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1 Path Integrals in Quantum Mechanics

A mechanical system in d-dimensions is described a a set of coordinates q ≡ {q1, q2 · · · qd}1

and their momenta q̇ ≡ {q̇1, q̇2 · · · q̇d}, and a Lagrangian L[q(t), q̇(t)], which is a functional
of the coordinates and velocities.

Associated with each coordinate is a canonical momentum

pi(t) =
δL

δq̇i
. (1.1)

This enables us to define the kinetic energy,T , and potential energy, V , of the system

L = T − V

T =
1

2

d∑
i=1

piq̇i (1.2)

If the system coordinates are functions of time, q(t), with initial values q(ti) = qi and
final values q(tf ) = qf then those functions are called a “path”, between those initial and
final values and we can define an “action”, S[q(t)], which is a functional of the path by

S[q(t)] ≡
∫ tf

ti

L(q(t), q̇(t))dt (1.3)

The Lagrange equations of motion are derived from the postulate that the path between
given initial and final conditions is the path for which the action is minimal.

The fundamental equation of Quantum Mechanics in terms of such an action can be
written

〈qf , tf
∣∣qi, ti〉 =

∫
D[q(t)] exp

(
i
S[q(t)]

~

)
, (1.4)

1d is the total number of time-dependent coordinates required to specify the system - not the literal
number of dimensions of the space in which the system is embedded, e.g for a two-particle system moving
in three dimension’s, d = 6.
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where 〈qf , tf
∣∣qi, ti〉 is the quantum time-evolution amplitude for the system to propagate in

time between a state at initial time ti in which the coordinates take the values qi to a state
at final time tf in which the coordinates take the values qf . The integral on the RHS of
(1.4) is over all possible paths, q(t) with initial values q(ti) = qi and final values q(tf ) = qf .
A definition of the integration measure D[q(t)] will be discussed when we consider some
explicit examples.

For a classical (macroscopic) system)the only path that will contribute to the path inte-
gral will be the path corresponding to an extremum of the action, since other paths whose
action differs from the extremal action by an amount much larger than ~ will give rise to very
rapid oscillations which will cancel out. But for microscopic systems we need to sum over
all paths which differ from the classical path by an amount which is of the order of ~. Thus
to calculate the quantum amplitude (and subsequently the probability) for a particle to be
at qf at time t = tf , requires a weighted “sum over all histories” from an initial condition qi
at time t = ti. This is a generalisation of the interpretation of the double slit experiment, in
which the amplitude for a photon to land at a particular place on a screen os the sum over
the amplitude for the photon to pass through one slit and the amplitude for the photon to
pass through the other slit.

x

t

(xi,ti)

(xf,tf)

Figure 1: Some of the paths for a free particle moving between (xi, ti) and (xf , tf ). The
ticker red straight line is the classical path which obeys Newtons laws of motion.

An illustration of some of the paths which need to be taken into account is shown in
Fig.1 , which considers the paths of a free particle moving in one dimension with coordinate
x. From Newton’s first law the particle moves in a straight line with constant velocity,
indicated by the thicker red line between the initial and final positions. But for a quantum
amplitude we need to sum over all possible paths, some of which are shown in the figure,
notwithstanding the fact that a free classical free particle does not move along such paths.
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In the case under consideration (a free particle with mass m), the classical path is given by

x(t) = xi +
(t− ti)
(tf − ti)

(xf − xi) (1.5)

and the corresponding action is

Scl =
m

2(tf − ti)
(xf − xi)2. (1.6)

But let us consider a different path, given by

x′(t) = xi +

(
(t− ti)
(tf − ti)

+ 2
(t− ti)(t− tf )

(tf − ti)2

)
(xf − xi), (1.7)

which also satisfies the boundary values x(ti) = xi, x(tf ) = xf . This path is shown as the
green line in Fig.1. The action for this path is

S[x′(t)] =
5m

6(tf − ti)
(xf − xi)2. (1.8)

If m is of the order of the electron mass (∼ 10−30kg.), (xf − xi) is of the order of an atomic
radius (∼ 10−10m.), and (tf−ti) is of the order of the period of oscillation of light (∼ 10−15s.),
then the difference between the action for the two paths is of order of ~ and so the path x′

contributes to the transition amplitude almost as much as the classical action.

2 Relation between Path Integral and Schroedinger

Equation

In this section we show the equivalence of the path integral expression (1.4) and the Schroedinger
approach, which (in its time-integrated form) gives the quantum amplitude for a particle in
a state

∣∣k〉 at time ti to propagate in time to a state
∣∣l〉 at time tf .

Using the integrated form of the Schroedinger equation this amplitude is

〈l, tf
∣∣k, ti > = 〈l

∣∣∣∣exp

{
−i/~

∫ tf

ti

Ĥdt

}∣∣∣∣ k〉 (2.1)

Inserting complete sets of eigenstates of q̂(t),∫
ddq |q〉〈q| = 1,

between initial and final states, this becomes

〈l, tf
∣∣k, ti > =

∫
ddqfd

dqiΨ
∗
l (qf )〈qf

∣∣∣∣exp

{
−i/~

∫ tf

ti

Ĥdt

}∣∣∣∣qi〉Ψk(qi), (2.2)
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where
Ψk(q) ≡ 〈q

∣∣k〉
is the (time-independent) wavefunction for a system in state

∣∣k〉 ( and similarly Ψl(q)).
Eq.(2.2) can be rewritten

〈qf , tf
∣∣qi, ti〉 = 〈qf

∣∣∣∣exp

{
− i
~

∫ tf

ti

Ĥdt

}∣∣∣∣qi〉 (2.3)

The time interval (tf − ti) can be divided into a large number of intervals, N ,

and at each time-slice, tr, we insert unity in the form of a complete set of eigenstates of
the coordinates

1 =

∫
ddqr

∣∣qr〈qf ∣∣∣∣exp

{
−i/~

∫ tf

ti

Ĥdt

}∣∣∣∣qi〉〈qr∣∣.
Eq.(2.3) then becomes

〈qf , tf
∣∣qi, ti〉 = lim

N→∞

N∏
r=0

{∫
ddqr〈qr+1

∣∣∣∣exp

(
− i
~
Ĥ∆t

)∣∣∣∣qr〉} δd (q(tf )− qf ) δ
d (q(ti)− qi)

(2.4)
with ∆t ≡ (tf − ti)/N and the δ-functions ensure that the values of the coordinates are fixed
at times ti and tf .

By inserting unity again, but this time as a complete set of eigenstates of the canonical
momenta, pr, we can write the Hamiltonian operator Ĥ as a function of the canonical
momenta and coordinates, so that we have

〈qr+1

∣∣∣∣exp

{
− i
~
Ĥ∆t

}∣∣∣∣qr〉 =

∫
ddpr〈qr+1

∣∣∣∣exp

{
− i
~
H(pr,qr)∆t

}∣∣∣∣pr〉 1

(2π~)d/2
exp

{
i

~
pr · qr

}
,

(2.5)
where we have used

〈p
∣∣q〉 =

1

(2π~)d/2
exp

{
i

~
p · q

}
. (2.6)

The factor involving the Hamiltonian is just a multiplicative constant since the Hamiltonian
is a function of coordinates and momenta (as opposed to an operator) so we may take this
outside 〈q(r+1)

∣∣ and again using Eq.(2.6) we have

〈qr+1

∣∣∣∣exp

{
− i
~
Ĥ∆t

}∣∣∣∣qr〉 =

∫
ddpr exp

{
− i
~
H(pr,qr)∆t

}
1

(2π~)d
exp

{
i

~
pr ·

(
qr − q(r+1)

)}
,

(2.7)
Over a small time interval, ∆t, we have(

q(r+1) − qr
)
≈ q̇r∆t

Now we assume that the Hamiltonian is a quadratic function of the momenta

H(p,q) =
1

2
pT ·M−1 · p + V (q), (2.8)
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where M is the mass matrix2 The integral over the momenta pr is now a gaussian integral,
which may be performed to yield

〈qr+1

∣∣∣∣exp

{
− i
~
Ĥ∆t

}∣∣∣∣qr〉 =

(
− i
~

det M

2π~∆t

)1/2

exp

{
i

~

(
1

2
q̇Tr ·M · q̇r − V (qr)

)
∆t

}
=

(
− i
~

det M

2π∆t

)1/2

exp

{
i

~
L(qr, q̇r)∆t

}
(2.9)

Inserting this back into Eq.(2.4), we see that we recover Eq.(1.4), provided we identify the
measure for the integral over all paths by

D[q(t)] ≡ lim
N→∞

N−1∏
r=1

(
−i NdetM

2π~ (tf − ti)

)1/2

ddq(tr) (2.10)

Note that the values of the index r in the product goes over r = 1 to r = (N − 1), because
the end-point values of q at t = ti, (r = 0) and t = tf , (r = N) are fixed.

The integration over all values of q at each time-slice between ti and tf makes perfect
sense, since there will be at least one path for which at time tr the coordinates q will take
any given set of values, so that a sum over all paths must include all values. The pre-factor
is required in the definition of the measure in order to link the path integral expression for
the time evolution of a given state with that given by the Schroedinger equation.

The expression (2.10) is indeed very cumbersome, but we will see in the next section that
there is an alternative way to express the measure, which is much more manageable.

3 Examples

3.1 Example 1: Free Particle

We consider a free particle of mass m moving (non-relativistic ally) in one dimension, with
coordinate x(t).

The Lagrangian is given by

L =
1

2
m ˙x(t)

2
(3.1)

and the action is

S[x(t)] =

∫ tf

ti

1

2
m ˙x(t)

2
dt (3.2)

The classical solution which passes through the point xi at time ti and tf at time tf is

xcl(t) = xi +
X

T
(t− ti), (3.3)

2This matrix could also depend on the coordinates q, for example in the case of particles moving in the
presence of a gravitational with a non-Minkowski metric.
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with T ≡ tf − ti and X ≡ xf − xi giving rise to a classical action

Scl =
m

2

X2

T
(3.4)

Now let us write the path x(t) as the classical path, xcl(t) plus a quantum correction, xqu(t):

x(t) = xcl(t) + xqu(t) (3.5)

and the quantum correction may be expanded as

xqu(t) =
∞∑
n=1

cnφn(t), (3.6)

where φn(t) are a complete set of orthonormal functions. It is convenient to take these
eigenfunctions to be the eigenfunctions of the operator Ô, where the action is written

S[x(t)] = Scl + 2π~
∫ tf

ti

dt
∑
l,n

c∗l cnφ
∗
l (t)Ôφn(t) (3.7)

After integration by parts we see that the operator Ô is

Ô = −m
2

d2

dt2
(3.8)

Since all paths have to path through xi at ti and xf at tf , the eigenfunctions φn must vanish

at t = ti and t = tf . The eigenfunctions of Ô which obey these boundary values are

φn(t) =

√
1

T
sin

(
nπ(t− ti)

T

)
(3.9)

These are orthonormal functions and so∫ tf

ti

dtφ∗l (t)Ôφn(t) =
mπ2

2T 2
n2δln

The eigenvalues, λn are given by

λn =
mn2π2

2T 2

The action arising from a path whose coefficients3 are cn, is

S({cn} = Scl +
∑
n

c2
n

mπ2

2T 2
n2 (3.10)

3In this case the coefficients may be considered to be real, but in general we need to allow for these to be
complex.

6



Integrating over all paths is equivalent to integrating over all values of the coefficients cn,
up to some jacobian, J , which we fix by comparing the result with that obtained from the
Schroedinger approach.4

Therefore for a free particle we obtain

〈xf , tf
∣∣xi, ti〉 = exp

(
i
Scl
~

)
det J

∞∏
n=1

∫
dcn exp

{
i

(
mπ2

2~T

)
n2c2

n

}
, (3.11)

with T = (tf − ti) The gaussian integrals over cn can be performed yielding

〈xf , tf
∣∣xi, ti〉 = exp

(
i
Scl
~

)
det J

∞∏
n=1

√
−i~T
πm

2

n
. (3.12)

with Scl given by (3.4).

In the Schroedinger approach in the case of a free particle, the momentum eigenfunctions
are also eigenfunctions of the Hamiltonian, H = p2/2m, and so we have

〈xf , tf
∣∣xi, ti〉 =

1

2π~

∫
dpdp′ exp

{
i

~
(p′xf − pxi)

}
〈p′
∣∣ exp

{
i
p̂2T

(2m~)

} ∣∣p〉
=

1

2π~

∫
dpdp′ exp

{
i
(p′tf − pti)

~

}
exp

{
i
p2T

2m~

}
δ(p− p′)

=
1

2π~

∫
dp exp

{
i
(pX − p2T )

(2m~)

}
(3.13)

Performing the gaussian integral over p we get

〈xf , tf
∣∣xi, ti〉 =

√
−im
2π~T

exp

(
i
mX2

2~T

)
=

√
−im
2π~T

exp

(
i
Scl
~

)
(3.14)

Comparing (3.14) with (3.11), we see that

det J
∞∏
n=1

∫
dcn exp

{
i(mπ2/2~T )n2c2

n

}
=

√
−im
2π~T

. (3.15)

We will use this result in the next example.

4This looks like a ”circular argument” but we will only use this in the case of a free particle. The jacobian
will then be determined for consideration in any other system.
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3.2 Example 2: The Harmonic Oscillator

For a particle of mass m performing oscillations in one dimension with angular frequency ω,
the Lagrangian is given by

L =
m

2
ẋ2 − ω2

2
x2 (3.16)

The classical path is

x(t) = A sin(ωt+ φ) (3.17)

where the two constants A and φ are chosen such that

A sin(ωti + φ) = xi

A sin(ωtf + φ) = xf ,

so that the particles passes though xi at time ti and xf at time tf . The classical action is
given by

Scl =
A2ω

2
cos (φ) sin (ωT ) , (3.18)

where for convenience we have moved the time origin such that ti = −T/2, tf = +T/2.

The general path may again be given by

x(t) = xcl(t) +
∞∑
n=1

cnφn(t) (3.19)

where φn(t) are the eigenfunctions of the operator

Ô = −m
2

(
d2

dt2
+ ω2

)
The eigenfunctions (which vanish for t = ti and t = tf ) are again given by Eq.(3.9), but the
eigenvalues are given by

λn =
m

2

(
n2π2

T 2
− ω2

)
,

so that the expression (3.12) for the transition amplitude 〈xf , tf
∣∣x)i, t)i〉 for a free particle

becomes

〈xf , tf
∣∣xi, ti〉 = exp

(
i
Scl
~

)
det J

∞∏
n=1

√
−i~T
2πm

2

(
n2 − ω2T 2

π2

)−1/2

, (3.20)

with Scl given by (3.18). If we rewrite this as

〈xf , tf
∣∣xi, ti〉 = exp

(
i
Scl
~

)
det J

∞∏
n=1

√
−i~T
2πm

2

n

∞∏
l=1

(
1− ω2T 2

π2l2

)−1/2

(3.21)
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Using (3.15) and the product

∞∏
n=1

(
1− y2

n2

)
=

sin(πy)

πy
,

We obtain for the harmonic oscillator

〈xf , tf
∣∣xi, ti > =

√
−imω
2π~

exp

(
i
Scl
~

)
(sin(ωT ))−1/2 (3.22)

We note that if we expand this in powers of eiωT we find

〈xf , tf
∣∣xi, ti > =

√
−imω
2π~

exp

(
i
Scl
~

) ∞∑
r=0

(2r − 1)!

r!(r − 1)!2(2r−1)
e−i(2r+1/2)ωT , (3.23)

i.e. we get get terms whose t dependence are e−iE2rT/~, where E2r are the (even) energy
levels of the harmonic oscillator.5

3.3 Imaginary Time

We can dispense with the cumbersome factors of i and their square roots by moving to
imaginary time τ̃ = −it. The coordinates q are now functions of a parameter τ , which
does not have a direct physical interpretation. The Lagrangian, L (q, q̇) is replaced by the
effective Hamiltonian

Heff(q, dq/dτ̃) ≡ −L
(

q, i
dq

dt

)
whose action is

SE[q(τ̃)] ≡
∫ qf

qi

Heff (q, dq/dτ̃)) dτ̃

In thermal physics the variable τ̃ is replaced by the inverse of the temperature (in units of
the Boltzmann constant). The classical dependence of q on τ , qcl(τ̃), is the function which
minimises this action.

The leading dependence of the evolution amplitude 〈qf , τf
∣∣qi, τi〉 is now

exp

(
−SE[qcl(τ̃)]

~

)
For the case of the harmonic oscillator Eq.(3.22) becomes

〈xf , τf
∣∣xi, τi > =

√
mω

2π~
exp

(
−SE[xcl]

~

)
(sinh(ωτ))−1/2 , (3.24)

5The odd energy levels are absent because the corresponding eigenfunctions do not satisfy the required
boundary conditions.
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with τ ≡ τf − τi and SEcl means the Euclidean action with the classical path, qcl(τ̃).

One immediate consequence of this Euclidean formalism is that the τ -dependence is a
series of terms with τ -dependence

e−Erτ/~

where Er are the energy levels of the system. As τ → ∞, this is dominated by the ground
state energy, and so for large τ we obtain the evolution amplitudes for the ground-state of
the system.

V
(x

)

x

(a)  Harmonic Potential

V
(x

)

x

 (b) Effective Harmonic Potential for Euclidean Time

Figure 2: Fig.(a) shows the normal harmonic potential, whereas Fig.(b) shows the effective
potential in imaginary time.

In the case of the harmonic oscillator, the classical path xcl(t) = A sin(ωt+ φ), describes
a particle performing harmonic motion about the minimum of a potential well

V (x) =
1

2
mω2x2.

In imaginary time the classical path is xcl(τ̃) = A sinh(ωτ̃ +φ), describing a particle moving
in a potential hump

V (x) = −1

2
mω2x2.

and the action is

SE =
A

2
ω2 cosh(φ) sinh(ωτ)

As the imaginary time-interval τ → ∞ the action is minimised by setting the ”amplitude”
A to zero. For any other path the distance

∣∣xf − xi∣∣ must grow exponentially as τ → ∞
representing a particle rolling down a the potential hump. For A = 0, the action is zero and
so in this limit we may omit the factor exp (−SE/~) .
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4 Correlators

A quantity which is often very useful is the correlator, which is the expectation value of a
product of the coordinates at given times. e.g.

〈qi, ti
∣∣T q̂(t2)q̂(t1) · · · q̂(tk)

∣∣qi, ti〉.
Here the symbol T means time-ordered and it means that t1 > t2 > · · · > tk. Note also that
we have written q as an operator at a given time (Heisenberg representation).

Inserting complete sets of states at times t1, t2, · · · tk, we get

〈qi, ti
∣∣T q̂(t2)q̂(t1) · · · q̂(tk)

∣∣qi, ti〉 =∫
ddq1d

dq2 · · · ddqk q1q2 · · ·qk〈qf , tf
∣∣q1, t1〉〈q1, t1

∣∣q2, t2〉 · · · 〈qk, tk
∣∣qi, ti〉(4.1)

since 〈q1, t1
∣∣q2, t2〉 means sum over all paths between t2 and t1 whose values are fixed at

those times, we can write the product on the transition amplitudes as an integral over all
paths with appropriate δ-functions at t1, t2, · · · tk so that we have

〈qi, ti
∣∣T q̂(t2)q̂(t1) · · · q̂(tk)

∣∣qi, ti〉 =∫
ddq1d

dq2 · · · ddqk
∫ qf ,tf

qi,ti

D[q(t)]q1q2 · · ·qk exp

{
i

~
S[q(t)]

}
δd (q(t1)− q1) δd (q(t2)− q2) · · · δd (q(tk)− qk) (4.2)

We use the integrations over qi etc. to absorb the δ-functions, so that finally we have

〈qi, ti
∣∣T q̂(t2)q̂(t1) · · · q̂(tk)

∣∣qi, ti〉 =∫
D[q(t)]q(t1)q(t2) · · ·q(tk) exp

{
i

~
S[q(t)]/~

}
(4.3)

There is a convenient trick for determining these path integrals, by introducing a source
function j(t) and adding the term ∫ tf

ti

j(t) · q(t)dt

to the effective action so that we obtain the source-dependent evolution amplitude

〈qf , tf
∣∣qi, ti〉j =

∫ tf

ti

D[q(t)] exp

{
i

~

(
S[q(t) +

∫ tf

ti

j(t) · q(t)

)}
, (4.4)

so that factors of q(t1) etc. can be wrought into the path integral by performing a functional
integral w.r.t. to the source function, and then setting the source function to zero, i.e.∫

D[q(t)]q(t1)q(t2) · · ·q(tk) exp

(
i
S[q(t)]

~

)
=(

−i~ δ

δj(t1)

)(
−i~ δ

δj(t2)

)
· · ·
(
−i~ δ

δj(tk)

)
〈qf , tf

∣∣qi, ti〉j=0(4.5)
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Restricting ourselves to one dimension, We can once again write the general path as

x(t) = xcl(t) +
∑
n

cnφn(t),

so that in the presence of a source the path integral is

〈xf , tf
∣∣xi, ti〉j = exp

{
i

~

(
Scl +

∫ tf

ti

j(t)xcl(t)

)}
detJ

∞∏
n=1

∫
dcn exp

{
i

~
(λnc

2
n + cn

∫ tf

ti

dtj(t)φn(t)

}
, .

(4.6)
where λn are the eigenvalues of the operator Ô The Gaussian integral over the coefficient cn
can again be performed yielding

〈xf , tf
∣∣xi, ti〉j = exp

{
i

~

(
Scl +

∫ tf

ti

j(t)xcl(t)

)}
detJ

∞∏
n=1

√
−i2π
λn

exp

{
− i
~

∫ tf

ti

dtdt′
j(t)φn(t)j(t′)φn(t′)

λn

}
(4.7)

We can write

∞∏
n=1

exp

{
− i
~

∫ tf

ti

dtdt′
j(t)φn(t)j(t′)φn(t′)

λn

}
= exp

{
− i
~

∫ tf

ti

dtdt′j(t)Ô−1
(t,t′)j(t

′)

}
, (4.8)

where Ô−1 is the inverse of the operator Ô, which obeys the Green-function equation

Ô(t)Ô−1(t, t′) = δ(t− t′). (4.9)

This inverse operator may be written

Ô−1(t, t′) =
∞∑
n=1

φ∗n(t)φn(t′)

λn
. (4.10)

Operating on both sides of (4.10) and using the completeness relation for the eigenfunctions
φn we get

Ô(t)Ô−1(t, t′) =
∞∑
n=1

φ∗n(t)φn(t′) = δ(t− t′). (4.11)

Note that each application of a functional derivative w.r.t. the source j(t) brings down an
expected factor of xcl(t), as expected, plus a quantum correction which is proportional to√
~, and therefore vanishes in the classical limit.

5 Semi-classical approximation

So far, we have succeeded in determining the evolution functions by performing the necessary
path integrals exactly. We have been able to do this because the Lagrangian in the examples

12



considered are quadratic in the coordinate or velocity. In such cases the action for a general
path is given exactly by

S[x(t)] = Scl +
1

2

∫ tf

ti

dtdt′
δ2Scl

δxcl(t)δxcl(t′)
xqu(t)xqu(t

′) (5.1)

The operator Ô is given by

Ô(t)δ(t− t′) =
δ2Scl

δxcl(t)δxcl(t′)
.

Note that there is no term linear in xqu because xcl is the path which minimises the action.

However, for a general system for which the Lagrangian contains higher powers of the
coordinates and/or velocities, we expect the action for a given path to be of the form (again
restricting ourselves to one dimension )

S[x(t)] = Scl +

∫ tf

ti

dtÔxqu(t)2 +
∑
r=3

∫ tf

ti

dt1dt2 · · · dtrSr(t1, t2 · · · tr)xqu(t)xqu(t2) · · ·xqu(tr),

(5.2)
where

Sr(t1, t2 · · · tr) ≡
1

r!

δrScl
δxcl(t1) · · · δxcl(tr)

.

Sr is in general a function of the times t1 · · · tr and possibly also the derivative operators
d/dt1 · · · d/dtr.

If these terms are sufficiently small, we may neglect them and just consider the term in the
action which is quadratic in xqu. This is called the ”semi-classical approximation”. In this
approximation we expand the classical action only to second order in the quantum correction,
xqu and integrate the gaussian integral over xqu to obtain (up to an overall constant)

〈xf , tf
∣∣x̂(t1) · · · x̂(tk)

∣∣xi, ti〉 =

(
det

{
Ô

2π~

})−1/2

xcl(t1) · · · xcl(tk) exp

(
i

~
Scl

)
, (5.3)

where

Scl =

∫ tf

ti

L (xcl(t), ẋcl(t)) (5.4)

and det Ô is the product of all eigenvalues with eigenfunctions that vanish at t = ti and
t = tf .

There is a clever trick for calculating the determinant of an operator which is second
order in the time-derivative, Ô. For any value of λ there exists a function xλ(t) such that

1

2π~
Ôxλ(t) = λxλ(t),

13



which vanishes as t = ti, but in general it does not vanish at t = tf unless λ is equal to one
of the eigenvalues λn. To fix the normalisation of xλ we will also impose the initial condition

d

dt
xλ(ti) = 1.

Now consider two different operators Ô1 and Ô2 and the function of λ

det(Ô1/2π~− λ11)

det(Ô2/2π~− λ11)

This is equal to
xλ,1(tf )

xλ,2(tf )
.

We can see this because both sides have zeroes when λ = λn, the eigenvalues of Ô, and poles
when λ = λ′n, the eigenvalues of Ô′. Both sides tend to unity in the limit

∣∣λ∣∣ → ∞. The
functions are therefore identical. Setting λ to zero we therefore find

det
(
Ô1/2π~

)
x0,1(tf )

=
det
(
Ô2/2π~

)
x0,2(tf )

= N, (5.5)

where N is a constant.

In the case of a free particle we find

x0(t) = (t− ti), (5.6)

so that (
det

{
Ô

2π~

})−1/2

∝ T−1/2,

which is consistent with (3.15), whereas for a harmonic oscillator we find

x0(t) = sin (ω(t− ti)) , (5.7)

so that for the harmonic oscillator(
det

{
Ô

2π~

})−1/2

∝ sin(ωT )−1/2,

which is consistent with (3.22).

More generally, for a particle of mass m moving in a potential V (x), the operator Ô takes
the form

Ô =
m

2

d2

dt2
+ V ′′(xcl) (5.8)

14



the solution with λ = 0 is given by

x0(t) = ẋcl(ti)ẋcl(t)

∫ xcl(t)

xi

dx
1

(ẋ)3 . (5.9)

Using

V ′′(xcl) = −m
ẋcl

d3xcl
dt3

, (5.10)

we can see that
d2

dt2
x0(t) + V ′′(xcl)x0(t) = 0, (5.11)

(we also see that (7.9) the required boundary values at t = ti.) Thus we have the result

det

{
Ô

2π~

}
= ẋcl(ti)ẋcl(tf )

∫ xf

xi

dx
1

(ẋ)3 (5.12)

(up to an overall constant), and so finally we have for the path integral in the semi-classical
approximation

〈xf , tf
∣∣xiti〉 =

√
2π

N

(
ẋcl(ti)ẋcl(tf )

∫ xf

xi

dx
1

(ẋ)3

)−1/2

exp

{
i

~
Scl

}
(5.13)

It may be the case that there exists more than one classical path q(t), with boundary
values q(ti) = qi, q(tf ) = qf . These paths are not necessarily minima of the action, but
merely turning-points, or saddle-points. In this case the path-integral is given in the semi-
classical approximation by the sum of the terms obtained by expanding the coordinates to
quadratic order about each saddle-point. For this reason the semi-classical approximation is
also known as the saddle-point approximation.

In one dimension, we may have a series of classical paths, xkcl(t), with corresponding
actions Skcl and quadratic operators Ôk

Ôk(t)δ(t− t′) =
δ2Skcl

δxkcl(t)δx
k
cl(t
′)
.

The semi-classical approximation to the transition amplitude is then

〈xf ti
∣∣xi, ti〉 =

∑
k

(det

{
Ôk

2π~

})−1/2

exp

{
i

~
Skcl

} (5.14)

5.1 Equivalence with WKB approximation

We consider a particle of mass m moving in one dimension in a potential V (x) with energy
E. In the WKB approximation gives the (time-dependent) wavefunction

ΨE(x, t) =
1√
pE(x)

exp

{
i

~

(∫ x

x0

pE(x′)dx′ − Et
)}

, (5.15)
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where the ”momentum” pE(x) is given by

pE(x) = ±
√

2m(E − V (x)) (5.16)

and the lower limit of the integral, x0 is selected to give rise to a properly normalised
wavefunction. Note that in regions of x where V (x) > E this momentum is purely imaginary
and we get a wavefunction which decreases exponentially with x. Although a classical
particle cannot propagate in a such a region, in quantum physics this can happen and
the wavefunction describes quantum tunnelling.

The evolution amplitude from (xi, ti) to (xf , tf ) can be written in terms of a complete
set of energy eigenvalues

〈x‘f , tf
∣∣xi, ti〉 =

∫
dEΨ∗E(xf , tf )ΨE(xi, ti) (5.17)

In the WKB approximation (5.15) this becomes

〈x‘f , tf
∣∣xi, ti〉 =

∫
dE

1√
pE(xf )pE(xi)

exp

{
i

~

(∫ xf

xi

pE(x′)dx′ − E(tf − ti)
)}

, (5.18)

with pE(x) being a function of x and E given by (5.16). Note that in the integral over E
only one value corresponds to the classical value, Ecl, which is the energy such the classical
path passes through the two points xi, ti and xf , tf , namely the energy for which

tf − ti = m

∫ xf

xi

dx′
1

pEcl(x
′)

(5.19)

Once again, we can perform the integral over E using the ”saddle-point” approximation,
namely we write

E = Ecl + δE (5.20)

and expand the exponent, S(E), in (5.18) up to quadratic order in δE, In the pre-factor we
set pE to pEcl . Expanding the exponent to quadratic order

S(E) =
i

~

(∫ xf

xi

dx′pEcl(x
′)− Ecl(tf − ti)

)
+M(δE)2, (5.21)

with

M =
i

2~
d2

dE2

{∫ xf

xi

√
2m(E − V (x′))dx′ − E(tf − ti)

}
= −im

2

2~

∫ xf

xi

dx′
1

pEcl(x
′)3

(5.22)

We can perform the gaussian integral over δE which introduces a factor(
i

4πi

m2

~

∫ xf

xi

dx′

pEcl(x
′)3

)−1/2
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Piecing this together and inserting into (5.18) we get

〈xf , tf
∣∣xi, ti〉 = c

(
pEcl(xf )pEcl(xi)

∫ xf

xi

dx′
1

pEcl(x
′)3

)−1/2

exp

{
i

~

(∫ xf

xi

pEcl(x
′)dx′ − Ecl(tf − ti)

)}
,

(5.23)
where the overall constant c is determined by the requirement

lim
tf→ti
〈xf , tf

∣∣xi, ti〉 = δ(xi − xf ).

We can write ∫ xf

xi

dx′pEcl(x
′) =

∫ tf

ti

pEcl(xcl(t))ẋcl(t) dt

and replace the classical energy Ecl by the Hamiltonian, H, as a function of pEcl and xcl, so
that the exponent in (5.23) becomes

i

~

∫ t

t0

(pE(xcl(t))ẋcl(t)−H(pEcl(x(t), x(t) dt) ≡ i

~

∫ t

t0

L(xcl(t), ẋcl(t)) dt =
i

~
Scl,

so that finally we get (using pEcl(xcl(t)) = mẋcl)

〈xf , tf
∣∣xi, ti〉 =

c

m

(
ẋcl(tf )ẋcl(ti)

∫ xf

xi

dx
1

ẋ3

)−1/2

exp

{
i

~
Scl

}
, (5.24)

which is identical to the expression (5.13) obtained from the approximation to the path
integral in the semi-classical approximation.

6 Perturbation Theory

If we wish to calculate the evolution amplitudes beyond the semi-classical approximate, then,
provided the coefficients of these higher order terms are sufficiently small, we can expand
the exponential of these higher terms as a power series in the coefficients Sr such that

exp

(
i
S[x(t)]

~

)
= exp

(
i
Scl
~

)
exp

{
i

~

∫ tf

ti

dtÔxqu(t)2

}
×

[
1 +

∑
r=3

i

~

∫ tf

ti

dt1dt2 · · · dtrSr(t1, t2 · · · tr)xqu(t)xqu(t2) · · ·xqu(tr) + · · ·

]
.(6.1)

Up to any given order in the coefficients the transition amplitude can be calculated by
calculating the required correlators, in which appropriate multiples of the coordinate at
various given times multiplies the integrand in the path integral (see (4.3)). Note that
despite the factor of 1/~ for each power of the coefficients Sr, we have a factor of

√
~ for

each factor of the coordinate in the correlator function, and so this perturbative expansion is
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an expansion in powers of ~ and the sub-leading terms constitute quantum corrections. For
example if the Lagrangian contains a quartic term S4, the contribution to the path integral
from such a term is suppressed by a factor of

1

~

(√
~
)4

= ~

and higher order terms are even further suppressed.

7 Instantons in Quantum Mechanics

7.1 Double well potential

Consider a particle of mass m moving in a one-dimensional double-well potential

V (x) =
mω2

8λ2

(
x2 − λ2

)2
(7.1)

This is a double well potential shown in the left diagram of Fig.3

V
(x

)

x

(a)  Double Well  Potential

-X X

V
(x

)

x

(b)  Double Hump  Potential

-X X

Figure 3: Fig.(a) shows a double well potential. Fig(b) shows the corresponding effective
double hump potential in Eucidean time.

Near the points x = λ and x = −λ, the potential behaves like a harmonic oscillator

V (x) ≈ mω2

2
(∆x)2

with ∆x = (x± λ).

At first sight, it may seem that the spectrum of states is just two degenerate sets of
harmonic oscillator energy levels - at least for the lower energy levels where the particle is
most likely to be found close to the potential minimum at x = λ or x = −λ. However, in
Quantum Physics a particle which starts off at x = −x can tunnel through the barrier to
the point x = +λ or vice versa.
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The quantum amplitude for such a transition is

〈λ, T
2

∣∣− λ,−T
2
〉 =

∫
D[x(t)] exp

{
i

~
Sλ−λ[x(t)]]

}
, (7.2)

where Sλλ [x(t)] is the action due to the path x(t) which has the value x = −λ at t = −T/2
and x = λ at time T/2.

The best way to perform the path integrals to move to imaginary time t → iτ̃ so that
the effective potential is the double-hump potential shown on the right of Fig.3. Although
there is no classical path in real time that can be taken by a particle to get from −λ to λ,
in imaginary time the equation of motion

d2

dτ̃ 2
x(τ̃) =

ω2

2λ2
(x2 − λ2)x (7.3)

has a solution

xI(τ̃) = λ tanh

(
ωτ̃

2

)
, (7.4)

which has boundary values

lim
τ̃→±∞

= ±λ,

so it describes a particle moving in the double hump potential between x = −λ as τ → −∞
and x = +λ as τ → +∞, as shown in Fig.4.

x

τ

 Instanton Path 

-X

+X

Figure 4: Instanton path. x(τ)→ −λ as τ → −∞ and x(τ)→ +λ as τ → +∞

This class of xcl, whose limits τ̃ → ±∞ correspond to different minima of the potential,
is called an “instanton” (hence the notation xI for this classical path).
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As it is a solution of the equation of motion, it gives rise to the minimum action, (the
classical action) SI , in imaginary time, given by

SI =

∫ τ/2

−τ/2
(xI(τ̃))2 dτ̃ =

∫ τ/2

−τ/2

mω2λ2

4 cosh4 (ωτ̃/2)
dτ̃ ≈ 2

3
mωλ2 (for ωτ � 1). (7.5)

We can then calculate the path integral approximately in the semi-classical approxima-
tion.

The transition amplitude contains a factor (the barrier penetration factor)

e−SI/~ = exp

{
−2mωλ2

3~

}
Note that in a macroscopic system SI � ~, so that the tunnelling amplitude is negligibly

small.

7.2 Zero Modes

In order to compute the path integral in (7.2) we need the determinant of the operator

Ô =
d2

dτ̃ 2
+ V ′′(xI(τ̃) =

d2

dτ̃ 2
+
mω2

2

(
3 tanh2

(
ωτ̃

2

)
− 1

)
(7.6)

But this operator has a zero mode (an eigenfunction with eigenvalue zero)

x0(τ̃) =

√
3ω

8

1

cosh2(ωτ̃/2)
(7.7)

This arises because a more general instanton solution, specifies the imaginary time τc, at
which xI = 0 (the “centre” of the instanton where xI(τ) = 0) takes the value τc.

xIτc (τ̃) = λ tanh

(
mω(τ̃ − τc)

2

)
(7.8)

The Lagrangian is originally invariant under time transformation

L (x(τ̃), ẋ(τ̃)) = L (x(τ̃ + ∆τ), ẋ(τ̃ + ∆τ)) .

By specifying the instanton centre, τc this symmetry is spontaneously broken and (in analogy
with Goldstone bosons) there is a mode with arbitrarily small energy, corresponding to the
infinitesimally slow movement of the instanton centre. This zero mode is given by the rate
of change of the instanton configuration, xIτc , with respect to τc. From (7.4),(7.5) and (7.7)
the normalised zero mode is

x0(τ̃) =

√
m

SI

d

dτc
xIτc (τ̃) (7.9)
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The existence of this zero mode means that the determinant of Ô is zero and the pre-

factor
(

det
{
Ô/2π~

})−1/2

diverges.

For the moment we will not eliminate this problem, but we will factor out the coefficient,
c0, of the zero mode in the expansion of x(τ̃) as a sum of eigenfunctions of Ô. The pre-factor
is then (

det

{
Ô′

2π~

})−1/2

dc0,

where det Ô′ means the product of all non-zero eigenvalues of Ô.

The integral over the coefficient c0 can be traded for an integral over τc (known as a
“collective coordinate”). We compare the change in the path from an infinitesimal change,
dc0 in c0 with that obtained from an infinitesimal change in τc . From (7.9) this is

dc0 =

√
SI
m
dτc (7.10)

Let us write the determinant of the reduced operator (with the zero mode removed) as

2π~
SI

1

K2mω2
det

{
1

2π~

(
d2

dτ̃ 2
− ω2

)}
From the treatment of the harmonic oscillator (in imaginary time) we see that (see (3.24))

det

{
1

2π~

(
d2

dτ̃ 2
− ω2

)}
=

2π~
mω

sinh(ωτ). (7.11)

The constant, K is given by

K = η

√
SI

2π~
(7.12)

where the numerical constant η depends on the second derivative of the potential. In the
case of the potential (7.1), after many manipulations this number η can be shown to be equal
to
√

12.

So that finally we have the amplitude for transition from (−λ,−τ/2) to (+x,+τ/2) due
to a one-instanton path is given in terms of an integral over the collective coordinate τc

〈λ, τ
2

∣∣− λ,−τ
2
〉1I =

1

2π

√
12mω

~

√
SI
~
e−SI/~ (sinh(ωτ))−1/2

∫
ωdτc (7.13)

For sufficiently large τ this may be approximated by

〈λ, τ
2

∣∣− λ,−τ
2
〉1I = Ke−SI/~e−ωτ/2

∫
ωdτc, (7.14)

with K given by (7.12).
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7.3 Instanton gas

Finally, we address the problem of the apparent divergent generated by integrating over all
possible values of the centre of the instanton, τc.

We start by noting that we can rewrite Eq.(7.14) as

〈λ, τ
2

∣∣− λ,−τ
2
〉1I =

∫
ωdτc ρ 〈λ,

τ

2

∣∣λ,−τ
2
〉0I (7.15)

where 〈λ, τ
2

∣∣λ,− τ
2
〉0I is the amplitude for a transition from (λ,−τ/2) to λ, τ/2) in the absence

of an instanton, i.e the amplitude due to just a harmonic oscillator potential for oscillations
about x = λ, and the “instanton density”, ρ is given by

ρ ≡ Ke−SI/~ =

√
6SI
π~

e−SI/~. (7.16)

For large τ the zero instanton amplitude is

〈λ, τ
2

∣∣λ,−τ
2
〉0I =

√
mω

π~
e−ωτ/2 (7.17)

As well as a path consisting of a single instanton with a centre τ1 we have have a path
with an instanton followed (in imaginary time) by an anti-instanton which effects tunnelling
back from +λ to −λ. Such a path is given by

x2I(τ̃) = λ tanh

(
1

2
ω(τ2 − τ̃)

)
tanh

(
1

2
ω(τ̃ − τ1)

)
(7.18)

This path is shown in Fig.5. It is not an exact solution, but a very good approximation
to a solution provided the centres of the instanton and anti-instanton are sufficiently widely
separated, i.e.

ω
∣∣τ1 − τ2

∣∣ � 1.

The amplitude for such a path - an instanton followed by an anti-instanton is given by

〈λ, τ
2

∣∣λ,−τ
2
〉2I =

∫ τ/2

−τ/2
ωdτ2

∫ τ2

−τ/2
ωdτ1K

2e−2SI/~
√
mω

π~
exp

(
−1

2
ωτ

)
(7.19)

The integration over the centres of the instantons, τ1 and τ2 are ordered because the anti-
instanton follows the instanton, so that τ2 > τ1. Near the upper limit of the integral τ1

i.e. (τ1 ∼ τ2) the approximation used in (7.18) is no-longer valid. However, provided the
instanton density ρ is sufficiently small, the region in τ1, τ2 space over which (7.18) is invalid
is a very small part of the entire area, τ 2. More precisely, (7.18) becomes invalid when
ω(τ2− τ1) ∼ 1 and this is a relatively small region provided ωτ � 1. This approximation is
called the “dilute gas approximation”.
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Figure 5: Instanton followed by anti-instanton path.

We can generalise this to n instantons or anti-instantons to get

〈λ, τ
2

∣∣(−1)nλ,−τ
2
〉nI =∫ τ/2

−τ/2
ωdτn

∫ τn

τ/2

ωdτn−1 · · ·
∫ τ2

−τ/2
ωdτ1

(
Ke−SI/~

)n √mω

π~
e−ωτ/2 (7.20)

The nested integral over τ1 · · · τn gives a factor of

1

n!
(ωτ)n

If n is odd the path effects a transition from −λ to λ, and if n is even the path effects a
transition from −λ to −λ or λ to λ. Examples are shown in Fig.6.

As indicated in (5.14), the transition amplitude is obtained in the semi-classical approx-
imation by summing over all the classical paths which pass through the initial and final
points.

Summing over all odd n we have

〈±λ, τ
2

∣∣∓ λ, −τ
2
〉 =

∑
n odd

1

n!

(
Ke−SI/~ωτ

)n √mω

π~
e−ωτ/2

= sinh
(
Ke−SI/~ωτ

) √mω

π~
e−ωτ/2

=−1

2

√
mω

π~

(
exp

{
−
(

1

2
+Ke−SI/~

)
ωτ

}
− exp

{
−
(

1

2
−Ke−SI/~

)
ωτ

})
(7.21)
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Figure 6: An example of an odd number of instantons (a), and an example of an even number
of instantons

and summing over even n

〈±λ, τ
2

∣∣∓ λ, −τ
2
〉 =

∑
n even

1

n!

(
Ke−SI/~ωτ

)n √mω

π~
e−ωτ/2

= cosh
(
Ke−SI/~ωτ

) √mω

π~
e−ωτ/2

=
1

2

√
mω

π~

(
exp

{
−
(

1

2
+Ke−SI/~

)
ωτ

}
+ exp

{
−
(

1

2
−Ke−SI/~

)
ωτ

})
(7.22)

We see that the ground state energy is split into two levels with energies

E+ =

(
1

2
+Ke−SI/~

)
~ω (7.23)

and

E− =

(
1

2
−Ke−SI/~

)
~ω. (7.24)

The energy eigenstates are the superpositions of the states
∣∣− λ〉 and

∣∣λ〉
∣∣E+〉 =

(mω
4π~

)−1/4 (∣∣λ〉 − ∣∣− λ〉) (7.25)

with a transition amplitude (in imaginary time) exp(−E+τ/~) and

∣∣E−〉 =
(mω

4π~

)−1/4 (∣∣λ〉+
∣∣− λ〉) (7.26)

with a transition amplitude exp(−E−τ/~).
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7.4 Periodic Potentials

Consider a particle of mass m moving in a periodic potential such as

V (x) = m

(
ωλ

2π

)2(
1− cos

(
2πx

λ

))
, (7.27)

shown in Fig.7.

V
(x

)

x

  Periodic  Potential

λ

Figure 7: Periodic Potential

There are minima at x = nλ for all integer n. Near these minima the potential may be
approximated by

V (x) ≈ 1

2
mω2(x− nλ)2.

Without the effect of instantons, which can effect transitions between adjacent minima,
the system would have degenerate ground-states, each of which consisting of oscillations
about one of the minima with ground-state energy 1

2
~ω. We denote these states by |n〉.

We can construct states which are linear superpositions of these states, denoted by a
continuous parameter θ,

|θ〉 ≡
∑
n

e−inθ|n〉. (7.28)

We will see that these states are energy eigenstates, with energy eigenvalues that depend on
θ.

Quantum tunnelling between the minima is effected by an instanton path (in imaginary
time τ̃)

xI(τ̃) =
2λ

π
tan−1

(
eω(τ̃−τ0

)
(7.29)
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which is a solution to the sine-Gordon equation in one Euclidean dimension:

d2

dτ̃ 2
xI(τ̃) = ω2λ sin

(
2πxI(τ̃)

λ

)
(7.30)

The action of this integral is

SI =
2mωλ2

π2
(7.31)

We note that xI given by (7.29) varies from nλ as τ̃ → −∞ to (n+ 1)λ as τ̃ → +∞.

The anti-instanton path
xI(τ̃) = xI(−τ̃)

gives rise to transitions between (n+ 1)λ as τ̃ → −∞ to nλ as τ̃ → +∞.

As in the case of the double-well potential, the system possesses a zero mode

x0(τ̃) =

√
m

SI

d

dτc
xIτc (τ̃) (7.32)

due to the fact that the centre of the instanton, τ0, breaks the invariance under (imaginary-
)time invariance and must be treated as a collective coordinate.

The amplitude for an instanton transition is given (in the semi-classical approximation)
by

〈(n+ 1),
τ

2
|n,−τ

2
〉 = Ke−SI/~ωτ

√
mω

π~
e−ωτ/2, (7.33)

with SI now given by (7.31) and the pre-factor K differs from that given by (7.12) by a
numerical constant of order unity.

The transition amplitude between states |n1〉 and |n2〉 has contributions from l instantons
and l anti-instantons, subject to the condition

l − l = n2 − n1

( l instantons increases n by l and l instantons decreases n by l).

Thus we have

〈n2,
τ

2
|n1,−

τ

2
〉 =

∑
l,l

1

l!l!

(
Ke−SI/~ωτ

)(l+l)
δn2−n1−l+l

√
mω

π~
e−ωτ/2, (7.34)

Using the identity

δmn =
1

2π

∫ 2π

0

ei(n−m)θdθ,

and performing the sum over l, l we get

〈n2,
τ

2
|n1,

τ

2
〉 =

1

2π

∫ 2π

0

dθein1θe−in2θ exp
{
Ke−SI/~ωτeiθ

}
exp

{
Ke−SI/~ωτe−iθ

}√mω

π~
e−ωτ/2,

(7.35)
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Inverting (7.28)

|n〉 =
1√
2π

∫ 2π

0

|einθ〉

and introducing δ(θ − θ′), we end up with

〈θ′, τ
2
|θ,−τ

2
〉 = δ(θ − θ′) exp

{
2Ke−SI/~ωτ cos θ

}√mω

π~
e−ωτ/2. (7.36)

The δ-function tells us that these θ states are energy eigenstates with energy

E(θ) =

(
1

2
− 2Ke−SI/~ cos θ

)
~ω (7.37)

8 Path Integrals in Quantum Field Theory

Henceforth we will adopt the system of units, normally used in particle physics, in which
~ = c = 1.

We have already seen how the path integral formalism in Quantum Physics can be applied
to systems with several coordinates qi (even though the examples considered were all one-
dimensional).

The extension to quantum field theory is then straightforward, and can be understood
immediately in the case where space is discredited with points x{j} and a field φ(x{j}, t) is a
set of coordinates φ{j}(t).

In the continuum limit for which the discrete space-like points

x{j} → x,

this large (infinite) set of discrete coordinates becomes a field φ,, which is a function of space
x as well as time, t.

φ{j}(t) → φ(x, t).

The Lagrangian for a given field theory is expressed in terms of a (Lorentz invariant)
Lagrangian density, L:

L[φ(x, t)] =

∫
d3xL (φ(x, t), ∂µφ(x, t)) .

Note that since the Lagrangian generally depends on the field at neighbouring space-
points, the Lagrangian density is a function of the spatial derivative of the field, ∂φ, as well
as the time derivative.
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Writing φ(x, t) as φ(x), where xµ is the 4-vector (x, t), the transition amplitude from an
eigenstate of the field operator, with eigenvalue 6 φi(x) at time t = −T/2 to an eigenstate
of the field operator, with eigenvalue φf (x) at time t = +T/2 is given by the path integral

〈φf (x), T/2
∣∣φi(x),−T/2〉 =

∫
D(φ(x))eiS[φ(x], (8.1)

where the D[φ(x)], means integrate over all possible functions, φ(x) of space-time with
boundary values

φ(x,−T/2) = φ(x)i

and
φ(x,+T/2) = φ(x)f

and the action S[φ(x)] is given by

S[φ(x)] =

∫ T/2

−T/2
dt

∫
d3xL(φ(x), ∂µφ(x)) (8.2)

More generally we have (in analogy with (4.3)

〈φf (x), T/2
∣∣T φ̂(x1)φ̂(x2) · · · φ̂(xk)

∣∣φi(x),−T/2〉 =∫
D[φ(x)]φ(x1)φ(x2) · · ·φ(xk) exp (iS[φ(x)]) , (8.3)

where φ̂(x) is the quantum field operator at space-time point x.

The LHS of (8.3) can be expanded in terms of energy eigenstates
∣∣En, α〉 (where α

represents the set of quantum numbers for a member of the degenerate set of states with
energy En).

〈φf (x), T/2
∣∣T φ̂(x1)φ̂(x2) · · · φ̂(xk)

∣∣φi(x),−T/2〉 =∑
n

∑
α

Ψ∗n,α[φ(x)f ]Ψn,α[φ(x)i]〈n, α
∣∣T φ̂(x1)φ̂(x2) · · · φ̂(xk)

∣∣n, α〉e−iEnT (8.4)

where
Ψn,α[φ(x)i] = 〈Enα

∣∣φi(x)〉
is the wavefunctional of the state

∣∣En, α〉 in terms of the field function φ(x)i. We will see
that we do not need the explicit expressions for such wavefunctionals

Once again, this path integral is most conveniently calculated in imaginary time, effected
by a Wick rotation t→ −iτ̃ . We can express the necessary results in real time by performing
the reverse Wick rotation.

6The eigenvalues of the field operator are function of x. Again this is more easily understood if we discrete
space to a set of points xj and consider the eigenstates of the field operator as the simultaneous eigenstate

of the set of operators φ̂(xj) with the set of eigenvalues φ(xj).
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In imaginary time the action is transformed so that

S[φ] → iSE[φ],

where the Euclidean action, SE is given by

SE[φ(x)] =

∫ τ/2

−τ/2
dτ̃

∫
d3xL(φ(x), ∂iφ(x)),

where i = 1 · · · 4 are now indices in 4-dimensional Euclidean space.

In the limit τ → ∞, the exponent on the RHS of (8.4) is now dominated by the lowest
energy state (the vacuum state) |0 >. In quantum field theory the fields are “normal ordered”
so that the energy of the vacuum state is zero. Eq.(8.4) then becomes

〈φf (x), τ →∞
∣∣T φ̂(x1)φ̂(x2) · · · φ̂(xk)

∣∣φi(x), τ → −∞〉 =

Ψ∗0(φ(xf )Ψ0(φ(xi)〈0
∣∣Tφ(x1)φ(x2) · · ·φ(xk)

∣∣0〉 (8.5)

Now using (8.3) and dividing both sides by the vacuum-state wavefunction, we have

〈0
∣∣T φ̂(x1)φ̂(x2) · · · φ̂(xk)

∣∣0〉 =

(Ψ∗0(φ(xf )Ψ0(φ(xi))
−1

∫
D[φ(x)]φ(x1)φ(x2) · · ·φ(xk)e

−SE [φ(x)] (8.6)

We do not need to know the vacuum-state wavefunctions because we can divide both
sides by their corresponding expressions in the case k = 0 (no factors of the field multiplying
the exponent in the path integral). This gives us

〈0
∣∣T φ̂(x1)φ̂(x2) · · · φ̂(xk)

∣∣0〉
〈0
∣∣0〉 =

∫
D[φ(x)]φ(x1)φ(x2) · · ·φ(xk)e

−SE [φ(x)] (8.7)

or simply

〈0
∣∣T φ̂(x1)φ̂(x2) · · · φ̂(xk)

∣∣0〉 =

∫
D[φ(x)]φ(x1)φ(x2) · · ·φ(xk)e

−SE [φ(x)] (8.8)

since 〈0
∣∣0〉 = 1. In the limit τ →∞, SE[[φ(x)] becomes simply

SE[φ(x)] =

∫
d4xL (φ, ∂iφ(x))

The correlators on the LHS of (8.8) are the Green’s functions usually required in any
Quantum Field Theory calculation. The RHS of (8.8) can be obtained in terms of functional
derivatives with respect to a source function j(x). The source function j(x) is introduced by
adding the terms ∫

d4x j(x)φ(x)
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to the action. We define the “generating functional” Z[j] of the source function j(x) as

Z[j] ≡
∫
D[φ(x)] exp

(
−SE[φ(x)]−

∫
d4xj(x)φ(x)

)
(8.9)

and we have

〈0
∣∣T φ̂(x1)φ̂(x2) · · · φ̂(xk)

∣∣0〉 =
1

Z[0]

(
− δ

δj(x1)

)(
− δ

δj(x2)

)
· · ·
(
− δ

δj(xk)

)
Z[j]|j=0

(8.10)

8.1 Propagators

The Lagrangian density contains terms quadratic in the field φ, which we may write as

L0 =
1

2
φ(x)Ôφ(x). (8.11)

For a real scalar field (corresponding to a neutral spin-0 particle) after integrating

−
∫
d4x

1

2
(∂iφ(x))2

by parts, we find that (in Euclidean space) the operator Ô is given by

Ô = ∂2
i −m2 (8.12)

In analogy with the technique used for calculating the path integral in the case of Quantum
Mechanics, we perform the integral over all functions φ(x) by expanding φ(x) in terms of
φn(x), the eigenfunctions 7 of Ô with eigenvalues λn:

φ(x) =
∞∑
n=0

cnφn(x), (8.13)

where
Ôφn(x) = λnφn(x).

The measure D[φ(x)] is then written (up to an overall constant) as

D[φ(x)] =
∞∏
n=0

dcn.

We also expand the source function j(x) as

j(x) =
∞∑
n

jnφn(x)

7In an infinite volume there is a continuum of eigenfunctions and eigenvalues. This is most easily handled
by assuming that the system is confined to a space-time box of length L and then finally setting L to infinity.
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The path integral for Z[j]0 is then

Z[j]0 ∝
∞∏
n=0

exp
{
−c2

n − jncn
}
,

where the suffix 0 indicates that this applies to the part of the Lagrangian which is quadratic
in the field, i.e. the free-particle Lagrangian.

We can perform the gaussian integral and we do not need to worry about the pre-factor
involving det Ô because we are only interested in the dependence on the source as we are
dividing the result by Z[0] We therefore have

Z[j]0
Z[0] 0

=
∞∏
n=0

exp

(
j2
n

2λn

)
= exp

{
∞∑
n=0

j2
n

2λn

}
(8.14)

From the orthonormality of the eigenfunctions

jn =

∫
d4xj(x)φ∗n(x)

we may rewrite (8.14) as

Z[j]0
Z[0] 0

= exp

{∫
d4x

∫
d4y

1

2
j(x)Ô−1(x, y)j(y)

}
(8.15)

In the case of a scalar particle

Ô−1(x, y) =

∫
d4k

(2π)4
eik·(x−y) −1

(k2 +m2)
, (8.16)

as can be checked by applying the operator Ô to obtain∫
d4k

(2π)4
eik·(x−y) = δ4(x− y).

Note that by reversing the sign of the Fourier variable, k, in (8.16) we see that Ô−1(x, y) is
symmetric under x↔ y.

The two-point function (propagator) for a free particle is given by

〈0
∣∣Tφ(x1)φ(x2)

∣∣0〉0 =
−δ

δj(x1)

−δ
δj(x2)

Z[j]0 (8.17)

Since we are going to set j(x) = 0, we only need to expand the exponential in (8.15) up
to second order in j and the functional derivatives give

−δ
δj(x1)

−δ
δj(x2)

∫
d4xd4y

1

2
j(x)Ô−1(x, y)j(y) =∫

d4xd4y
1

2

[
δ4(x− x1)Ô−1(x, y)δ4(y − x2) + δ4(x− x2)Ô−1(x, y)δ4(y − x1)

]
= Ô−1(x1, x2) (8.18)
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For a real scalar field we have the free propagator

〈0
∣∣T φ̂(x1)φ̂(x2)

∣∣0〉0 =

∫
d4k

(2π)4
e−ik·(x−y) −1

(k2 +m2)
, (8.19)

We can perform the Wick rotation back to find the propagator in Minkowski space by setting
(x− y)4 to i(x− y)0, which is equivalent to setting k4 to −ik0. However, we need to do this
with care. The Fourier transform of the propagator contains poles at k4 = ±i(k2 + m2),
and we must not cross such poles when we perform a Wick rotation. The Wick rotation is
therefore written more carefully as

k0 = lim
ε→0

exp
(
−i
(π

2
− ε
))

k4

and the propagator in Minkowski space is

〈0
∣∣T φ̂(x)φ̂(y)

∣∣0〉0 = lim
ε→0

∫
d4k

(2π)4
e−ik·(x−y) i

(k2 −m2 + iε)
(8.20)

We now return to Minkowski space for which the generating functional of the source j(x)
is

Z[j]0 = Z[0] exp

{
−i
∫
d4x

∫
d4y

1

2
j(x)Ô−1(x, y)j(y)

}
(8.21)

For the k-point Green function, (8.8) we see that since Z[j] contains only even powers of j,
the Green function vanishes if k is odd vanishes and for even k = 2l we consider the lth term
in the expansion of the exponential in (8.15) we have (in leading order)

〈0
∣∣T φ̂(x1)φ̂(x2) · · · φ̂(x2l)

∣∣0〉0 =(
−i δ

δj(x1)

)(
−i δ

δj(x2)

)
· · ·
(
−i δ

δj(x2l)

)(∫
d4xd4yj(x)Ô−1(x, y)j(y)

)l
=

∑
pairings(ikjk)

l∏
k=1

〈0
∣∣T φ̂(xik)φ̂jk)

∣∣0〉0 (8.22)

This is the (vacuum expectation value of the) Wick contraction theorem.

In (8.20) we have the leading order propagator for a real scalar field. For a complex
scalar field associated with a “charged” spin-0 particle we have

〈0
∣∣T φ̂(x)φ̂∗(y)

∣∣)〉0 = lim
ε→0

∫
d4k

(2π)4
e−ik·(x−y) i

(k2 −m2 + iε)
(8.23)

For a massive vectors field V a
µ associated with a particle with spin-1 and a component a

of some internal symmetry, the quadratic part of the Lagrangian density in Minkowski space
(after integrating by parts) is

1

2
V a
µ (x)δab

[
gµν
(
∂µ∂

µ +m2
)
− ∂µ∂ν

]
V b
ν (x)
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The leading order propagator for such a vector field (in Minkowski space) is the inverse
of the quadratic operator δab [gµν (∂µ∂

µ +m2)− ∂µ∂ν ] and we have

〈0
∣∣T V̂ a

µ (x)V̂ b
ν (y)

∣∣0〉0 = lim
ε→0

δab

∫
d4k

(2π)4
e−ik·(x−y)

(
−gµν +

kµkν

m2

)
i

(k2 −m2 + iε)
. (8.24)

8.2 Perturbation Theory

We now re-instate the interaction part of the Lagrangian density. Restricting ourselves for
the moment to real scalar fields, the interaction Lagrangian density, LI , contains terms which
are cubic or higher order in the field, φ(x). The action may be written

S[φ(x)] = S0[φ(x)] + SI [φ(x)],

where

S0 =

∫
d4x

1

2
φ(x)Ôφ(x)

and

SI =

∫
d4xLI(φ(x))

Provided the couplings ( the coefficients of the powers of φ) in LI are sufficiently small, we
may expand the term exp(iSI) so that the path integral may be expanded as∫

D[φ(x)]φ(x1)φ(x2) · · ·φ(xk)e
iS[φ] =

∞∑
n=0

1

n!

∫
D[φ(x)]φ(x1)φ(x2) · · ·φ(xk)

(
i

∫
d4xLI(φ(x)

)n
eiS0[φ] (8.25)

Each term on the RHS of (8.25) is a Green’s function (correlator) calculated in the approx-
imation of keeping only the quadratic terms in the Lagrangian and given by (8.22).

We therefore have a perturbative expansion for any Green’s function that we need to
calculate up to a given order in the couplings that appear in the interaction Lagrangian.

8.3 Fermion Fields and Grassmann variables

The Dirac field Ψα(x) , which carries a Dirac index, α, is associated with a spin-1
2

particle.
The part of the Lagrangian density quadratic in the fields is

L0 = Ψ
β
(x)ÔαβΨα(x)

where the Dirac matrix operator is given by

Ôαβ = (iγµ∂µ +m)αβ Ψα(x).
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Since a spin-1
2

particle obeys Fermi-Dirac statistics,the fields Ψ(x) anti-commute.

To encode this the field Ψα(x) is expanded in terms of the eigenstates of Ôαβ

Ôαβψα,n(x) = λnψβ,n(x),

as

Ψα(x) =
∞∑

n=−1

cnψα,n(x), (8.26)

where the coefficients cn are Grassmann variables with the following properties

1.
cncm = −cmcn.

2. ∫
cndcn = 1.

3. ∫
1dcn = 0.

An immediate consequence of this is

eλcn = 1 + λcn

and ∫
dcne

λcn = λ.

The conjugate fields Ψ
β
(x) is similarly expanded

Ψ
β
(x) =

∞∑
n=−1

cnψ
β

n(x), (8.27)

where ψn(x) = ψn(x)†γ0, and cn are a further set of Grassmann variables (which also anti-
commute with the Grassmann variables cn)

In order to calculate the generating functional (suppressing the Dirac indices) Z[j(x), j(x)],
we add to the action the source terms∫

d4x
(
j(x)Ψ(x) + Ψ(x)j(x)

)
,
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where the sources j(x), j(x) are also anti-commuting and may be also be expanded in terms
of the eigenstates, ψn(x) of Ô:

j(x) =
∞∑
n=0

jnψn(x)

j(x) =
∞∑
n=0

jnψn(x),

where jn and jn are again Grassmann variables. Using the orthonormality relation∫
d4xψα,n(x)ψ

β

m(x) = δβαδmn

we can write∫
d4x

[
Ψ(x)ÔΨ(x) + j(x)Ψ(x) + Ψ(x)j(x)

]
=

∞∑
n=0

[
cnλncn + jncn + cnjn

]
(8.28)

The measure of the path integral over all Dirac fields D[Ψ(x)] may be written (up to an
overall constant)

D[Ψ(x)]D[Ψ(x)] =
∞∏
n=0

dcndcn

so that the generating functional

Z[j(x), j(x)] =

∫
D[Ψ(x)]D[Ψ(x)] exp

{
i
(

Ψ(x)ÔΨ(x) + j(x)Ψ(x) + Ψ(x)j(x)
)}

=
∞∏
n=0

dcndcn exp
{
i
(
cnλncn + jncn + cnjn

)}
(8.29)

The integral over the Grassmann variables cn, cn are performed following the rules given in
1 and 2 above. This gives (up to an overall constant)

Z[j] =
∞∏
n=1

iλn

(
1 + i jn

1

λn
jn

)
(8.30)

We may write
∞∏
n=1

iλn = det(iÔ)

and (
1 + ijn

1

λn
jn

)
= exp

{
i

∫
d4xd4y j(x)Ô−1(x, y)j(y)

}
and the (leading order) propagator is

〈0
∣∣TΨ(x1)Ψ(x2)

∣∣0〉0 = lim
ε→0

i

∫
d4k

(2π)4
e−ik·(x−y) (γ · k +m)

k2 −m2 + iε
. (8.31)
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We do not need to calculate the determinant of the operator Ô. We should note, however,
that in the case of anti-commuting fields, this pre-factor comes in the numerator as opposed
to the denominator as is the case when performing the path integral over fields associated
with particles that obey Bose-Einstein statistics (and therefore commute).

One further consequence of the anti-commuting property of fermion fields is that the
expression (8.22) for the vacuum expectation value of a string of fermion fields is modified
to account for a sign change each time two fields are interchanged

〈0
∣∣T Ψ̂(x1)Ψ̂(x2) · · · Ψ̂(x2l)

∣∣0〉0 =∑
pairings(ikjk)

(−1)p

l∏
k=1

〈0
∣∣T Ψ̂(xik)Ψ̂(x)jk)

∣∣0〉0, (8.32)

where p counts the number of commutations of the fermion fields to arrange them in the
order

l∏
k=1

Ψ(xik)Ψ(xjk)

For example

〈
∣∣T Ψ̂(x1)Ψ̂(x2)Ψ̂(x3)Ψ̂(x4)

∣∣0〉0 = 〈
∣∣T Ψ̂(x1)Ψ̂(x2)

∣∣0〉0〈∣∣T Ψ̂(x3)Ψ̂(x4)
∣∣0〉0

− 〈
∣∣T Ψ̂(x1)Ψ̂(x4)

∣∣0〉0〈∣∣T Ψ̂(x3)Ψ̂(x2)
∣∣0〉0. (8.33)

The negative sign in the second term arising because there are 3 interchanges in the trans-
formation

Ψ(x1)Ψ(x2)Ψ(x3)Ψ(x4) → Ψ(x1)Ψ(x4)Ψ(x3)Ψ(x2)

9 Gauge Fixing in Gauge theories

A gauge theory contains a set of massless vector bosons (gauge bosons), Aaµ(x), which trans-
form under global transformations as the adjoint representation of the gauge group, but
under local transformations, Ωa(x) they transform as

Aµ(x) → AΩ,µ(x) = gΩ(x)−1Aµ(x)Ω(x) + Ω(x)−1∂µΩ(x), (9.1)

where we have introduced the matrix notation

Aµ(x) ≡ τaAaµ(x), Ω(x) ≡ τaΩa(x),

with τa being the generators of the Lie algebra in the defining representation, with normal-
isation Tr(τaτ b) = 1

2
δab. For infinitesimal transformations for which we may approximate

Ω(x) ≡ eiα(x) ≈ 11 + iα(x),
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(9.1) becomes

Aµ(x) → Aα,µ(x) = Aµ(x) + ∂µα(x) + ig [Aµ(x),α(x)]

= Aµ(x) + [Dµ,α] (9.2)

where the covariant derivative is defined (for a general representation of the gauge group) as

Dµ = ∂µ11 + igAa
µ,

where τa is the generator of the Lie algebra in the appropriate representation.

In terms of components, a, the change in the gauge field, δAaµ under an infinitesimal
gauge transformation, α is

δAaµ = fabcAbµα
c +

1

g
∂µα

a (9.3)

We see from (8.24) that the propagator for a vector-particle is not defined in the massless
limit. This is again due to a zero mode in the quadratic field operator.

To quadratic order the Lagrangian density for the gauge bosons may be written

L0 = TrAµ(x)ÔµνAν(x),

where the operator
Ôµν =

(
−gµν∂2 + ∂µ∂ν

)
11 (9.4)

This has a zero mode
Aµ 0(x) = ∂να(x) (9.5)

In analogy with the zero mode that was discussed in quantum mechanics in the presence of
a classical solution which breaks a symmetry of the action, in the case of a gauge theory the
vacuum solution Aµ(x) = 0, breaks the symmetry of the action under a gauge transformation,
giving rise to a zero mode which is equal to the infinitesimal gauge transformation of Aµ(x) =
0. Using (9.2) we see that

Aµ 0(x) = δα(Aµ(x))Aν(x)=0. (9.6)

The divergence of the vector-field propagator (8.24), in the limit m → 0 arises because
the path integral over all functions A(x) we multiply count paths which are related to each
other by a gauge transformation, so that they generate the same value for the action.

S [Aµ(x)] = S [AΩ,µ(x)] (9.7)

More precisely, when we expand the path Aµ(x) in terms of eigenfuncitons An
µ(x), of the

operator Ôµν , for each possible eigenvalue, λn there is an infinite number of eigenfunctions
related to each other by

An
µ(x) → An

α,µ(x)

We eliminate the superfluous modes by taking only one eigenfunction for each eigenvalue,
corresponding to the gauge α(x) = 0.
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The generating functional of the source jµ(x) then becomes

Z [jµ(x)] =

∫
D [Aµ(x)] δ [α(x)] exp

{
i

∫
d4x (L (Aµ) + Tr{jµ(x)Aµ(x)})

}
(9.8)

The δ-functional means a product of δ-functions for each point in space-time (x). It has a
functional integral representation

δ[f(x)] =

∫
D[k(x)] exp

(
2πi

∫
d4xk(x)f(x)

)

We need to specify what we mean by the gauge α(x) = 0. We define this be requiring
that the gauge field obeys some constraint

f (Aµ(x)) = 0. (9.9)

The choice of the function f(Aµ(x)) is called the “gauge choice” and the constraint (9.9) is
called the “gauge condition”.

The functional delta-functional δ[α(x)] may be replaced by the δ-functional δ [f(Aµ)],
provided we also include a jacobian correspond to the change of arguments of the δ-functional.
The path integral defining the generating functional then becomes

Z [jµ(x)] =

∫
D [Aµ(x)]J δ [f (Aµ(x))] exp

{
i

∫
d4x (L (Aµ) + Tr{jµ(x)Aµ(x)})

}
,

(9.10)
where the jacobian J is given by

J = det

{
δ

δα|(x)
f (Aα,µ(x)) |(α = 0)

}
(9.11)

We discuss this jacobian in more detail in the next subsection. Meanwhile we return to the
effect of imposing the constraint (9.9).

An example of f(Aµ(x) = 0 is the axial gauge

n ·A(x) = 0 (9.12)

where n is any 4-vector (9.12) sets a component of the gauge field to zero. For such a gauge
choice the propagator is (suppressing “ lim′′ε→0)

〈0
∣∣T Âµ(x)Âν(y)

∣∣0〉0 = 11

∫
d4k

(2π)4
e−ik·(x−y)

(
−gµν +

(nµkν + kµnν)

n · k
− n · n kµkν

(n · k)2

)
i

(k2 + iε)
. (9.13)

We see by inspection that this propagator vanishes when contracted either with nµ or nν .
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Another often used gauge condition is the “Landau” gauge

∂ ·A(x) = 0,

(which has the advantage of being Lorentz invariant - known as a “covariant gauge”). We
can obtain the propagator in this case from (9.13) by replacing nν by kν to obtain

〈0
∣∣T Âµ(x)Âν(y)

∣∣0〉0 = 11

∫
d4k

(2π)4
e−ik·(x−y)

(
−gµν +

kµkν

k2

)
i

(k2 + iε)
. (9.14)

For other covariant gauges, such as the Feynman gauge, we need to use another trick.
We impose the condition

∂ ·A = ρ(x),

and then perform a weighted average by performing a functional integral over all function
ρ(x) with weight

exp

{
i

∫
d4x

1

2(1− λ)
ρ(x)2

}
(9.15)

This introduces an overall constant (i.e. independent of the gauge field) factor, which does
not interest us as the Green’s functions are obtained only form the functional derivatives
of log (Z[j]] with respect to the sources. The generating functional in leading order is now
given by

Z [jµ(x)]0 =

∫
D[ρ(x)]D [Aµ(x)]J δ [∂Aµ(x)− ρ(x)]

exp

{
i

∫
d4x

(
1

2(1− λ)
ρ(x)2 + Tr{Aµ(x)ÔµνAν(x)}+ Tr{jµ(x) Aµ(x)}

)}
,(9.16)

We perform the functional integral over the function ρ(x) absorbing the δ-functional to get

Z [jµ(x)]0 =

∫
D [Aµ(x)]J

exp

{
i

∫
d4x

(
1

2(1− λ)
(∂ ·A)2 + Tr{Aµ(x)ÔµνAν(x)}+ Tr{jµ(x) ·Aµ(x)}

)}
,(9.17)

The new term in the exponent (after integration by parts) can be added to the term pro-
portional to AµÔ

µν Aν to yield a modified operator

Ô′µν =

(
−gµν∂2 +

λ

(1− λ)
∂µ∂ν

)
11

This modified operator does have a well-defined inverse and leads to a propagator

〈0
∣∣T Âµ(x)Âν(y)

∣∣0〉0 = 11

∫
d4k

(2π)4
e−ik·(x−y)

(
−gµν + λ

kµkν

k2

)
i

(k2 + iε)
. (9.18)
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9.1 Faddeev-Popov ghosts

Now we consider the jacobian J in (9.17). This is the determinant of the derivative of the
gauge condition with respect to an infinitesimal gauge transformation (9.3).

For an axial gauge we have (in components)

J = detn ·Dab = det
(
n.∂ δab − gfabcn.Ac

)
This is just

J = detn ·D = detn.∂ 11,

since n ·A = 0. This does not involve any fields and therefore it generates a constant factor,
which cancels when the generating functional Z[jµ] is divided by Z[0].

For a covariant gauge (e.g. ∂ · Aa = 0) the jacobian is given by

J = det
(
∂2δab − gfabcAc · ∂

)
In this case the jacobian does depend in the gauge field and needs to be handled appropriately.

The trick for doing so us to use the expression for the determinant of an operator expressed
as an integral over Grassmann variables. To this end we fermion ”fields” ξa(x), ηa(x) and
we write

J =

∫
D[ξ(x)a]D[ηb(x)] exp

{∫
d4x ξa(x)

(
∂2δab − gfabcAc · ∂

)
ηb(x)

}
(9.19)

ξa and ηa look like fields but they do not correspond to any physical particle. They are
known as ”Faddeev-Popov ghosts”. They carry no spin index, but they nevertheless obey
Fermi-Dirac statistics. They transform as the adjoint representation of the gauge group
(there is one for each gauge field).

These ghost fields never appear as external states, but they must be accounted for when
considering loop corrections. They have the following properties

1. ξa(x) propagates into ηb(y) with a propagator for a massless scalar field

〈0|Tξa(x)ηb(y)|0〉 =
i

(2π)4

∫
d4ke−ik·(x−y) δab

(k2 + iε)
(9.20)

2. There is an interaction between ξa, ηb and the gauge field, Acµ with Feynman rule

gfabcpµ,

where pµ is the outgoing momentum of ηb

3. There is a factor of (-1) for each loop of Faddeev-Popov ghosts due to the fact that
they obey Fermi-Dirac statistics.
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(a) (b) (c)

Figure 8: Instanton path. One-loop self-energy diagrams for a pure gauge field. Graph (c)
is the contribution from the Faddeev-Popov ghosts. It carries a factor of (-1) since the ghost
particles obey Fermi-Dirac statistics, The arrow indicated propagation from ξ to η.

An example is shown in Fig.8 for the one-loop self-energy of a gauge particle.

The existence of Faddeev-Popov ghosts can be inferred from unitarity considerations. The
imaginary part of graph(a) is related by the Optical Theorem to the cross-section for the
production of on-shell gauge particles. However, an on-shell vector-particle has three degrees
of polarisation, whereas a gauge-boson only has two (one being eliminated by the choice of
gauge). The Faddev-Popov graph with its negative sign serves to cancel the contribution
from the superfluous degree of freedom in the cut graph (a).

10 Instantons in Gauge Theories

10.1 Topological Vacua

The gauge choice discussed above is not sufficient to determine the gauge field uniquely. A
vacuum state can be any state in which the gauge field takes a value given by a pure gauge
transformation acting of Aµ ≡ 0, namely

AΩ
µ (x) =

1

g
Ω−1(x)∂µΩ(x). (10.1)

Ω(x) maps the gauge group G to space-time. Suppose that at a particular time we have a
vacuum state. The spatial coordinates of the gauge field, which obey the boundary condition
that they vanish at spatial infinity, are given by

AΩ
i (x) =

1

g
Ω−1(x)∂iΩ(x), (10.2)

where

Ω(x)
|x|→∞−→ 11.

Since all the points on the boundary of space, R3, are mapped to the identity element of the
gauge group, we are actually mapping the gauge group onto the three-sphere, S3 - which is
the three-dimensional space, R3, with all the points at infinite |x| identified.
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If the gauge group is SU(2) or contains an SU(2) subgroup, this is a map from S3 to
S3, since S3 is the space of the group SO(3), which is homomorphic to SU(2) (two elements
of SU(2) can be mapped to each element of SO(3)). Such mappings can be classified into
“homotopy classes” which determine the number of times the group space is ”wrapped”
around the spatial S3. For the homotopy class n = 0, the mapping does not wrap around
the space at all and can be continuously deformed to the trivial map

Ω(x) ≡ 11,

In other words, a map in the homotopic class zero can be constructed from a large number
of infinitesimal gauge transformations with infinitesimal parameter α(x), with boundary
condition

α(|x| → ∞) = 0,

i.e.
Ωn=0(x) = lim

N→∞,|α|→0
(11 + iα(x))N

However, for the non-zero homotopy classes this is not possible. On the other hand, all
mappings within a given class can be transformed into each other by a continuous gauge
transformation.

The gauge choice selects one vacuum state for each homotopy class, but the vacuum is still
degenerate, with a quantum number corresponding to the homotopy class of the mapping.

10.1.1 One dimensional example

This concept is more easily understood in a simple example of the gauge group U(1) in one
space dimension.

If the gauge transformation is the identity at x = ±∞, then we identify the two ends of
the line to obtain a circle – a one-dimensional spherical surface S1 – with coordinate θ in the
range

0 < θ ≤ 2π.

The group mapping is given by
Ω(θ) = eif(θ).

Since Ω has to be single-valued we require

f(θ + 2π) = f(θ),

so that the most general form of U(θ) has phase

f(θ) = nθ + h(θ),

where n is an integer and the function h(θ) obeys the boundary conditions

h(0) = h(2π) = 0

42



As θ increases from 0 to 2π the U(1) phase increases from zero to 2nπ - the group is
”wrapped” around spatial S1 n times.

For n = 0 we can write

Ω(θ) = lim
N→∞

(
1 + i

1

N
h(θ)

)N
,

but for n 6= 0 this is not possible.

(a) (b) (c)

Figure 9: Examples of U(1) maps with different homotopies. The phase of the element of
U1) is the angle of orientation of the arrow at a given point on the circle, relative to the
upward vertical.
(a) represents a mapping in the homotopy class n = 0. An anti-clockwise rotation of the
arrows through an angle which increases from zero at the top to π at the bottom can bring
all the arrows into the vertically upward state – representing the trivial map in which all
points on the circle are mapped to the identity element of U(1).
(b) is an example of a map of homotopy class n = 1. We see that any attempt to rotate
all of the arrows so that they are pointing vertically upwards will generate a discontinuity
somewhere. As one moves around the circle from zero to 2π the arrow also rotates through
a complete circle.
(c) is an example of a map in the homotopy class n = 2. As one moves around the circle,
the arrow makes two complete rotations.

The corresponding gauge field A(θ) is given by

A(θ) =
1

g
Ω−1(θ)∂θΩ(θ) =

1

g
(n+ h′(θ)))

The homotopy class or “winding number” n can be obtained as an integral over the gauge
field

n =
g

2π

∫
dθA(θ), (10.3)
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where we have made use of the boundary values of the function h(θ).

A gauge condition such as ∂θA(θ) = 0 only specifies the gauge field up to the addition of
an integer.

10.1.2 Chern-Simon form

In three space-dimensions, the mapping of the gauge manifold for the group SU(2) onto
the space S3 also has homotopy classes which specify the number of times n that the group
manifold S3/Z2 covers the S3 space. Once again, a gauge specifies one unique vacuum gauge
field (as a function of x) for each winding number n.

An example of a gauge transformation in homotopy class n = 1 is

Un=1 = exp

{
−iπ xiτ

i

|x|2 + ρ2

}
(10.4)

In terms of the vacuum gauge-field AΩ
i (x), the winding number n is given by

n =

∫
d3xK0(x)

where K0 is called the “Chern-Simons three form” and is given by

K0 =
g2

8π2
εijkTr

{
Ai∂jAk +

2ig

3
[Ai,Aj] AK

}
(10.5)

10.1.3 θ-vacua

In analogy with the case of a periodic potential for a quantum mechanical system, we can
define states parameterised by an angle θ, which are superpositions of the degenerate states
labelled by winding number n.

|θ〉 =
∑
n

e−inθ|n〉.

We will see that there are instantons which can affect tunnelling between vacua with
different winding number n and that this tunnelling splits the degeneracy of the states with
different values of θ.

10.2 Instantons in a Pure Gauge Theory

We now investigate the existence of gauge-field configurations (gauge theory instantons)
which can affect tunnelling between vacua with different winding number n, in other words

∆n ≡ n(t→ +∞)− n(t→ −∞) 6= 0.
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We now consider the gauge field to depend on time as well as space, and only for very
early or very late times, t→ ∓∞ is the gauge field a vacuum configuration

Aµ(x, t = ±∞) = Ω−1(x)∂µΩ(x).

∆n =

(∫
d3xK0(x, t→ +∞)−

∫
d3xK0(x, t→ −∞)

)
(10.6)

We can consider the Chern-Simons three-form K0 to be the zero-component of the four-vector

Kµ ≡
g2

8π2
εµνρσTr

{
Aν∂ρAσ +

2ig

3
[Aν ,Aρ] Aσ

)
, (10.7)

where the gauge fields are now taken to be functions of space-time, x. Using Gauss’ theorem
we can then write

∆n =

∫
d4x ∂µKµ(x) (10.8)

Taking the divergence of Kµ defined in (10.7) We find

∂µKµ =
1

2
Tr{FµνF̃µν}, (10.9)

where

F̃µν ≡
1

2
εµνρσF

ρσ,

is the dual of the field strength

Fµν ≡ ∂µAν − ∂νAµ + ig [Aµ,Aν ] .

(10.8) and (10.9) then give us

∆n =
g2

16π2

∫
d4xTr

{
FµνF̃µν

}
(10.10)

For the case of the θ vacua, the existence of such an instanton which can affect a change
of homotopy class by ∆n is equivalent to adding a term

δS[A] ≡ g2

16π2

∫
d4xTr{FµνF̃µν}

to the action. We see that a transition from a vacuum in homotopy class n1 at early time,
−1

2
τ to a vacuum in homotopy class n2 at late time, +1

2
τ , is given by

〈n2,
1

2
τ |n1,−

1

2
τ〉 ∼ e−S[A]δ(n1−n2),∆n,
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where we are not worrying about the pre-factor. For θ vacua, we have

〈θ, 1

2
τ |θ′,−1

2
τ〉 ∼

∑
n1,n2

exp

{
(n1 + n2)

2
(θ − θ′)

}
exp

{
(n1 − n2)

2
(θ + θ′)

}
e−S[A]δ(n2−n1),∆n

= δ (θ − θ′) exp {−S[A]− θ∆n}

= exp

{
−S[A]− θ

∫
d4x

g2

16π2
Tr{FµνF̃µν}

}
(10.11)

Now from the inequality ∫
d4x

∣∣∣Fµν − F̃µν

∣∣∣2 ≥ 0

This inequality may be written in terms of the Euclidean-space action, SE[A], for a pure
gauge theory as

SE[A] ≡ 1

2

∫
d4xTr{Fµν · Fµν} ≥

1

2

∫
d4xTr{FµνF̃µν}. (10.12)

or
g2

8π2
S[A] ≥ ∆n. (10.13)

Therefore, if we can find a gauge-field configuration, AI(x), (in Euclidean space) for
which the index (10.10) (known as the “Pontryagin index”) is non-zero, then there will
be a minimum of the action subject to that value of the Pontryagin index, and therefore
a solution of the classical equation of motion in Euclidean space. For such minimum the
inequality (10.12) is saturated and the gauge-field configuration AIµ, is “self-dual”, i.e.

Fµν = F̃µν

This gauge configuration is an instanton which affects a transition between two vacua
whose homotopic class differs by ∆n. Once again, in Minkowski space this is a space-time
gauge-field configuration which corresponds to vacua in different homotopic classes at very
early and very late times, but it is not a solution of the classical equations of motion in
Minkowski space and therefore is not interpreted as a particle.

An anti-instanton, which affects a transition between two vacua whose homotopy class
differ by −∆n is anti-self-dual, i.e.

Fµν = −F̃µν

In the case ∆n = 1, the instanton gauge field configuration is given by

AaIµ =
2

g
ηaµν

ρ2 (x− x0))ν(
(x− x0)2 + ρ2

) , (10.14)

where the “t.Hooft symbols”, η are given by
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ηaij = εaij, (i, j = 1 · · · 3)

ηai4 = δai

ηa4i = −δai
ηa44 = 0 (10.15)

Explicit calculation shows that (in Euclidean space)

Fµν
I = F̃µν

I

and that the action

S[AI ] =
8π2

g2
(10.16)

so that the Pontryagin number

∆n = 1,

meaning that in Minkowski space this instanton gauge-field configuration affects a transition
between a vacuum state in homotopy class n to a vacuum state in homotopy class (n+ 1).

Note that for large (Euclidean) xµ the instanton field is a pure gauge

Aµ
I (x)

|x|→∞−→ U−1
I (x)∂µUI(x),

where

UI(x) =
x411 + τ ixi
|x|

The expression (10.14) for the instanton gauge-field is in a particular gauge, namely

x ·AI = 0.

This is the “singular gauge” since it is not defined at the origin.

A gauge transformation, V(x), exists which can transform this into a more commonly
used gauge such as the axial gauge A0

I = 0. The gauge transformation V is rather compli-
cated but has the property

V(x4 → +∞,x) = Un=1(x) ·V(x4 → −∞,x),

where Un=1 is the homotopy class n = 1 gauge transformation on S3 given in (10.4). This
shows explicitly how an instanton tunnels between vacua in adjacent homotopy classes.
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10.2.1 Zero Modes and Collective Coordinates

The instanton (10.14) depends on the parameters xµ0 , which determine the centre of the
instanton and ρ, which determines its size.

Specifying these quantities breaks the invariance of the (Euclidean) action under (four-
dimensional) translations

xµ → xµ + xµ0

and dilations

xµ → ρxµ; Aµ →
1

ρ
Aµ

We therefore have 5 zero modes which are exchanged for the collective coordinates xµ0 and
ρ, each one introducing a jacobian factor of

√
S[AI ].

There are three further zero-modes associated with the breaking a rotational invariance
and global SU(2) invariance. There are only three such zero modes, since it turns out that
the instanton configuration (10.14) is invariant under a linear combination of an infinitesimal
rotation in space and an infinitesimal global SU(2) transformation. These three zero modes
are exchanged for three angles of rotation (in a combined configuration space and internal
SU(2) space)8

The jacobian for this exchange between these zero modes and collective coordinates again
carries a factor of

√
S[AI ]. each and additionally a factor of ρ for each rotational zero-mode,

which is required to compensate for the dimensional difference between an angle and a spatial
coordinate (or size).

The amplitude for transition from a vacuum in homotopy class n to a vacuum in homotopy
class (N + 1) (in Euclidean space) is then given by (using (10.16))

〈(n+ 1), τ → +∞|n, τ → −∞〉I = K

∫
d4x0

∫
dρ

ρ5

(
8π2

g2

)4

exp

{
−8π2

g2

}
, (10.17)

for the product of the non-zero eigenvalues of the quadratic operator in the presence of an
instanton (divided by the determinant of the quadratic operator in zero background field).

Let us write this as

〈(n+ 1)|n〉I = 〈0
∣∣∣∣exp

{
i

∫
d4xLI(x)

}∣∣∣∣ 0〉, (10.18)

where LI is the effective Lagrangian density due to the instanton, to leading order in by

LI =

∫
dρ

ρ5

(
8π2

g2

)4

exp

{
−8π2

g2

}
, (10.19)

8In the case of a gauge group which is larger than SU(2) but has an SU(2) subgroup, there are more
zero modes, since there are more generators of the global gauge group which are broken by the instanton
configuration. For an SU(N) gauge group there are 4N − 5 rotational zero modes.
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The integral over the instanton size is regulated as ρ → 0 by the fact that the gauge
coupling,. g should be integrated as the running coupling at scale 1/ρ so that (10.19) should
read

LI = K

∫
dρ

ρ5

(
8π2

g2(1/ρ)

)4

exp

{
− 8π2

g2(1/ρ)

}
, . (10.20)

For sufficiently small ρ and for a SU(2) pure gauge theory

exp

{
− 8π2

g2(1/ρ)

}
∼ ρ22/3,

so that the ρ→ 0 limit is regularised even if we add (not too many) generations of fermions.

For large ρ the coupling becomes last and perturbation theory is unreliable. It is expected
that for these large values of the gauge coupling, non-perturbative effects attenuate the
integrand over ρ so tha that maximum size of ρ is of order 1/ΛQCD.

As in the case of the periodic potential, we now need to sum over all sequences of
instantons and anti-instantons and the upshot is that the effective Lagrangian density density,
of the θ-vacua acquire and extra term

∆L(θ) ∝ −
∫
dρ

ρ5

(
8π2

g2(1/ρ)

)4

exp

{
− 8π2

g2(1/ρ)

}
cos θ. (10.21)

10.3 Axial Anomaly

If we include N massless fermions, Ψ(x), which transform in the defining representation of
an SU(N) gauge theory then the Lagrangian is invariant under a chiral transformation in
which both the left-handed and right-handed fermions transform separately under a global
U(N):

ΨL → eiτ
aαaLΨL

ΨR → eiτ
aαaLΨR,

where the τa are the generators of SU(N) supplemented by the identity, so as to promote the
SU(N) invariance to a U(1) invariance for both the left-handed and right-handed fermions.
In QCD only the vector SU(N) for which αa = 1

2
(αaL + αaR), is gauged (i.e. this combination

of transformation parameters is a function of x).

In the absence of a mass term for the fermions there exists both a global vector U(1) and
a global axial U(1)

Ψ → eiαV Ψ, and Ψ → Ψe−iαV

Ψ− → eiγ
5αAΨ and Ψ → ΨeiαAγ

5

,

under which the Lagrangian is invariant.
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One might have expected that since the Lagrangian is invariant under this axial U(1)
transformation, i.e. all Green’s functions resulting from such a Lagrangian to be also invari-
ant under axial transformations.

Unfortunately, this is not the case and the reason is that Quantum Field theories are
subject to ultraviolet divergences which have to be regulated. It turns out that it is often
impossible to construct a regulator which respects all of the symmetries of the original La-
grangian. Axial U(1) is an example of one such invariance which is broken by the introduction
of a gauge-invariant regulator.

In terms of path-integrals the generating functional for a gauge theory with massless
fermions is a functional of the fermions sources η(x), η(x) and the gauge-field source jµ(x)

Z [η, η, jµ] =

∫
D[Ψ]D[Ψ]D′[Aµ]

× exp

{
i

∫
d4x

(
−1

2
Tr{FµνFµν}+ iΨ 6Dψ + Ψη + ηΨ + Tr{j ·A}

)}
,(10.22)

where the covariant derivative,

Dµ ≡ ∂µ11 + igAµ,

(and for the path integral over the gauge-field D′ means integrate over all paths subject to
a given gauge choice and Faddeev-Popov term where appropriate.)

Under an axial U(1) transformation the action is invariant, but the fermion path integral
measure D[Ψ]D[Ψ] acquires a jacobian from the transformation. This jacobian turns out to
be ultra-violet divergent and needs to be regulated in a gauge invariant way. This regulator
leads to a generating functional, Z[η, η, jµ], which has an (anomalous) variation under an
infinitesimal axial U(1) transformation with parameter, δα.

δ logZ[η, η, jµ] = δα
g2

8π2

∫
d4xTr{FµνF̃µν} (10.23)

The clearest way to see this is to calculate explicitly the divergence of the matrix element
of the U(1) axial current,

j5
µ(x) ≡ Ψ(x)γµγ

5Ψ(x), (10.24)

between the vacuum and a state consisting of two on-shell (massless) gauge-bosons with
momenta p1, p2, colours a, b, and polarisation vectors ε1, ε2,

∂µ〈p1, ε1, a; p2, ε2, b|j5
µ(x)|0〉

If it were not for the anomaly, this would vanish, since if axial U(1) symmetry is strictly
obeyed the axial current is conserved - its divergence vanishes.

If there is an anomaly in the axial current then the divergent of the axial current couples
to the two gauge-boson state via triangular fermion loops shown in Fig.10.
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k

Figure 10: Feynman diagrams for the matrix element 〈p1, ε1, a; p2ε2, b|∂µj5
µ|0〉

These diagrams give

∂µ〈p1, ε1, a; p2, ε2, b|j5
µ(x)|0〉 = −e−i(p1+p2)·x Tr(τaτ b)

∫
ddk

(2π)d
N

k2(k + p2)2(k − p1)2
, (10.25)

where d is the number of dimensions, and the numerator N is

N = g2Tr
[
6k (6p1+ 6p2) γ5 ( 6k+ 6p2) 6ε2 (6k− 6p1) 6ε1

]
+ (p1 ↔ −p2, ε1 ↔ ε2)

= 8g2iεµνρσ
[
pµ1p

ν
2k

ρkλ
(
ελ1ε

σ
2 − ελ2εσ1

)
− 2pµ1p

ν
2ε
ρ
1ε
σ
2k

2 − k2 (pµ1 + pµ2) ερ1ε
σ
2

]
. (10.26)

In obtaining this numerator, we have used the on-shell conditions for the (massless) external
gauge particles,

p1 · ε1 = p2 · ε2 = 0, p2
1 = p2

2 = 0

We have the following relations between the integrals over the loop momentum k:∫
ddk

(2π)d
kµ

(k − p1)2(k + p2)2
=

(pµ1 − p
µ
2)

2

∫
ddk

(2π)d
1

(k − p1)2(k + p2)2
(10.27)

and

d εµνρσ

∫
ddk

(2π)d
pµ1p

ν
2k

ρkλ

k2(k − p2
1)(k + p2)2

= εµνλσ

∫
ddk

(2π)d
pµ1p

ν
2k

2 − (pµ1 + pν2)kν

k2(k − p2
1)(k + p2)2

(10.28)

Piecing together, we have

∂µ〈p1, ε1, a; p2, ε2, b|j5
µ(x)|0〉 = −ig2 1

2
δabe

−i(p1+p2)·xεµνρσp
µ
1p2νε

ρ
1ε
σ
2

(
16

d
− 4

)
×
∫

ddk

(2π)d
1

(k − p1)2(k + p2)2
(10.29)

Note that if we set d = 4 this matrix element vanishes. However the integral has a UV
divergence, which manifests itself as a pole at d = 4∫

ddk

(2π)d
1

(k − p1)2(k + p2)2
=
−i

16π2

2

(d− 4)
+ · · ·
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so that we are left with

∂µ〈p1, ε1, a; p2, ε2, b|j5
µ(x)|0〉 =

g2

8π2
δabe

−i(p1+p2)·xεµνρσp
µ
1p

ν
2ε
ρ
1ε
σ
2 (10.30)

Consider now the matrix element

〈p1, ε1, a; p2, ε2, b|Tr
{

FµνF̃µν

}
|0〉

Expanding the quantum field Âµ in terms of creation and annihilation operators, we can
show that

〈p1, ε1, a; p2, ε2, b|Tr
{

FµνF̃µν

}
|0〉 = δabe

−i(p1+p2)·xεµνρσp
µ
1p

ν
2ε
ρ
1ε
σ
2 (10.31)

Comparing (10.30) and (10.31) we can make the identification

∂ · j5 =
g2

8π2
Tr{FµνF̃µν} (10.32)

Since Fµν and F̃µν each contain a term which is quadratic in the gauge-field, there will also
be non-zero matrix elements of the operator ∂µj5

µ between the vacuum and states containing
three and possibly four external gauge-bosons. However, it has been shown that there are
‘no corrections to the anomaly found here from higher order (multi-loop) Feynman diagrams.

So far, we have only considered one multiplet of massless fermions. If we have Nf such
multiplets (Nf flavours in QCD), then the divergence of the axial current acquires a factor
of Nf and (10.32) generalises to

∂ · j5 =
g2Nf

8π2
Tr{FµνF̃µν} (10.33)

It is worth noting that although the axial current is not conserved, we can construct a
conserved current

j̃5
µ ≡ j5

µ − 2NfKµ (10.34)

where Kµ is defined in (10.7) and its divergence is given in (10.9). However, whereas this
current is indeed conserved, it is not gauge invariant as can be seen explicitly by performing
a gauge transformation a gauge transformation on the vector Kµ). So we see that the
existence of this anomaly means that we can either maintain gauge invariance in higher
orders or maintain (a modified) axial U(1) invariance but not both.

10.3.1 The U(1) Problem

If we have N (almost) massless fermions, Ψa then there is an (approximate) global U(N)L×
U(N)R invariance since here is an invariance under a transformation which rotates either
the left-handed or right-handed fermions into each other.
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This symmetry is broken spontaneously by the presence of a condensate 〈0|ΨaΨ
a|0〉.

which brakes the axial U(N). By Goldstone’s theorem, this should generate N2 (almost)
massless pseudoscalar bosons. For N = 3 we can identify 8 of these as the pseudoscalar
octet – π±, π0, K±, K0, K0, η. The expected ninth Goldstone boson is absent (the mass of
the η′ is too large to be identified as a Goldstone boson.)

However, we see from (10.33) that axial U(1) is broken by the anomaly. On the other hand
we see from (10.34) that there is a current which is not anomalous but is gauge dependent.
The spontaneous breaking of the modified U(1) for which j̃5

µ is the Noether current does
generate a Goldstone boson, but not a Goldstone boson that appears in physical - i.e. gauge
invariant - states. The divergence of the modified axial current caused by an axial U(1)
transformation can be undone by a shift in θ in the θ-vacuum. In some sense, fixing θ is the
global equivalent of making a gauge choice, and the excitations of the unphysical axial U(1)
Goldstone boson correspond to oscillations in θ. In this sense , instantons provide a solution
to the U(1) problem.

10.4 Instantons with Chiral Fermions

10.4.1 Fermionic zero modes

If we add a fermion Ψ to the pure gauge theory, the generating functional is given by (10.22).
The path integral over the fermion field has a pre-factor (in the numerator for fermions, which
are treated using Grassman variables, is

det 6D =
∏
i

λi,

where λi are the eigenvalues of 6D.

For an instanton background gauge-field with centre x0 and size ρ, the operator i 6D =
i11 6∂ − g 6AI has is an eigenfunction with eigenvalue zero (a zero mode). This zero mode
(which depends on the centre x0 and size ρ, of the instanton,has right-handed chirality, and
may be written (in the Weyl representation representation)

Ψ
(±)
0 (x, x0, ρ) =

(
χ

(±)
0 (x, x0, ρ)

0

)
(10.35)

where the index (±) refers to the third component of the SU(2) subgroup of the gauge group.

Whereas it is not possible to have purely right-handed eigenfunctions, Ψi, of 6D with
non-zero eigenvalue, λi because

6Dγ5Ψi = −λiγ5Ψi,

so that Ψi, (i 6= 0) cannot be an eigenstate of (1 ± γ5). But if λi = 0 then we can have
eigenfunctions which are also eigenfunctions of γ5 with eigenvalue +1 for right-handed spinors
and -1 for left-handed spinors.
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In the singular gauge where AaIµ is given by (10.14), the normalised spinor, χ
(i)
0 (x, ρ) is

given by

χ
(±)
0 (x, x0, ρ) =

1√
2π2

ρ

((x− x0)2 + ρ2)3/2
(x− x0) · σ

(
σ2χ(±)

)
, (10.36)

where σµ ≡ (11,−iσ) and χ(±) is the SU(2) spinor of the fermion (assumed to be in the
defining representation of SU(2)). Explicitly

σ2χ+ =

(
0
i

)
σ2χ− =

(
−i
0

)
. (10.37)

The spinor χ0 is normalised such that∫
d4xχa†0 (x, x0, ρ)χb0(x, x0, ρ) = δab (10.38)

In an anti-insanton background the fermionic zero mode is left-handed.

This is an example of the Atiyah-Singer index theorem which tells us that for any gauge-
field configuration with Nf multiplets of massless fermions, for which

g2

16π2

∫
d4xTr{FµνF̃µν} = ∆n

the number of left-handed fermionic zero modes, nL and the number of right-handed fermionic
zero modes, nR, are related by

nR − nL = ∆n (10.39)

10.4.2 Axial Charge Violation

The existence of this zero mode means that in the absence of a source for the fermion fields
that instanton transition between vacua in adjacent homotopy classes vanishes. This is
because the fermionic contibution to the generating functional∫

D[Ψ]D[Ψ] exp

{
−
∫
d4xΨ(x)i 6DΨ(x)

}
=

∫
dc0dc0

∞∏
i=1

dcidci exp {−ciλici} (10.40)

and the integral over the Grassman variables c0, c0 vanishes.

We can, however, obtain non-zero vacuum expectation values of an operator which is
bilinear in the fermion field and which is not invariant under axial U(1) transformations (i.e.
it violates the conservation of axial charge), in the presence of an instanton.

Consider the matrix element

〈(n+ 1), τ →∞
∣∣O(∆Q5=2)

∣∣n, τ → −∞〉
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where the axial-charge violating operator O(∆Q5=2),given by

O(∆Q5=2) = Ψ(x)γ0 (1 + γ5)

2
Ψ(x), (10.41)

converts a left-handed fermion into a right-handed fermion.

The fermionic part of the path integral is∫
D[Ψ]D[Ψ] Ψ(x1)γ0 (1 + γ5)

2
Ψ(x1) exp

{
−
∫
d4xΨ(x)i 6DΨ(x)

}
Now when we expand the fermion fields in terms of eigenstates of i 6D, we get a term in the
integrand proportional to the coefficients, c0 and c0 of the fermionic zero mode so that we
now have (for an instanton of size ρ centred at x0),∫ ∏

i

dcidci c0c0χ
†(x1, x0, ρ)χ(x1, x0, ρ) exp {−ciλici} =

det(i 6D′)χ†(x1, x0, ρ)χ(x1, x0, ρ), (10.42)

where the 6D′ indicates the operator with the zero mode removed, and χ0 is the spinor for
the (right–handed) fermion zero mode given by (10.36).

To calculate the value of the matrix element of this operator, we multiply by the transition
amplitude due to an instanton centred at x0 of size ρ and integrate over the collective
coordinates, x0 and ρ to obtain

〈(n+ 1), τ →∞|Ψ(x1)γ0 (1 + γ5)

2
Ψ(x1)|n, τ → −∞〉 =

K

∫
d4x0

∫
dρ

ρ5
ρ

(
det(i 6D′)
ρ det(i 6∂

)

)
χ†0(x1, x0, ρ)χ0(x1, x0, ρ)

(
8π2

g2(1/ρ)

)4

exp

{
− 8π2

g2(1/ρ)

}
= K

∫
dρ

ρ5
ρ

(
det(i 6D′)
ρ det(i 6∂

)

)(
8π2

g2(1/ρ)

)4

exp

{
− 8π2

g2(1/ρ)

}
(10.43)

where in the last step we have used the normalisation property, (10.38), of the zero-mode
spinor to perform the integral over the instanton centre.

We have divided by the determinant of the Dirac operator 6 ∂ in the absence of a back-
ground instanton field and explicitly pulled out a factor of ρ to indicate that the dimension
of det 6∂ is one greater than the dimension of det 6D′ since it has one more non-zero eigenvalue
so that for an instanton of size ρ we expect

det(i 6∂) ∼ ρ det(i 6D′).

This vacuum expectation value is the amplitude for a right-handed fermions at x2 to
propagate into a left-handed fermion at x1. By crossing symmetry this may also be used
to calculate a non-zero transition amplitude from an initial state with a given number of
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fermions and anti-fermions to a final state with an additional left-handed fermion and left-
handed anti-fermion - again changing the axial charge by two units.

In the case of an anti-instanton we get the Hermitian conjugate of (10.43) where we get
a non-zero matrix element for the operator

O(∆Q5=−2) = Ψ(x)γ0 (1− γ5)

2
Ψ(x), (10.44)

between vacuum states 〈(n− 1)| and |n >

As in the case of the periodic potential we can sum over all sequences of instantons and
anti-instantons and construct the vacuum expectation value for the θ-vacua. This generates
an extra effective term in the effective action

∆LfI ≡ K

∫
dρ

ρ5
ρ

(
det(i 6D′)
ρ det(i 6∂

)

)(
8π2

g2(1/ρ)

)4

exp

{
− 8π2

g2(1/ρ)

}
×
(
Ψ(x)γ0Ψ(x) cos θ + iΨ(x)γ0γ5Ψ(x) sin θ

)
(10.45)

10.4.3 Several flavours

If we have two multiplets of massless fermions, Ψ1, Ψ2, then we can only have a non-zero

matrix element if we have one power of each of Ψ
1
, Ψ1, Ψ

2
, Ψ2, in the fermion path integral

in order for the path integral to yield a non-zero result when integrated over the Grassman
coefficients of the zero modes for both the fermions. In that case we obtain a non-zero
vacuum expectation value of the form

〈0|Ψ1
(x1)γ0 (1 + γ5)

2
Ψ1(x1)Ψ2(x2)γ0 (1 + γ5)

2
Ψ2(x2)|0〉

We could also have the same non-zero vacuum expectation value of the term

−〈0|Ψ1
(x1)γ0 (1 + γ5)

2
Ψ2(x1)Ψ

2
(x2)γ0 (1 + γ5)

2
Ψ1(x2)|0〉,

where the minus sign in from arises because it has been necessary to interchange the order
of two of the Grassman source functions to obtain that operator. This operator carries axial
charge 4.

In general, if we have Nf fermion flavours, Ψl, l = 1 · · ·Nf then the operator which has
a non-zero vacuum expectation value is

det
kl

Ψ
k
γ0 (1 + γ5)

2
Ψl,

which carries an axial charge of 2Nf This is expected from the anomaly of the axial current.
Taking the divergence of both sides of (10.34) we have

0 = ∂ · j5(x) − 2Nf∂ ·K(x)
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and integrating over all space-time, using Gauss theorem we have

∆Q5 ≡ Q5(t→∞)−Q5(t→ −∞) = 2Nf (K0(t→∞)−K0(t→ −∞)) = 2Nf , (10.46)

for a single instanton transition.

10.4.4 Baryogenesis

This also has consequences for baryogenesis, when applied to the Standard Model of elec-
troweak interactions, in which the weak SU(2) gauge field couples to left-handed fermions
only. In such a case, we see from the triangle calculation of the previous section that we can
also have an anomaly in a vector fermion current

jµ = ΨγµΨ

The anomaly in this current from the interaction of the left-handed fermions with the weak
SU(2) gauge fields is given by

∂ · j = Nf
g2
W

8π2

1

2
Tr
(
FµνF̃µν

)
(10.47)

where the field strength Fµν now refers to the weak W ′s, Nf is the number of weak isodou-
blets. The factor of 1

2
appears because only the left-handed fermions interact with the weak

gauge fields. An instanton can generate a transition amplitude which violates fermion num-
ber by Nf , but electric charge and the third component of weak isospin must clearly be
conserved.

For a one-generation model with three doublets of quarks and one doublet of leptons an
operator such as uruydbe or urdydbν can have a non-zero vacuum expectation value and this
facilitates a process such as a positron converting into a proton (consisting of 2 u-quarks and
a d-quark). If we have two generations of (almost) massless quarks a typical reaction could
be

e+ + νµ = ur + uy + db + s̃r + s̃y + s̃b

where s̃ is the Cabbibo superposition

s̃ = s cos θC − d sin θC

so that there is a smaller (suppressed by three powers of sin θC) amplitude for the annihilation
of a positron and (muon-type) into a proton and a neutron.

Note that in any case, the instanton amplitude in weak interactions is extremely small
due to the instanton action factor

exp

{
−8π2

g2
W

}
≈ 10−86
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10.4.5 Light quarks

The masses of fermion fields are never exactly zero. If we have a small mass m for the
fermions then the ”zero”-mode no longer has eigenvalue zero but the smallest eigenvalue
is m. In this case we can have instanton transitions without introducing an operator that
violates axial charge. The generating functional is proportional to m and by dimensional
arguments for an instanton of size ρ, Green’s functions constructed from this generating
functional are suppressed by a factor of mρ. Since we expect the instanon size to be cut off
at ρ ∼ 1/ΛQCD we can use the massless quark approximation provided the fermion mass, m
is much less than ΛQCD.

10.5 The strong CP problem: Peccei-Quinn Theory

The small amount of CP violation observed in weak interactions is encoded in the standard
model by allowing some of the elements of the fermion mass matrix to be complex.

However, we are at liberty to add to the Lagrangian density the gauge invariant term

∆L(θ) ≡ g2

16π2
θTr(FµνF̃µν) (10.48)

This is a total derivative so that its contribution to the action is always the Pontryagin
index, ∆n, of the instanton. The matrix element of such a term between θ- vacua with θ = θ′

is then proportional to∑
n1

∑
n2

exp {in1θ
′} exp {−in2θ

′} exp {i (n2 − n1) θ} = δ(θ − θ′) (10.49)

which tells us that for a given θ-vacuum the value of θ in the new term must be equal to the
vacuum θ value.

However, the addition of the term ∆L(θ) violates CP conservation and since θ can take
any value between 0 and 2π, this CP violation can be large in conflict with experimental
observation, which shows that CP violating amplitudes are extremely weak.. This is called
the “strong CP problem”.

The most popular solutions to this problem are variations of the Peccei-Quinn model. In
this model a second Higgs doublet, Φ2 is added to the SM Higgs doublet Φ1. This introduces
a U(1) transformation, U(1)PQ which changes the relative phase of the two scalar multiplets.

The scalar potential V (Φ1,Φ2) is invariant under two U(1) transformations corresponding
to a change of phase in both of the scalar doublets’

Φ1 → e−iα1Φ1, Φ2 → e−iα2Φ2

The minimum of the potential for which

|〈Φ1〉| = v cos β, |〈Φ2〉| = v sin β,
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(v = 2MW/gW ) breaks the symmetry from SU(2)× U(1)× U(1)PQ g to the electromagnet
gauge symmetry U(1)em. This breaking generates two massless neutral Goldstone bosons,
a1, a2. The linear combination

az ≡ a1 cos β − a2 sin β,

is absorbed by the Z-boson, which acquires a mass. The other orthogonal linear combination

a ≡ a1 sin β + a2 cos β

remains massless, but is a physical particle known as the “axion”.

Only the right-handed fermions transform under a U(1)PQ transformation with parameter
α:

uR → eiα tanβuR, dR → eiα cotβdR, eR → eiα cotβeR (10.50)

and the axion transforms as
a → a− vα (10.51)

The U(1)PQ current

jPQµ = tan β uiγµ
(1 + γ5)

2
ui+cot β d

i
γµ

(1 + γ5)

2
di+cot β eγµ

(1 + γ5)

2
e−v ∂µa, (i = 1 · · · 3)

(10.52)

This current is anomalous and its divergence couples both to gluons and photons via
triangle diagrams.

For one generation we find

∂ · jPQ =
g2

8π2 sin(2β)
Tr
{

FµνF̃µν

}
+

e2

6π2 sin(2β)
F µν
γ F̃γµν (10.53)

(N.B. tan β + cot β = 2/ sin(2β)).

We compensate for this anomaly by adding to the QCD Lagrangian density (omitting
the electromagnetic anomaly) the effective term

∆LPQ =
a

v

g2

8π2 sin(2β)
Tr
(
FµνF̃µν

)
(10.54)

The change in ∆LPQ under a U(1)PQ is then equal and opposite to ∂ · jPQ

With this term added to the effective action, the effect of sequences of instantons and
anti-instantons changes from

∆L(θ) ∝ cos θ,

(see (10.21)) to

∆L(θ) ∝ cos

(
θ +

2

v sin(2β)
a

)
(10.55)
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This effective potential leads to a vacuum expectation value for the axion field, a, corre-
sponding to a turning point of ∆L(θ) at

〈a〉 = −sin(2β)

2
vθ (10.56)

For this value of the axion field, the two terms in the effective Lagrangian density which
violate CP conservation, ∆L(θ) and ∆LPQ cancel out and there is no QCD contribution to
CP violation.

The matrix element of the Peccei-Quinn current between the vacuum and a single axion
with momentum p is

〈0
∣∣jPQµ (0)

∣∣ a(p)〉 = vpµ (10.57)

comparing this with the matrix element of the axial current between the vacuum and a single
pion state

〈0
∣∣j5
µ(0)

∣∣ π(p)〉 = fπpµ,

where fπ is the pion decay constant, we see that we can interpret the vacuum expectation
value of the SM, v (∼ 246 GeV) as the decay constant of the axion. The pion is not strictly
massless because the light quarks have a small mass mu, md. Chiral perturbation theory
gives the pion mass, mπ as

m2
π =

〈0
∣∣uu+ dd

∣∣ 0〉
f 2
π

(mu +md) (10.58)

This leads to an expression for the axion mass, ma

ma =
fπ
v
mπ (10.59)

A more careful calculation introduces a factor of 0.5 and the axion mass is estimated to be
about 25 keV. Such an axion would have already been observed, for ecample in the decay

K+ → π+ + a.

The absence of such events implies that this simple model does not work but several alter-
native models in which the axion is “invisible” have replaced it - but all of these are based
of the principle of a spontaneously broken Peccei-Quinn U(1) symmetry.
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