
2 Maximum Helicity Violating Amplitudes

The solution to the exercise in the previous section is that for quark-antiquark to two gluons
with the same helicity

A(p−1 , p+
2 , p+

3 , p+
4 ) = 0 !!

The reason for this is that there are fewer than two particles with negative helicity and in
such cases the amplitude (for massless particles) is always zero.

For the time being, we will restrict our discussion to the pure gluon case and consider the
colour-ordered scattering amplitude for n gluons

Ã(1, 2, 3, · · ·n),

where the˜indicates a colour ordered amplitude and the arguments (1, 2 · · ·) represent both
the incoming momentum of the particles and the incoming helicities.

These amplitudes possess a cyclic symmetry

Ã(1, 2, 3, · · ·n) = Ã(2, 3, · · ·n, 1) = · · · ,
which becomes clear of draw all the graphs contributing to a particular amplitude. For
example, in the four-gluon case
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is the same as

p2 p1
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There is also a reflection symmetry

Ã(n · · ·3, 1, 2) = (−1)nÃ(1, 2, 3, · · ·n).
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Thus, if we assume that we have a graph with only triple-gluon vertices and as we run
the particles backwards, each vertex has the order of the momenta reversed and therefore
from the colour ordered Feynman rule, we get a minus for each vertex. A four-gluon vertex
replaces two three-gluon vertices, so the sign change is not affected.

Now suppose we want to calculate the amplitude for the scattering of n incoming gluons, all
of which have positive incoming helicity.

Ã(1+, 2+, · · ·n+)

Each of the contributing diagram has at most (n-2) vertices and n polarisation vectors. This
means that each term will contain at least one scalar produce of the form ε+(pi, ni)·ε+(pj, nj).
If we choose all of the gluons to have the same auxiliary vector (ni = nj) then , as we have
seen, all these scalar products vanish and so the amplitude vanishes.

Now suppose that one of the helicities is negative. Because of th cyclic symmetry of the
amplitude we can choose this to be particle n,

Ã(1+, 2+, · · ·n−)

Now we can choose ni = pn for (i 6= n), and this us

ε+(pi, pn) · ε+(pj, pn) = 0 (i, j, 6= n)

and

ε+(pi, pn) · ε−(pn, nn) = 0,

so that again all possible scalar products vanish and the amplitude again vanishes.

Thus the minimum number of incoming negative helicities is two (with the other helicities
positive). For the scattering of incoming and outgoing gluons this is interpreted as the fact
that at least two of the helicities of the outgoing gluons must be the same as two of the
helicities of the incoming gluons, and hence this is called the “maximal helicity violating
amplitude MHV”.

Note that under the parity operation

〈p q〉 ↔ [p|q],

so that we can also determine the amplitude for the case where all but two of the incoming
helicities are negative by interchanging all of these scalar products. Since 〈p q〉 = −[p|q]∗,
this means that the parity flipped amplitude is the complex conjugate of the un-flipped
amplitude - up to an overall sign - (a consequence of the CP invariance of QCD)
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2.1 Four Gluon Amplitude

Let us now consider the four-gluon amplitude with helicities (+, +,−,−)

(a) (b) (c)

p+
1

p−4

p+
2 p−3

p+
1

p+
2

p−4

p−3

p+
1

p+
2

p−4

p−3

If we choose the auxiliary vectors for the four gluons as follows

n1 = n2 = p4

n3 = n4 = p1,

then the only non-vanishing scalar product of polarisation vectors is ε+
2 · ε−3 .

Graph (c) vanishes because that involves two such scalar products and one of them must be
zero. Furthermore, although graph (b) has a term proportional to ε+

2 · ε−3 , the lower vertex
will always give ε+

1 · p4 or ε−4 · p1 which both vanish.

Therefore the only contributing graph (for this choice of polarisation vectors) is graph (a)
and the only non-vanishing term is

Ã(p+
1 , p+

2 , p−3 , p−4 ) =
ig2

4p1 · p2

ε+
2 · ε−3

(

−2p3 · ε−4
) (

−2p2 · ε+
1

)

ε
+µ
1 =

1√
2

〈p4|γµ|p1]

〈p1|p4〉

ε
+µ
2 =

1√
2

〈p4|γµ|p2]

〈p2|p4〉

ε
−µ
3 =

1√
2

[p1|γµ|p3〉
[p3|p1]

ε
−µ
4 =

1√
2

[p1|γµ|p4〉
[p4|p1]

So (using the Fierz identity and 1
2
(1 + γ5)γ · p = p〉[p)

ε+
2 · ε−3 =

[p1|p2]〈p4|p3〉
〈p2|p4〉[op3|p1]
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p2 · ε+
1 =

1√
2

〈p4|p2〉[p2|p1]

〈p1|p4〉

p3 · ε−4 =
1√
2

[p1|p3]〈p3|p4〉
[p4|p1]

2p1 · p2 = 〈p1|p2〉[p2|p1]

so we have

Ã(p+
1 , p+

2 , p−3 , p−4 ) = ig2 [p1|p2]〈p4|p3〉〈p3|p4〉[p1|p3][p2|p1]〈p4|p2〉
〈p1|p2〉[p2|p1]〈p2|p4〉[p3|p1]〈p1|p4〉[p4|p1]

= ig2 〈p3|p4〉2[p1|p2]

〈p1|p2〉〈p4|p1〉[p1|p4]
,

where we have cancelled some terms. Now multiplying numerator and denominator by
〈p2|p3〉 and by 〈p3|p4〉 we may rewrite this as

Ã(p+
1 , p+

2 , p−3 , p−4 ) = ig2 〈p3|p4〉3
〈p1|p2〉〈p2|p3〉〈p4|p1〉

×
{

[p1|p2]〈p2|p3〉
[p1|p4]〈p3|p4〉

}

The term in {} may be written

− [p1|γ · p2|p3〉
[p1|γ · p4|p3〉

But since p4 = −(p1 + p2 + p3) and [p1|γ · p1 = γ · p3|p3〉 = 0 we have

[p1|γ · p2|p3〉 = −[p1|γ · p4|p3〉

so the term in {} is unity and we have finally

Ã(p+
1 , p+

2 , p−3 , p−4 ) = ig2 〈p3|p4〉3
〈p1|p2〉〈p2|p3〉〈p4|p1〉

= ig2 〈p3|p4〉4
〈p1|p2〉〈p2|p3〉〈p3|p4〉〈p4|p1〉

Exercise:
Show that

Ã(p+
1 , p−2 , p+

3 , p−4 ) = ig2 〈p2|p4〉4
〈p1|p2〉〈p2|p3〉〈p3|p4〉〈p4|p1〉

Using the cyclic symmetry and the reflection symmetry properties, this gives us all the
possible coloured ordered amplitudes for four gluons.
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2.2 Parke-Taylor Formula

Parke and Taylor proved the remarkable result that this can be extended to the MHV
amplitude for any number of gluons

Ã(p+
1 , p+

2 , · · ·p−i · · · p−j · · · p+
n ) = i(−g)(n−2) 〈pi|pj〉4

〈p1|p2〉〈p2|p3〉 · · · 〈pn−1|pn〉
We have demonstrated this for the case of four gluons and in the next section, we will
establish that it is valid for any number of gluons, by induction.

This means that we have also done five gluons, since we either have three positive helicities
and two negative for which we can use the above formula, or three negative helicities and
two positive for which we take the complex conjugate. But for six gluons there is a possible
configuration with three positive and three negative helicities for which we need to be able
to go beyond MHV. We will see how to do this in the next section.

2.3 Three Gluon Amplitude

There is a small complication:

In order to go beyond MHV we will need to construct sub-amplitudes in which all of the
particles are “on-shell”.

For the three gluon sub-amplitude we might initially think that this vanishes, since we can
only have one helicity which can differ from the other two and we have just shown that in
such cases the amplitude vanishes.

In fact, we cannot have a three-gluon on-shell amplitude for which p2
1, p2

2 and p2
3 all vanish

since by conservation of momentum this would require that all scalar products pi ·pj, vanish.

But we can achieve this, if we use the trick of extending the spinors so that the three momenta
are complex. The point here is that

−2p1 · p2 = 〈p1|p2〉[p1|p2],

and for this to vanish in the case of real momenta both 〈p1|p2〉, and [p1|p2] must vanish, since
these are complex conjugates. However if the momenta are complex then these quantities
are not complex conjugates of each other and it is sufficient for one or the other to vanish.

p−1

p−2

p+
3
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Therefore, in order to calculate Ã(p−1 , p−2 , p+
3 ), we make the spinor transformations on the

negative helicity states

|p1] → |p̂1] = |p1] −
[p2|q][p3|p1] + [p3|q][p1|p2] − [p1|q][p2|p3]

2[p2|q][p3|q]
,

where q is any light-like vector. Transformations of |p2] and |p3] are obtained from cyclic
permutations. The right-helicity spinors are not transformed so that

|p̂1〉 = |p1〉, etc.

In this way
[p̂1|p̂2] = [p̂2|p̂3] = [p̂3|p̂1] = 0

but
〈p̂1|p̂2〉 6= 〈p̂2|p̂3〉 6= 〈p̂3|p̂1〉 6= 0

Now let the auxiliary vectors be such that

n1 = n2 ≡ n, n3 = p̂1,

so that ε−
1̂
· ε−

2̂
= 0 and ε−

1̂
· ε+

3̂
= 0.

The only surviving term in the amplitude is

Â(p̂−1 , p̂−2 , p̂+
3 ) = i

g√
2
ε−
2̂
· ε+

3̂
2p̂2 · ε1̂

ε−
2̂
· ε+

3̂
=

[n|p̂3]〈p̂1|p̂2〉
[p̂1|n]〈p̂1|p̂3〉

p̂2 · ε1̂ =
[n|p̂2]〈p̂2|p̂1〉

[p̂2|n]
,

so that

Â(p̂−1 , p̂−2 , p̂+
3 ) = ig

[n|p̂3]〈p̂1|p̂2〉[n|p̂2]〈p̂2|p̂1〉
[p̂1|n][p̂2|n]〈p̂1|p̂3〉

Multiplying numerator and denominator by 〈p̂1|p̂2〉2〈p̂2|p̂3〉, we may write this as

Â(p̂−1 , p̂−2 , p̂+
3 ) = −ig

〈p̂1|p̂2〉4
〈p̂1|p̂2〉 〈p̂2|p̂3〉〈p̂3|p̂1〉

×
{

[n|p̂2][n|p̂3]〈p̂2|p̂3〉
[p̂1|n][p̂2|n]〈p̂1|p̂2〉

}

The term inside {} may be written as

−[n|γ · p̂3γ · p̂2|n]

[n|γ · p̂1γ · p̂2|n]
.
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But
γ · p̂3 = −γ · p̂2 − γ · p̂1

and γ · p̂2γ · p̂2 = 0, so the term inside {} is unity and we are left with

Â(p̂−1 , p̂−2 , p̂+
3 ) = −ig

〈p̂1|p̂2〉4
〈p̂1|p̂2〉 〈p̂2|p̂3〉〈p̂3|p̂1〉

,

which is the expression we would expect from the Parke-Taylor formula.
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