern the collapse, because its 
emission timescale is 1 to 10 s. 
(Outer region of hypermassive NS is 10 to 20MeV, 
neutrino energy flux » 1053.)



Summary
• We are approaching reliable templates for 

binary merger, joining the PN waveform to 
the merger waveform. 

• Once we find gravitational waves from 
binary neutron stars, it will be important to 
look for the last part of the train: 
GW from oscillations at 3-4 kHz 

• Observing the frequencies of quasinormal
modes constrains the EOS.


	Helically symmetric solutions
	Some recent results from �binary NS merger simulations�(Shibata, Taniguchi, Uryu)
	Cold part of the EOS.
	Results of simulations
	Implications
	Results of simulations
	Hypermassive NS as a strong GW and neutrino emitter.
	Summary

