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Introduction/Motivation
Want to solve a problem with very different 
time and space scales.
Need to integrate for a long period of time to 
get to the physical situation we want to 
model.
And cover a good size of space in order to 
extract the wave signal and minimize 
boundary effects.
The solutions we are seeking have 
singularities.
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Long time integration
We need to integrate until we get rid 
of all spurious initial radiation.
We need to integrate further until the 
radiation gets far enough from the 
mergers and into the far zone.
We need very stable formulations
We need very stable codes
We need time integrators which do 
not dissipate too much of the solution
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Big size in space
Need to get far from the sources so that we 
reach the wave zone out of which we can be 
confident that the field perturbations would 
really move as waves and reach infinity 
without much distortion.
Need to propagate the waves without much 
distortion.
Need high accuracy difference operators, at 
least fourth order.
Need FMR/AMR of higher order.
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Singularities

We expect singularities to form or even 
we start the simulation with 
singularities on the initial data.
Numerically we can not handle 
singularities.
We need to excise the region where the 
singularities are. [Punctures?].



August 19, 2005 Southamptom 2005 8

Singularities

Need to be able to handle integration 
regions which do not have trivial 
topology, S^2 x R, etc.
Need appropriate difference operators. 
(SBP)
Need to work with several grid patches 
at the same time. [Touching vs. Multi]
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Introduction/Motivation
Want to deliver very accurate and robust long 
time solutions. Where we can estimate the 
errors.
Want to be able to solve this problems in 
reasonable time so that we can fill out the 
template space.
Want to proceed on firm ground, solving first 
model problems, and using sound and proven 
methods.
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Theory: Method of lines

It means we discretize in space and 
then treat the discretized system as a 
system of O.D.E.’s and solve it.
If the semi-discrete system is stable, 
then if solved with some (not every) 
standard method like Runge-Kuta third 
of fourth order, then the evolution is 
stable and convergent.
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Theory: Method of lines
You only have to check stability of the 
semi-discrete system.
In implementations you can have at 
your disposal several O.D.E.’s 
integrators.
You can treat the space discretization in 
a more modular way. (have several 
difference operators available)
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Theory: SBP
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Theory: SBP
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Theory: SBP
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Theory: SBP
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•SBP depends on the region and the order of accuracy of 
the difference operator
•D and Σ are given as a pair
•Pairs (D, Σ) are known for each order for squared grids *
•Some pairs are also known for grids with missing squares
•2-1, 4-2, 6-3, 8-4, 4-3, 6-5, 8-7
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Theory: SBP
[Kreiss and Scherer '74, Strand '94, Mattsson, Svard and Nordstrom 2004]

•Diagonal and full restricted norms. 

The norm is diagonal if                      , full restricted if 

•
In the diagonal (full restricted) case, the order of the derivative is 2n in the interior and n (2n-1) at and close 
to boundaries.

•There are some issues in the non-diagonal case. 

•Derivatives with minimum bandwith are not necessarily the optimal ones, as they might have a large spectral 
radius associated -> severe restrictions on the Courant limit.   

•Inventory of high order derivatives we have analyzed/whose spectral radius we have “minimized” (notation: 
order in the interior – order at and close to boundaries):

* 2-1, 4-2, 6-3, 8-4 (diagonal case)    
* 4-3, 6-5, 8-7 (full restricted case) 

•Dissipations: need to be non-positive definite with respect to the SBP scalar product. Mattsson's solution: a 
prescription for all norms.
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Theory: SBP
Second order case. Maximum = 1.414

Periodic Boundary
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Theory: SBP    case D8-4

Optimized operator: Maximum 2.242Minimum bandwith operator:Maximum 16.04!
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Implementation: SBP
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Implementation: SBP
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Implementation: SBP



August 19, 2005 Southamptom 2005 22

Theory: Non-trivial domains
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Theory: Non-trivial domains
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Theory: Non-Trivial domains
[Carpenter, Nordstrom and Gottlieb '98]

•Say you want to discretize the advection equation ut = cux, in two domains. 
The Left one covers (…,0], and the Right one [0,…)

•We use two fields to describe u, uL and uR. At x=0 the two fields are defined, 
and the solution is multivalued.

•Now discretize using 
penalty terms:

•And use any operator D satisfying the SBP property.
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Theory: Non-Trivial domains
•Define the energy

•If c>0, choosing SL = c+δ, SR = δ gives

•And the energy estimate follows if δ >=-λ/2
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•Take its time derivative and  use the SBP property to get
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Implementation: N.T.Domains

Outer boundary

Inner boundary

Singularity excision

•L. Lindblom et al
•J. Thornburg et al
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Implementation: N.T.Domains
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Implementation: N.T.Domains
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Implementation: N.T.Domains

Carpet/Cactus
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Implementation: N.T.Domains
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Implementation: N.T.Domains

Other topologies:           (8 cubes)

Shallow Water Equations on Sphere.

3S


