
Axisymmetry in Numerical Relativity

Introduction

Why axisymmetry?

1. Simpler than 3D (but problems with coordinate singularities!)

2. Astrophysically relevant—rotation.

Highly selective and incomplete literature survey:

• Kaluza-Klein reduction: R. Geroch, J. Math. Phys., 12, 918(1971). Vacuum
only
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• Numerical schemes

1. T. Nakamura et al., Prog. Theor. Phys. Suppl.,90, 1 (1987) based on work
1980–82, includes rotation, hydro. NOK.

2. D. Garfinkle & G.C. Duncan, Phys. Rev., D63, 044011 (2000) no rotation,
vacuum. GD

3. M. Choptuik et al., Class. & Quant. Grav., 20, 1857 (2003) no rotation,
vacuum or scalar field. CHLP.

4. A.P. Barnes, Ph.D. thesis, Cambridge (2004) rotation, stars. B.
5. O. Rinne & J.M. Stewart, Class. & Quant. Grav., 22, 1143–1166 (2005)

rotation, general matter. RS.
6. O. Rinne, Ph.D. thesis, Cambridge (2005) rotation, vacuum. R.
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Ingredient 1: Cylindrical Polar coordinates

Local Minkowski coordinates Xµ = (t, z, x, y), xµ = (t, z, r, ϕ). There is a
coordinate singularity at r = 0, e.g., look at Killing vector

ξ =

{

∂/∂ϕ provided r 6= 0,

y∂/∂x− x∂/∂y everywhere.

A geometric quantity Q is axisymmetric and regular on axis if

1. LξQ = 0,

2. the (t, z, x, y) components of Q admit (possibly truncated) Taylor series
expansions wrt x and y in a neighbourhood of x = y = 0.
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For a scalar f this means f = f(t, z, r2).

A symmetric tensor field pαβ is both axisymmetric and regular on axis iff its
(t, z, r, ϕ) components satisfy

pαβ =









A B rD r2F
B C rE r2G
rD rE H + r2J r3K
r2F r2G r3K r2(H − r2J)









.

Here A,B, . . . are functions of t, z and r2. This result is well known, but does
not appear to be in the literature.
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Ingredient 2: Kaluza-Klein Reduction

The orbits of ξµ form a 3-dim. manifold N. We can project tensors Qα...
β... from

M to N provided

1. LξQ = 0,

2. Qα...
β...ξ

β = 0 etc.

I. What is the reduction of Einstein’s theory from M to N?

II. If the geometry of N is determined how can that of M be reconstructed?

The reduction M → N for vacuum is due to Geroch. NOK included a perfect
fluid and BRS included general matter. CHLP is similar but no rotation.
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Geroch described the transition N → M. Difficult to implement numerically
but, fortunately, sensible physical questions in M seem to have answers in N.
E.g., gravitational radiation. The leading term in Ψ4 measured wrt asymptotic
NP tetrad in M can be evaluated from quantities determined in N.

N has signature ( + − −) and so we can perform an “ADM” reduction, the
(2+1)+1 approach.

One novelty is that the rotation variables in N, the components of the
twist vector (curl of the Killing vector projected into N), satisfy equations whose
principal part is that of (axisymmetric) Maxwell equations. They couple to matter
and geometry only through source terms.
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Ingredient 3: Regular Variables &
Equations

The first ingredient tells us the behaviour of all quantities near the axis r = 0.
We redefine the dependent variables {Q} to be of the form

Q = f(t, z, r2) or Q = rg(t, z, r2),

so that we can impose either Neumann (∂Q/∂r = 0) or Dirichlet (Q = 0)
boundary conditions at r = 0. Thus our dependent variables are manifestly
regular on axis r = 0.

We can also redefine them1, maintaining regularity, so that the new equations
are manifestly regular at the axis (no r−1, r−2, . . . factors) provided the dependent
variables satisfy the boundary conditions above.

1You need a competent computer algebra package, e.g., REDUCE, to verify this.
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Flavouring: Gauge Choices

We have almost all of the ingredients to make a numerical algorithm. But we
need to make gauge and other choices. Since these are a matter of taste we call
them flavourings.

The first class of flavours comes from noting that the spatial metric HAB is
2D and all 2D metrics are conformally flat so that we can choose the spatial
coordinates to set

HAB =

(

ψ4 0
0 ψ4

)

.

There are at least three subclasses, each favoured by different groups.

Free evolution used by GD solves the minimum number of elliptic
equations. The shift vector βA is determined as the solution of gauge conditions
implied by the choice of HAB above and its time derivative. Maximal slicing
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generates an elliptic equation to determine the lapse α. Everything else is
determined by a hyperbolic evolution system.

Although this looks very plausible we found it rather difficult to implement
because of instabilities. If we denote the constraints by C we can derive an
evolution equation for them

∂tC = FA∂AC +GC,

so that if C = 0 initially then C ≡ 0. However the matrix F r has complex
eigenvalues and so this is not a hyperbolic system—the IVP for the constraints is
ill-posed. We can modify the slicing condition by adding an appropriate multiple
of the energy constraint so as to make the above system hyperbolic. Unlike GD

we have chosen to solve elliptic equations using Multigrid techniques so as to
obtain computationally efficient algorithms. However Multigrid fails for the new
slicing condition because the underlying matrix becomes indefinite, even for weak
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perturbations of flat spacetime.

Another subclass is constrained evolution favoured by CHLP, where
during the evolution elliptic constraint equations are solved for α, βA and ψ. We
found problems with the slicing and energy constraint equations. Ignoring twist
and matter terms R determines the latter to be

∆ψ +K2ψp = 0 in Ω, ψ = 1 on ∂Ω,

where K2 is the square of the extrinsic curvature and p = 5. This is not
linearization stable and there is no maximum principle to imply existence and
uniquess. It can be shown2 that the Dirichlet problem has at least one nontrivial
weak solution provided

1 < p <
n+ 2

n− 2
,

2See L.C. Evans: Partial Differential Equations §8.5.2, Theorem 3.
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where n is the number of space dimensions, and n = 2 here. Existence (but not
uniqueness) is guaranteed, but for largeish K2 Multigrid fails for this equation
(loss of diagonal dominance in the underlying matrix), as observed by B, R and
CHLP for strong Brill waves.

Of course we can change the value of p to a negative one (thus guaranteeing
linearization stability) by conformally rescalingK. (This is a well-known technique
for setting up initial data.) However R’s evolutions quickly become unstable! His
choice of K is equivalent to that of the BSSN system which is known to have
good stability properties, and these are lost on rescaling.

Our final subclass is partially constrained evolution favoured by R. Here
the slicing condition and momentum constraints are enforced but not the energy
constraint. (There is an evolution equation for ψ.) This seemed to work allowing
evolution of weak and strong Brill waves with and without twist. There is a
critical amplitude for the initial data separating evolutions which disperse from
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those which collapse to a black hole. However his code lacked the resolution
needed to make quantitative statements. We need, urgently, an adaptive mesh
refinement algorithm for mixed elliptic-hyperbolic systems which meets Brandt’s
requirement of computational efficiency3.

As another class of flavourings one can eschew mixed elliptic-hyperbolic
systems in favour of a completely hyperbolic system. This has two advantages
(i) gain control over well-posedness and outer boundary conditions, (ii) can use
(Berger-Oliger) AMR.

3This is a nontrivial problem, at least to retain the O(N) efficiency of Multigrid, which is being addressed.
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There are many equivalent and inequivalent hyperbolic reductions of the EFE.
RS used the Z4 system of Bona et al4.

Rαβ + 2∇(αZβ) = κ(Tαβ − 1
2T

γ
γgαβ).

We impose LξZα = 0. If we set Zα = (θ, ZA, Z
ϕ) then the constraints become

evolution equations for Z

Lξθ = C0 + · · · , LξZA = CA + · · · , LξZ
ϕ = Cϕ + · · · ,

where (C0, CA, Cϕ) are the energy and momentum constraints and · · · are terms
linear in Z. Clearly the constraints are satisfied if Z = 0.

4Phys. Rev., D67, 104005 (2003).
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We next introduce dynamical gauge conditions based on the generalized

harmonic gauge condition of Bona et al5. These give evolution equations
for α and βA. One can choose the parameters to obtain a strongly hyperbolic
system, but never a symmetric hyperbolic one.

Alternatively one can retain the evolution equation for α and require zero
shift, βA = 0. Again the system is strongly hyperbolic, and, in the special case
of harmonic gauge, the system is symmetric hyperbolic.

Using a computer algebra package one can redefine the dependent variables
so that every dependent variable and every term in every equation of our first
order system is manifestly regular on axis. (Note that even in flat spacetime,
cylindrical polar coordinates are not harmonic. We need to use the gauge source
functions of Friedrich6 to ensure regularity on axis.)

5Phys. Rev., D67, 104005 (2003).
6Class. & Quantum Grav., 13, 451 (1996).

J.M. Stewart:New Directions in Numerical Relativity Southampton 2005 14



Indeed we can even write the system in conservation form

∂tu + ∂A

[

−βAu + αF
A(u)

]

= αS(u),

retaining both these regularity properties and the hyperbolicity attributes.

For many purposes it ius useful to use characteristic variables, and here we
run into a problem. The transformation conserved → characteristic variables is
regular on axis, but its inverse in the r-direction is not. This will raise problems if
we want to use solution algorithms based on solving Riemann problems. However
the discussion of outer boundary conditions is not affected. BCs at r = rmax

are obviously unaffected. BCs at z = ±zmax are unaffected because the normal
direction is the z-direction.
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Flavouring: Outer Boundary Conditions

This is a difficult problem and some experience can be gained by looking first at
linearized theory.

R looked first at dissipative BCs, and considered two such strategies

1. absorbing BCs: incoming modes are set to zero. Unfortunately the “exact”
solutions of linearized theory do not obey them.

2. vanishing of Zα. These are satisfied to leading order in linearized theory but
perform poorly, compared with 1, in numerical experiments.
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One can do better than this.

1. Demand no incoming radiation, i.e., with a suitable Newman-Penrose tetrad
defined at the outer boundaries, Ψ0 = 0. This gives two real conditions which
are satisfied to order O(r−5, z−5) in linearized theory.

2. Demand constraint preserving BCs, i.e., if we look at the subsidiary system
governing the evolution of the constraints, all incoming modes are set to zero.
Since our linearized theory solutions satisfy the constraints to this order they
satisfy this condition.

3. Demand gauge preserving BCs, i.e., do the same as item 2 but for the evolution
system for α and βA. Ditto.
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This gives nine conditions at each boundary, or seven for zero shift. In
axisymmetry this is precisely the number required. The normal derivatives of the
incoming modes are specified in terms of the tangential derivatives and source
terms. R has checked them against linearized theory. Using GKS theory he has
checked a necessary condition for the well-posedness of the IBVP in the high
frequency limit.
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Let me close with some very preliminary simulations carried out by R. R’s
current evolutions are of Brill waves with twist, and the end product of a low
amplitude subcritical evolution will be flat spacetime. However the final line
element is flat but not Minkowskian! The variable es(t, z, r) measures the ratio
of circumference-radius to coordinate-radius and is zero in Minkowski spacetime.
Note that the r = 0 axis (left edge) is totally stable and there is minimal reflection
from the far-too-close outer boundaries. s

Alcubierre has suggested that a dynamically evolved lapse can produce “gauge
shocks”, chart discontinuities, which render the subsequent evolution useless. The
second movie is a plot of α,r/α as a function of r and z as t increases. The boxes
show the extent of the AMR subgrids. Although the function looks “spiky” it
isn’t! The still shows α,r/α at a fixed time on the finest AMR-generated subgrid.
Ar, Arcloseup
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The third movie shows Bϕ evolving. (The twist variables Er, Ez and Bϕ

obey Maxwell equations.) Bϕ
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Conclusions

• Axisymmetric evolutions which remain regular on axis are feasible, and there
are no constraints on the algorithms to be used.

• It’s essential to be aware of the underlying mathematics, existence, uniqueness,
stability etc.

• A competent computer algebra package is very useful.

• AMR is no longer a luxury; consider e.g., the “gauge shock”.

• Remember Brandt’s dictum: concentrate the effort where the physics is
interesting.
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