
1 Veltman-Passarino Reduction

This is a method of expressing an n-point loop integral with r powers of the loop momentum
l in the numerator, in terms of “scalar” s-point functions with s = n − r, · · ·n. “scalar”
meaning an integral with no powers of loop-momenta (r = 0) in the numerator - i.e. a
product of propagator denominators.

7.1 Notation

k

(l + q1)

(l + qj−1)

(l + qj)

pj

pnp1

p2

In[f(l)] ≡ −i(4π)d/2
∫

ddl

(2π)d
f(l)

(l2 −m2
0)((l + q1)2 −m2

1) · · · ((l + qn−1)2 −m2
n−1)

,

where
qi ≡ p1 + p2 · · · pi,

pi being the (incoming) external momenta. d = 4−2ǫ is the number of dimensions in which we
perform the loop integral in order to regularise either ultraviolet (UV) or infrared/collinear
(IR) divergences.

We assume that all external momentum are in four dimensions

Note that masses can be included in these manipulations but add to the algebraic complexi

The case f(l) = 1 is what we call the “scalar integrals” - the integrals that would be obtained
in a theory of scalar particles only.

We also define the integrals I
(j)
n−1:

I
(j)
n−1[f(l)] ≡ −i(4π)d/2

∫

ddl

(2π)d
f(l)

×
1

(l2 −m2
0)((l + q1)2 −m2

1) · · · ((l + qj−1)2 −m2
j−1)((l + qj+1)2 −m2

j+1) · · · ((l + qn)2 −m2
n)
,

i.e. the n− 1-point integral obtained by “pinching out” the jth propagator.
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l

(l + q1)

(l + qj−1)

(l + qj+1)

pj
pj+1

pnp1

p2

Similarly we can define integrals such as I
(j1,j2)
n−2 [f(l)], etc.

7.2 One power of loop momentum in numerator

f(l) = lµ

In[l
µ] = −i(4π)d/2

∫

ddl

(2π)d
lµ

(l2 −m2
0)((l + q1)2 −m2

1) · · · ((l + qn)2 −m2
n)

=
n−1
∑

i=1

Cn;i p
µ
i ,

using the fact that the vector quantity on the LHS must be constructed from the vectors
p1 · · · pn−1 (by conservation of momentum p1 + p2 + · · · pn−1 = −pn so that pn is not inde-
pendent)

Contracting both sides with p
µ
j we get

In[l · pj ] = −i(4π)d/2
∫

ddl

(2π)d
l · pj

(l2 −m2
0)((l + q1)2 −m2

1) · · · ((l + qn)2 −m2
n)

=
n−1
∑

i=1

Cn;i∆
ij,

where ∆ij = pi · pj is the “Gram” matrix.

Since pj = qj − qj−1 (with q0 = 0) we can write the numerator of the integral as

l · pj =
1

2

(

((l + qj)
2 −m2

j )− ((l + qj−1)
2 −m2

j−1) +m2
j −m2

j−1 − q2j + q2j−1

)

This is the Veltman-Passarino (VP) reduction formula.

The terms ((l + qj)
2 −m2

j) and ((l + qj−1)
2 −m2

j−1 in the numerator can be used to cancel
(or “pinch”) the jth and (j − 1)th propagators respectively and so we end up with a set of
n− 1 linear equations for the coefficients Cn;i.

n−1
∑

i=1

Cn;i∆
ij =

1

2

(

I
(j)
n−1[1]− I

(j−1)
n−1 [1] + (m2

j −m2
j−1 − q2j + q2j−1)In[1]

)

,
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where the RHS is expressed in terms of scalar n-point and (n− 1)-point integrals.

This set of linear equations is readily solved

Cn;i =
1

2

∑

j

∆−1
ij

(

I
(j)
n−1[1]− I

(j−1)
n−1 [1] + (m2

j −m2
j−1 − q2j + q2j−1)In[1]

)

However, care is needed if we are dealing with n > 4. The reason for this is that in this
case only the first four of the external momenta pi can be linearly independent. In fact by
attempting to write the integral out as the sum of n − 1 terms, we have over-parametrised
the integral and the coefficients are not unique - the Gram matrix is not invertible as its
determinant vanishes.

In such cases, it is sufficient to choose the first four external momenta only provided the
Gram determinant for those four does not vanish.

det(∆) 6= 0.

In special cases, known as “exceptional momenta” this determinant may indeed vanish and
we must then choose a different four.

We then have

In[l
µ] =

4
∑

i=1

Cn;i p
µ
i ,

with

Cn;i =
1

2

4
∑

j=1

∆−1
ij

(

I
(j)
n−1[1]− I

(j−1)
n−1 [1] + (m2

j −m2
j−1 − q2j + q2j−1)In[1]

)

Example:

In this example we will consider the three-point function and (for simplicity) set the internal
masses (but not the external square momenta) to zero, so that we have

−i(4π)d/2
∫

ddl

(2π)d
lµ

l2(l + q1)2(l + q2)2
= C3;1 p

µ
1 + C3;2 p

µ
2 ,

with q1 = p1 and q2 = (p1 + p2).

Contracting both sides with p
µ
1 gives

−i(4π)d/2
∫

ddl

(2π)d
l · p1

l2(l + q1)2(l + q2)2
= C3;1 p

2
1 + C3;2 p1 · p2,

Using

l · p1 =
1

2

(

(l + q1)
2 − l2 − p21

)
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we have

p21C3;1 + p1 · p2C3;2 =
1

2

(

I
(1)
2 [1]− I

(0)
2 [1]− p21I3[1]

)

,

with

I
(1)
2 [1] = −i(4π)d/2

∫

ddl

(2π)d
1

l2(l + q2)2

and

I
(0)
2 [1] = −i(4π)d/2

∫

ddk

(2π)d
1

(l + q1)2(l + q2)2
= −i(4π)d/2

∫

ddl

(2π)d
1

l2(l + p2)2
.

In the last step we have performed a shift of integration variable l → (l − q1).

Likewise, if we contract with p
µ
2 we get

−i(4π)d/2
∫

ddl

(2π)d
l · p2

l2(l + q1)2(l + q2)2
= C3;1 p1 · p2 + C3;2p

2
2,

Using

l · p2 =
1

2

(

(l + q2)
2 − (l − q1)

2 + p21 − (p1 + p2)
2
)

we have

p1 · p2C3;1 + p22C3;2 =
1

2

(

I
(2)
2 [1]− I

(1)
2 [1]− (2p1 · p2 + p22)I3[1]

)

,

The solutions are

C3;1 =
1

(p21p
2
2 − (p1 · p2)2)

((

p22 + p1 · p2
)

I
(1)
2 [1]− p22I

(0)
2 [1]− p1 · p2I

(2)
2 [1]

−
(

p21p
2
2 − 2(p1 · p2)

2 − p22(p1 · p2)
)

I3[1]
)

,

C3;2 =
1

(p21p
2
2 − (p1 · p2)2)

((

p21 + p1 · p2
)

I
(1)
2 [1] + p21I

(2)
2 [1]− p1 · p2I

(0)
2 [1]

−
(

p21p
2
2 + p21(p1 · p2)

)

I3[1]
)

7.3 Two powers of loop momentum in numerator

For the case
f(l) = lµkν ,

the integral is a rank-two tensor which can be formed out of the outer products of external
momenta p

µ
i p

ν
j and the metric gµν . Again for n > 5 we only use i, j = 1 · · ·4.

I(n)[l
µlν ] = −i(4π)d/2

∫

ddl

(2π)d
lµlν

(l2 −m2
0)((l + q1)2 −m2

1) · · · ((l + qn)2 −m2
n)

= Cn:00g
µν+

∑

i,j

Cn;ij p
µ
i p

ν
j ,
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The first equation we can derive relating the coefficients is obtained by contracting both
sides with gµν , remembering that we need to work in general in d dimensions so that we get

I(n)[l
2] = −i(4π)d/2

∫

ddl

(2π)d
l2

(l2 −m2
0)((l + q1)2 −m2

1) · · · ((l + qn)2 −m2
n)

= Cn:00d+
∑

i,j

Cn;ij ∆
ij

Writing

l2 = (l2 −m0)
2 +m2

0,

we get the relation
I
(0)
n−1[1] +m2

0In[1] = dCn;00 +
∑

i,j

Cn;ij ∆
ij

Another relation is obtained by contracting both sides with ∆−1
lh p

µ
l p

ν
h, to obtain

∆−1
lh In[pl · l ph · l] = min(4, (n− 1))Cn;00 +

∑

k,h

Cn;lh∆
lh

We note here that if n ≥ 5 (and therefore UV finite) and the integral contains no infrared
divergences, then we have two equivalent expressions for the combination of coefficients
4Cn;00 +

∑

i,j Cn;kl∆
kl. This means that the term Cn;00 is redundant (not uniquely defined)

and we can set it to zero. However, in the general case we need to keep this coefficient
separate.

The remaining coefficients are obtained by contracting with p
µ
l p

ν
h, to obtain

In[pl · l ph · l] = Cn;00∆
lh +

∑

i,j

Cn;ij ∆
il∆jh

For n > 5 this provides 11 equations for the 10 coefficients Cn;ij (symmetric in {i, j}) and
Cn,00

The LHS is most easily handled by using the VP reduction formula once only (say for ph · l
and leaving the other scalar product alone.

ph · l =
1

2

(

((l + qh)
2 −m2

h)− ((l + qh−1)
2 −m2

h−1) + q2h−1 − q2h +m2
h −m2

h−1

)

so that we get

1

2

(

I
(h)
n−1[pk · l]− I

(h−1)
n−1 [pk · l] +

(

q2h−1 − q2h +m2
h −m2

h−1

)

In[pk · l]
)

= Cn;00∆
kh+

∑

i,j

Cn;ij ∆
ik∆jh

We use the results previously obtained for the case where f(l) = pk · l to reduce the integrals
on the LHS to scalar integrals.
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Care must be taken for the case where h = 0 (or (h − 1) = 0) since in that case it is the
propagator denominator l2 −m2

0 that has been cancelled and we have the integral

I
(0)
n−1[pl · l] = −i(4π)d/2

∫

ddl

(2π)d
pk · l

((l + q1)2 −m2
1)((l + q2)2 −m2

2) · · · ((l + qn−1)2 −m2
n−1)

To get this into the standard form we must make a shift of integration variable

l → l − q1

This affects the numerator also and we arrive at

−i(4π)d/2
∫

ddl

(2π)d
pk · l − pk · q1

(l2 −m2
1)((l + p2)2 −m2

2) · · · ((l + q2,n−1)2 −m2
n−1)

,

which is the linear combination of an r = 1 integral and a scalar integral.

Together with the equation obtained by contracting with gµν

I
(0)
n−1[1] +m2

0In[1] = dCn;00 + Cn;lh∆
lh,

we end up with

(d+ 1− n)Cn;00 =
1

2
I
(0)
n−1[1] +m2

0In[1]−
1

2

n−1
∑

h=1

(

q2h−1 − q2h +m2
h −m2

h−1

)

Cn;h.

Assuming that the r = 1 coefficients have already been calculated, the expression for Cn00

can be inserted into the expressions of the other r = 2 coefficients, Cn;ij and the set of
1
2
n(n− 1) linear equations can be solved.

Example:

Once again we consider a triangle integral with two powers of loop momentum in the nu-
merator n = 3, r = 2, and internal masses set to zero. This has a UV divergence by power
counting and will also be infrared divergent if any of the external square momenta vanish.

I3[l
µlν ] ≡ −i(4π)d/2

∫

ddl

(2π)d
lµlν

l2(l + q1)2(l + q2)2

= C3;00g
µν + C3;11p

µ
1p

ν
1 + C3;22p

µ
2p

ν
2 + C3;12(p

µ
1p

ν
2 + p

µ
2p

ν
1)

We can obtain four equations for the four independent unknowns as follows:

Contract with gµν

I
(0)
2 [1] = dC3;00 + p21C3;11 + p22C3;22 + 2p1 · p2C3;12 (1)
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Contract with p
µ
1p

ν
1

I3[pk · l pk · l] = p2kC3;00 + (p2k)
2C3;11 + (pk · p2)

2C3;22 + 2p21(p1 · p2)C3;12

Using

p1 · l =
1

2

(

(l + q1)
2 − l2 − q21

)

,

this may be written

1

2

(

I
(1)
2 [p1 · l]− I

(0)
2 [p1 · l]− p21I3[p1 · l]

)

= p21C3;00+(p21)
2C3;11+(p1·p2)

2C3;22+2p21(p1·p2)C3;12 (2)

Contract with p
µ
2p

ν
2

I3[p2 · l p2 · l] = p22C3;00 + (p1 · p2)
2C3;11 + (p22)

2C3;22 + 2p22p1 · p2C3;12

Using

p2 · l =
1

2

(

(l + q2)
2 − (l + q1)

2 + q21 − q22

)

,

this may be written

1

2

(

I
(2)
2 [p2 · l]− I

(1)
2 [p2 · l] + (q21 − q22)I3[p2 · l]

)

= p22C3;00+(p1·p2)
2C3;11+(p22)

2C3;22+2p22(p1·p2)C3;12 (3)

Contract with p
µ
1p

ν
2

I3[p1 · l p2 · l] = p1 · p2C3;00 + (p1 · p2)p
2
1C3;11 + (p1 · p2)p

2
2C3;22 + (p21p

2
2 + (p1 · p2)

2)C3;12

Using

p1 · l =
1

2

(

(l + q1)
2 − l2 − q21

)

,

this may be written

1

2

(

I
(1)
2 [p2 · l]− I

(0)
2 [p2 · l]− q21I3[p2 · l]

)

= p1·p2C3;00+(p1·p2)p
2
1C3;11+(p1·p2)p

2
2C3;22+(p1·p2)

2C3;12 (4)

Alternatively we could use

p2 · l =
1

2

(

(l + q2)
2 − (l + q1)

2 + q21 − q22

)

,

to obtain an equivalent equation

1

2

(

I
(2)
2 [p1 · l]− I

(1)
2 [p1 · l] + (q21 − q2)

2I3[p1 · l]
)

=

p1 · p2C3;00 + (p1 · p2)p
2
1C3;11 + (p1 · p2)p

2
2C3;22 + (p1 · p2)

2C3;12 (4′)
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It is useful to define the function B(q2) by

−i(4π)d/2
∫

ddl

(2π)d
1

l2(l + q)2
≡ B(q2)

from which we can easily derive

−i(4π)d/2
∫

ddl

(2π)d
lµ

k2(l + q)2
= −

1

2
B(q2)qµ

With this definition the four equations become

B(p22) = dC3;00 + p21C3;11 + p22C3;22 + 2p1 · p2C3;12 (1),

(where we have used q2 − q1 = p2),

1

4

(

−B(q22)(p
2
1 + p1 · p2) +B(p22)

(

2p21 + p1 · p2
)

− 2p21I3[p1 · l]
)

=

p21C3;00 + (p21)
2C3;11 + (p1 · p2)

2C3;22 + 2p21(p1 · p2)C3;12 (2),

where we have shifted the integration variable l → l − q1, and set p1 · q2 = p21 + p1 · p2,

1

4

(

−B(p21)p2 · p1 +B(q22)(p
2
2 + p1 · p2) + 2(p21 − q22)I3[p2 · l]

)

=

p22C3;00 + (p1 · p2)
2C3;11 + (p22)

2C3;22 + 2p22(p1 · p2)C3;12 (3),

where we have written p2 · q2 = p22 + p·p2, and q1 = p1,

1

4

(

−B(q2)
2(p22 + p1 · p2) +B(p2)

2(2p1 · p2 + p22)− 2p21I3[p2 · l]
)

=

p1 · p2C3;00 + (p1 · p2)p
2
1C3;11 + (p1 · p2)p

2
2C3;22 + (p1 · p2)

2C3;12 (4)

or

1

4

(

−B(p21)p
2
1 +B(q22)(p

2
1 + p1 · p2) + 2(p21 − q22)I3[p1 · l]

)

=

p1 · p2C3;00 + (p1 · p2)p
2
1C3;11 + (p1 · p2)p

2
2C3;22 + (p1 · p2)

2C3;12 (4′)

If we construct the combination

p22(1) + p21(2)− p1 · p2((4) + (4′)),

divide by p21p
2
2 − (p1 · p2)

2 and use the previously obtained relations

I3[p1 · l] = p21C3;1 + p1 · p2C3;2

I3[p2 · l] = p1 · p2C3;1 + p22C3;2,

we arrive at the promised result

2C3;00 + p21C3;11 + p22C3;22 + 2p1 · p2C3;12 =
1

2

(

B(p22)− p21C3;1 − (q22 − p21)C3;2

)
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which when combined with (1) gives an expression for C3;00

C3:00 =
1

2(d− 2)

(

B(p22) + p21C3;1 + (q22 − p21)C3;2

)

Note that B(q2) is UV divergent so that we must keep the number of dimensions,d, away
from 4 even in the absence of infrared divergences. C3;00 is ultraviolet divergent.

The remaining coefficients C3;11, C3;22, C3;12 can now be obtained by solving the three simul-
taneous equations (1), (2), (3).

7.4 More powers of l

This process can be “rolled out” for any number of powers of loop momentum in the numer-
ator, but the expressions become increasingly longer.

For three powers of loop momentum we have

In[l
µlνlρ] =

4
∑

i=1

Cn;00ig
{µνp

ρ}
i +

4
∑

i,jl,=1

Cn;ijlp
{µ
i pνjp

ρ}
l

and we need to contract with gµνpρr or with pµrp
ν
sp

ρ
t to obtain a set of linear equations for the

coefficients Cn;00i or Cn;ijk.

For four powers of loop momentum we have

In[l
µlνlρlσ] = Cn;0000g

{µνgρσ}
4

∑

i,j=1

Cn;00ijg
{µνp

ρ
i p

σ}
j +

4
∑

i,j,k,h=1

Cn;ijlhp
{µ
i pνjp

ρ
l p

σ}
h

and we need to contract with gµνgρσ, gµνpρr sσ, and pµr p
ν
sp

ρ
tp

σ
u in order to project out the

coefficients Cn;0000, Cn;00ij and Cn;ijkh

Although this becomes more complicated, a contraction with a single gµν or with a single
momentum p

µ
i , where pi is one of the first four external momenta enables one to write any

loop integral
In[l

µ1 · · · lµr ]

in terms of
In[l

µ1 · · · lµr−1 ]

and
I
(j)
n−1[l

µ1 · · · lµr−1 ],

and the process can be iterated.
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7.5 Reduction of n-point integral to (n− 1)-point integral

A very useful application of Veltman-Passarino reduction is the reduction of a one-loop
n-point scalar integral, expressing it as a sum of (n − 1)-point and (n − 2)-point integrals,
which is possible provided n > 4, for which there are 4 linearly independent external momenta
pi, i = 1 · · ·4 (the remaining external momenta can always be written as a linear combination
of the first 4 external momenta).

In =
∫

d4l
1

(l2 −m2
0)((l + q1)2 −m2

1) · · · ((l + qj)2 −m2
j ) · · · ((l + qn)2 −m2

n)

with

qj =
j

∑

i=1

pi.

If n > 4 then we may write

lµ =
4

∑

i,j=1

pi · l(∆)−1
ij p

µ
j ,

with
∆ij = pi · pj

So that

l2 =
4

∑

i,j=1

pi · l(∆)−1
ij pj · l,

Now using
l2 = (l2 −m2

0) +m2
0

pj · l =
1

2

[(

(l + qj)
2 −m2

j

)

−
(

(l + qj−1)
2 −m2

j−1

)

+
(

m2
j −m2

j−1 + q2j−1 − q2j

)]

and introducing the notation

I
(j)
(n−1)[x] ≡

∫

d4l
x

(l2 −m2
0) · · ·

(

(l − q2(j−1) −m2
(j−1)

) (

(l − q2(j+1) −m2
(j+1)

)

· · ·
(

(l − q2(n+1) −m2
(n+1)

) ,

(i.e. the n-point integral in which the jth propagator is “pinched out”) and we drop the
argument [x] if x = 1. i.e. for scalar integrals.

I
(0)
(n−1) +m2

0In =
1

2

4
∑

i,j=1

(∆)−1
ij

[

I
(j)
(n−1)[pi · l]− I

((j−1))
(n−1) [pi · l] +

1

2

(

m2
j −m2

j−1 + q2j−1 − q2j

)

In[pi · l]
]
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=
1

2

4
∑

i,j=1

(∆)−1
ij

[

I
(j)
(n−1)[pi · l]− I

((j−1))
(n−1) [pi · l]

+
1

2

(

m2
j −m2

j−1 + q2j−1 − q2j

) (

I
(i)
(n−1) − I

((i−1))
(n−1) + (m2

i −m2
(i−1) + q2(i−1) − q2i

)

In

]

The terms
I
(j)
(n−1)[pi · l]

can be expressed in terms of
I
(j)
(n−1) and I

(j,i)
(n−2)

using the Veltman-Passarino reduction for the case of one power of momentum in the nu-
merator. We therefore end up with a relation between the n-point scalar integrals and the
possible (n− 1)-point and (n− 2)-point scalar integrals, shown above.

As an example, which can be done analytically we go down to two dimensions and consider
the triangle integral, with equal masses on internal lines.

k

p1p2

(0)
(1)

(2)

q1 ≡ p1

q2 ≡ p1 + p2

I3 ≡
∫

d2l
1

(l2 −m2)((l + q1)2 −m2)((l + q2)2 −m2)

lµ =
1

q21q
2
2 − (q1 · q2)2

[(

q22l · q1 − q1 · q2l · q2
)

q
µ
1 +

(

q21l · q2 − p1 · q2l · q1
)

q
µ
2

]

l2 =
1

q21q
2
2 − (q1 · q2)2

[

q22(l · q1)
2 + q21(l · q2)

2 − 2q1 · q2l · q1k · q2
]
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I3[l
2] ≡

∫

d2l
l2

(l2 −m2)((l + q1)2 −m2)((l + q2)2 −m2)
= I

(0)
2 +m2I3

I3[(l · q1)
2] =

1

2

[

I
(1)
2 [l · q1]− I

(0)
2 [l · q1]− q21I3[l · q1]

]

=
1

2

[

I
(1)
2 [l · q1]− I

(0)
2 [l · q1]−

1

2
q21

(

I
(1)
2 − I

(0)
2

)

]

+
1

4
q41I3

Similarly

I3[(k · q2)
2] =

1

2

[

I
(2)
2 [l · q2]− I

(0)
2 [l · q2]− q22I3[l · q2]

]

=
1

2

[

I
(2)
2 [l · q2]− I

(0)
2 [l · q2]−

1

2
q22

(

I
(2)
2 − I

(0)
2

)

]

+
1

4
q42I3

and

I3[l · q1k · q2] =
1

2

[

I
(1)
2 [l · q2]− I

(0)
2 [l · q2]− q21I3[l · q2]

]

=
1

2

[

I
(1)
2 [l · q1]− I

(0)
2 [l · q1]−

1

2
q21

(

I
(2)
2 − I

(0)
2

)

]

+
1

4
q21q

2
2I3

Finally, we use

I
(1)
2 [lµ] ≡

∫

d2l
lµ

q(k2 −m2)((l + q2)2 −m2)
=

1

2

[

I
(1,2)
1 − I

(1,0)
1 − q22I

(1)
2

]

q
µ
2 = −

1

2
q
µ
2 I

(2)
2

since

I
(1,0)
1 ≡

∫

d2l
1

((l + q2)2 −m2)
=

∫

d2l
1

(l2 −m2)
= I

(1,2)
1

and similarly

I
(2)
2 [lµ] = −

1

2
q
µ
1 I

(2)
2

I
(0)
2 [lµ] = −

1

2
(qµ1 + q

µ
2 ) I

(2)
2

Piecing all of this together we find that (in two dimensions)

[

q21q
4
2 + q41q

2
2 − 2q21q

2
2q1 · q2 + 4m2(q1 · q2)

2 − 4m2q21q
2
2

]

I3 =
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[

(q21 + q22)q1 · q2 − 2(q1 · q2)
2
]

I
(0)
2 +

[

q21q
2
2 − q22q1 · q2

]

I
(1)
2 +

[

q21q
2
2 − q21q1 · q2

]

I
(2)
2

It therefore follows that any one-loop integral, In in four dimensions can be reduced to a
sum of box-integrals, I4, triangle-integrals, I3, bubble-integrals, I2, and tadpole-integrals, I3
†

This can be achieved by successive applications of the Veltman-Passarino reduction method.
However, this is very cumbersome. In the next section we show how the coefficients of these
various scalar integrals can be obtained by a technique known as “cut construction”. For
simplicity we will explain how this works in two-dimensions. The extension of the technique
to the four-dimensional case does not introduce any new principles, but simply generates
somewhat more intricate algebra.

7.6 Remnant Integrals

In QCD a one-loop n-point graph has a maximum of n vertices each carrying a maximum
power of one loop momentum and n propagators.

Each stage on the reduction reduces the number of loop momenta on the numerator by one
and the number of denominators (propagators) by one.

This means that from an ultraviolet convergent loop integral we will generate terms which
are ultraviolet divergent. For example a 5-point matrix element will contain the ultraviolet
convergent integral

I5[l
µlνlρlσlτ ]

Applying the reduction once we will get terms of the form

I4[l
µlν lρlσ],

which by power counting in ultraviolet divergent.

Since we started with a UV convergent integral this means that the sum of all the generated
UV divergent integrals will end up being finite. But care must be taken to carry out the inte-
grals using a robust regulator (such as dimensional regularisation or dimensional reduction)
in order to be sure that the remaining finite terms are correct.

The reduction process can be iterated until the only UV divergent integrals are

I2[1] = −i(4π)d/2
∫

ddl

(2π)d
1

(l2 −m2
0)((l + q)2 −m2

1)

†We will see later that some complications can arise if the integrals are either infrared or ultraviolet
divergences which need to be regularized, for example through dimensional regularization, which necessitates
the inclusion pentagon integrals in five dimensions.
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I2[l
µ] = −i(4π)d/2

∫

ddl

(2π)d
lµ

(l2 −m2
0)((l + q)2 −m2

1)

and

I2[l
µlν ] = −i(4π)d/2

∫

ddl

(2π)d
lµlν

(l2 −m2
0)((l + q)2 −m2

1)
.

All the other integrals are “scalar” (triangles, boxes, pentagons, etc).

Each of these integral has an imaginary part in some domains of the invariant square mo-
menta q2i .

However, the converse statement, namely that the integrals can be reproduced from knowl-
edge of these imaginary parts has one unfortunate exception arising from the relation (for
massless internal particles)

I2(l
µlν)−

(

qµq1ν

3
−

gµν

12

)

I2[1] =
1

18

(

gµνq2 − qµqν
)

,

which is purely real. This means that precise knowledge of the imaginary part of an integral
does not specify the coefficient of this (finite) combination of two-point integrals.
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