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Overview: 
disconnected pieces of (some) reality…

• Book of stories, old readings, new readings...

• Preface. 

• Review chapter. What we already learned

• Book #5. Tale of a disillusion –coordinate conditions—

• Book #6. Tale of search –striving for accuracy—

• Book #7. Kid’s book –and they lived happily--



Goal: obtain a robust implementation of Einstein equations
– Applicable to a large set of problems
– Independent of particular ‘tweaks’ as much as possible
– Able to yield accurate simulations (in theory & in practice)

Ingredients:
1. Formulation with good properties (sym/strongly hyperbolic)  (IVP ok at 

continuum) [Choquet-Bruhat,Fisher-Marsden,Friedrich,Reula,York…]
– But which formulation is better?

2. Boundary treatment (IVBP OK) [Friedrich-Nagy, Calabrese-Pullin-Reula-Sarbach-
Tiglio, Winicour-Szliagyi, Scheel-Lindblom-Teukolsky…. ] 

– Good for max. dissipative boundary conditions, radiative BC’s require additional care!

3. Initial data
– Far from ideal scenario… but more than enough for now to testing the ‘GOAL’

4. Realize/translate (1+2) to the discrete arena
5. Adopt ‘useful’ coordinate conditions
6. Ensure simulation is well resolved and errors are on target



Reminder…
• ‘continuum stability’ discrete stability

– In FD, employ operators satisfying summation by parts so that

– Use these derivative operators + suitable time integrators (RK3, RK4..) + 
appropriate boundary conditions  (Olsson method, SAT technique)

Dt u = Ai(t,x) Di u + Bi(t,x) u + C(t,x)
is stable, no tweaks or knobs required

– This might still not be enough,  Leibnitz rule isn’t satisfied at the discrete level… 
one can help out

– At the non-linear level, dissipation might be needed, dissipative operators have been 
constructed that do not spoil SBP 

Combinations yield a strong starting point

[Calabrese,LL,Neilsen,Pullin,Reula,Sarbach,Tiglio] motivated by [Olsson,Tadmor,Kreiss,Carpenter,…]
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Coordinate conditions                         [Palenzuela,LL,Bona]

• A priori, requirements
Fundamental

– Artificial of coordinate singularities
– Eg, ‘geodesic’ slicings t_a = n_a

– ‘symmetry-seeking’ (take advantage of possible approx symmetries)
– Eg, adapted to the congruence defined by a Killing field

– If no symmetry, minimize the rate of change of appropriately defined geometrical 
quantities

– Eg, minimal distortion of slices at t=const (York-Smarr)

Additional
– Suitable behavior near singularities

– Eg. If no-excision singularity avoiding (Maximal slices), if excision be such that characteristics are 
all inflow at excision boundary  v = ( ± α + β ) α < β

– Appropriate asymptotic behavior
– Covariantly defined if possible

God strongly suggested
– Combined with the main (evolution) eqns, whole system be at least strongly hyperbolic



Options
• Minimal distortion/strain

Minimize action of the ‘strain’ of the hypersurface with respect to β

• Dynamical options:

– Need conditions for Q, Fi; for instance, for Harmonic coords

Symm hyperbolic, but not symmetry seeking without source functions.
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Lots of freedom…cutting to the chase..
• For lapse. Adopt…

a=0,1 (along the t flow or n flow); f=0,1,2/α (geodesic,time harmonic,1+log)

• For shift…. ‘drive’ the generalized minimal distortion condition

• Props, FOR Z4 & Sarbach-Tiglio formulation and others…
– a=1,b=1. Strongly hyperbolic; though doesn’t freeze without sources
– a=0,b=1. Weakly hyperbolic if β = α. Freezes along the n flow?
– a=0,b=0. Strongly hyperbolic, but needs boundary conditions at inner boundary, 

eigenvector mixes gauge & main variables. Freezes.
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Good example
• GR eqns:

– Z4 [Bona]. 
– & Sarbach-Tiglio formalism (Rab=0 + constraints + judicial choice of 

pars)

• Gauge waves 
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• Not so good ones…
– Schwarzschild with a perturbation: needed dissipation to deal with 

weakly hyperbolic pts.
• During evolution hard to control that α<β, when this is violated, 

instabilities arise.
• Possibility… add suitable extra terms so that this condition is satisfied. But 

then… minimization might be broken

• Other alternatives?
– Induce eqns from ‘minimal’ extended-Killing eqns, I.e. minimize

– Killing, Homotetic Killing and Affine Killing vectors satisfy the eqn
– ‘minimize’ the Lagrangian dynamical conditions for α,β
– Resulting eqns are strongly hyperbolic except at α=β!
– When there is a killing timelike vector, nice evolutions. When not… 

could be good if ‘source’ terms are added. 
• Eg, in Gowdy, drive to trK.
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Notes…
• How did we get in this mess?

– Looked for a geometrical way of defining ‘less spurious dynamics’. Dynamical 
(coupled to the main system) elliptic equation

– Adopted an evolution equation to obtain the solution, didn’t want to hide ‘under 
the rag’ problems and stuck to the full equation.

End up with options where freezing give nice conditions as long as BH’s are not 
present.
When BHs are present, either have to deal with weakly hyperbolic systems and/or need 
to give boundary conditions at the hole coupling main variables and gauge conditions

• How do we get out?
• Stick to the elliptic problem and consider an elliptic-hyperbolic problem

• Boundary conditions are known (e.g. Dain et.al.)
• Elliptic gauge might be needed anyways (Sarbach’s talk)

• ‘Abandon’ symmetry seeking property
• Strong/symmetric hyperbolicity ensured
• Conditions seem to not be on the way of complicated problems (see Pretorius talk)



The search:Resolution issue   [LL,Liebling,Reula]

• Need to guarantee a simulation resolves the solution accurately
– Finer structure can develop without us being able to anticipate them 

• Efficient use of (limited) resources

Need both adaptivity and higher accuracy operators.

Adaptive mesh refinement provides a way to do so.
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Ground rules
1. Use what gives a stable unigrid evolution
2. Employ a 2-time-level scheme
3. Allow for higher order accuracy. Phase is especially delicate, LIGO needs it!!

• Want error  of ~ 1%?  Need ~1%/(N_time steps) per time-step.
• Per-wavelength, 2nd order code, ε=10-5 816pts; 4th order 48pts; 6th order 19pts
• Wavelength O(M) so…2nd order off after a few 10’s of steps.. Need to go higher
• Finer scale might develop, need to be adaptive 

• What are the options?
• Standard approach ‘Berger-Oliger’, provide boundary data by suitable interpolation at 

refinement boundaries to all fields
• ‘Penalty approach’. Provide boundary data only to incoming modes via penalty method
• Tapered boundary approach…. ‘fool-proof’ way, integrate on a larger domain and drop 

points affected by whatever was done at the boundary.
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What is stable?
• No formal result available, intertwined evolutions so it isn’t surprising.
• For lack of any better/smarter option, proceed as:

– Employ SBP, boundary treatment + RK3/4 to guarantee stable unigrid part
– Assess stability of parent child interaction on a model problem
– Leave aside dissipation to begin with.

• Ingredients:
– Child grid creation: J12 parent to child injection, direct/interpolate to order (N+2)
– Update operator (RKs): U
– Boundary data definition: B (involves interpolation from parent values at 

boundaries, if needed)
– Parent fields redefined: J21, child to parent, direct injection.
– Projector operator: P = 1 within child grid region of interest, 0 otherwise

If eigenvalue(Q)>1, unstable.
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Bottom line
• 2nd order, all obvious possibilities are stable. Tapered errors smaller, but not a 

big deal.
• 4th order

– Standard: unstable for all obvious and not so obvious possibilities
• Sideways derivatives, SBP derivatives, 2 ghost zones filled by interpolation (2nd or 3rd

order accurate). ε
– Penalty method: unstable for only ‘allowed’ possibilities (1 ghost zone filled by 

2nd or 3rd order accurate interp) ε/10
– Tapered boundary. Stable (obviously, and unfortunately?) ε/100.

• Cost assessment:
• For target error ε, 2nd standard order vs 4th order tapered, assuming N and 2N pts used 

respectively. C2 33~C4. 4th order ‘wins’ if ε<10−2

• Dissipation helps… but errors are >> than those in tapered.



Errors for u,t=u,x after 1 step

BO Penalty

Tapered



• Simple test; u,t=u,x

• Parent grid + 2 levels of 
refinement (fixed in place).

• Look for long term behavior 
with dissipation added. 



Linearized Einstein eqns over a gauge 
wave.

• First order in time/space symmetric 
hyperbolic eqn with time/space 
variable coefficients.

• Domain [-1,1], with base grid + 2 
child grids [-.5/n,.5/n]; n=1,2. 



• Non-linear wave eqn
• �u = k up

• Reduced to first order in time 
& space.

• Implemented RK3, 4th order 
derivative.

• Solution converges to 3rd

order

• For p=7, singularity forms

k=0

k=1



Notes (2)

• For higher order AMR, tapered approach is  a (the?) viable way
– Extra cost involved offset by gains in accuracy, reflections and CFL allowed

• Is this the only way? Perhaps (hopefully) not, but certainly will required 
more involved options than those considered

• Easy to implement… in fact… it should be there already in all codes
• For multiple grids (Reula’s talk), should be no problem.

Penalty/overlap

tapered



Bubble spacetimes. A ‘closed’ story      [Sarbach,LL]
Positive mass thm (Witten) requires existence of certain (asymptotically constant) spinors. In 
5d Kaluza-Klein theory (asymptotically R3xS1) these spinors are not guaranteed.

1.Are there negative mass configurations?

2.Is cosmic censorship valid?

•Answer to 1. Yes, negative mass configurations found
–Witten bubble (82): associated with instability of KK vacuum. More than 1 state with zero total energy.

–Brill-Pfister (89): explicit solutions to 5D vacuum constraints with negative mass.

–Brill-Horowitz (91): generalization to include ‘gauge’ fields.

•Qn: What’s the space-time like?
–Corley-Jacobson (94). Analyze area of the bubble, conclusion: It starts out expanding [collapsing], if 
this trend continues, unlikely to form a singularity.

•Conjecture: It will keep expanding [collapsing] out (otherwise go through another moment of time symmetry).

•But….. This only from estimates at the initial hypersurface… what does really happen?… 
Need to solve the eqns…

–Numerical effort (2000). Conclusion: negative mass bubbles expand but not forever…. At some point 
a naked singularity appears!!! (or does it?)



• Consider:
With U(r) greater or =0 (for r=r+ ) a smooth function (U 1 asymptotically)
Bubble is at r+.

Electrovac case, consider

Time symmetry (mom const =0); Hamiltonian constraint

With m,b constants. In particular MADM=m/4…but this can be negative

Initial acceleration of the bubble’s area [extending Corley-Jacobson]

• n=2. If m<0, bubble expands; m>0 both cases possible
• n>2. For k large, arbitrary negative acceleration with negative mass…sounds 

promising!
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Revisiting the problem



Numerical evolution

• Variables functions of (t,r) only (1D evolution)
• At outer boundary: constraint preserving boundary conditions [a-la 

Calabrese,LL,Tiglio 02]

• At bubble, regularity conditions used.

• Proved well posedness at continuum level, translated to the numerical arena 
thanks to SBP in a first order formulation.

• Improved resolution at bubble with a non-uniform radial coordinate.

k=0

Case studied numerically previously, no
naked singularity found, m<0 expands 
even faster than m>0



More than we asked for…

What happens with a non-zero gauge field?
• Choose n=2, and stick to cases where bubble starts out collapsing 
(positive mass)

Depending on field strength, the bubble 
either collapses (k<k*) to a black string or 
bounces back to expand (k>k*).

Changes behavior almost always without 
going through another moment of time 
symmetry

Last… it appears to approach a stationary 
solution… does it exist?
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Curvature invariant, sub/supra critical behaviorCurvature invariant, sub/supra critical behavior

Observation… there must be a static solution at the threshold



• Put static anzats, solve resulting constraint and…

With V=(1-r-/r); U=(1-r+/r). And the parameters are obtained from 

P=4πr+(1-r-/r+)(3/2) and M=r+/4.

• New solution?… nah… obtained by ‘just’ analytically continuing that of 
a charged black string….[found in Horowitz-Maeda 03]

• Analyzed perturbation off this solution: 
• Obtained single growing mode

• Work  analytical continuation ‘backwards’. Used to show a family of charged black 
strings becomes more unstable as charged is added (opposite to what was 
conjectured)

)(/)1/(3
2
1

)()(/)()(/)()( 2222222

rVdzrrdxA

dzrVrdzrVrUdrrUrVdtrVds

a
a −±=

+++−=

−+



• What happened with the negative mass data that started 
contracting with arbitrary negative acceleration?
– Bubble shrinks to arbitrarily small sizes, but ‘bounces’ back… 

cosmic censorship stood its ground 



And they lived happily ever after 
the end…


