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Stellar collapse
Catastrophic events involving stars are likely to give information

on matter in extreme regimes through gravitational waves.
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Stellar collapse
Catastrophic events involving stars are likely to give information

on matter in extreme regimes through gravitational waves. We

have simulated a number of events, including:

Neutron star oscillation modes
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Stellar collapse
Catastrophic events involving stars are likely to give information

on matter in extreme regimes through gravitational waves. We

have simulated a number of events, including:

Fragmentation of extreme stars
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Stellar collapse
Catastrophic events involving stars are likely to give information

on matter in extreme regimes through gravitational waves. We

have simulated a number of events, including:

Iron core collapse
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Neutron star collapse to black hole

I will focus on the gravitational waves from collapsing neutron stars.
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Neutron star collapse to black hole

I will focus on the gravitational waves from collapsing neutron stars.

We have used

• Hydrodynamical excision (IH, Löffler, Nerozzi).

• Energy accounting methods, studying event and apparent horizons

(Baiotti, IH, Montero et al.).

• Mesh refinement (Schnetter, Hawley, IH).

• Direct gravitational wave emission (Baiotti, IH, Rezzolla, Schnetter).
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Hydrodynamical excision
Ensuring flux conservation is crucial for evolving shocks in

hydrodynamics.
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Hydrodynamical excision
Ensuring flux conservation is crucial for evolving shocks in

hydrodynamics.

A hydrodynamical excision scheme applying outflow boundary

conditions by considering the flux propagates the flow through the

boundary.

A scheme that does not may produce oscillations.

The consistent scheme has worked well in all tests.
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NS Collapse: Initial data

The initial data is a (slightly perturbed) unstable stationary axisymmetric

NS with a polytropic EOS. More realistic initial data and EOS now

possible.
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Collapsing NS dynamics: I

The expected behaviour of a collapsing star
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Collapsing NS dynamics: I

The expected behaviour of a collapsing star is reproduced in simulations

of initially slowly rotating models.

Southampton, August 2005 6



Collapsing NS dynamics: II

Initially rapidly rotating NSs start to rotate differentially, leading to a

short-lived disc of material outside the black hole. The black hole grows

as matter is accreted, as shown by the horizons.
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Mesh refinement

We use Berger-Oliger style mesh refinement where the grids are fixed in

space.
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Mesh refinement

We use Berger-Oliger style mesh refinement where the grids are fixed in

space. However, the grids are adaptive in time. By the end of the

simulation the entire black hole is contained within a single grid.

Carpet MR code based on Cactus framework for parallelism etc.
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Wave extraction

• We use first order gauge invariant Zerilli extraction.

• Near-zone and gauge effects still visible at small radii.

• Quadrupole formula gives poor results. Cauchy characteristic extraction

under development.
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Wave extraction (II)

The power spectrum matches our expectations; the peak is bounded by

the QNM of the BH and the w modes of the initial NS.
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Computing w modes more accurately

Here we used “standard”

values for w mode

frequencies.
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Computing w modes more accurately

Here we used “standard”

values for w mode

frequencies.

More accurate values

can be found numerically

using the inverse Cowling

approximation.

Applied to this model we

find that the w modes for

the NS background are

considerably closer to the

BH QNMs.

Southampton, August 2005 11



Computing more of the wavesignal
The computed wavesignals are truncated by instabilities near the

excision region. These are caused by the excision of spacetime

variables.
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Computing more of the wavesignal

The computed wavesignals are

truncated by instabilities near the

excision region. These are caused by

the excision of spacetime variables.

An alternative method that may

avoid these problems and has other

benefits is the use of a multipatch

grid. This covers the domain with

S2 × R topology grids, excising the

centre. The smooth inner boundary

makes excision simpler.
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Multiple patch hydrodynamics

Standard (HRSC) numerical

methods for hydrodynamics are

incompatible with multiple grids

that just touch. Instead overlapping

patches are used, as implemented by

Thornburg.
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Multiple patch hydrodynamics

Standard (HRSC) numerical

methods for hydrodynamics are

incompatible with multiple grids

that just touch. Instead overlapping

patches are used, as implemented by

Thornburg.

Using this approach discontinuities

can be smoothly propagated through

grid boundaries, and tests such

as wind accretion involving shocks

performed.
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Future prospects

• Implementation of a fourth-order accurate HRSC in progress; results

show only minor improvements applied to current test problems.
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