
2 Renormalization

The example considered above tells us that if we calculate an n−point Green function defined as

(2π)4δ4(p1 +· · · pn)G
(n)(p1 · · · pn−1,λ0,m0,Λ) =

Z

d4x1 · · ·d4xnei(p1·x1···pn·xn)〈0|Tφ(x1) · · ·φ(xn)|0〉,

in terms of the bare coupling λ0 and bare mass m0, the result will depend explicitly on the cutoff
Λ.

This dependence of Λ, however, is such that when expressed in terms of the renormalized quantities
λR and mR the “renormalized Green function” defined as

G(n)
R (p1 · · · pn−1,λR,mR) = Z−(n/2)G(n)(p1 · · · pn−1,λ0,m0,Λ), (2.1)

is finite (cut-off independent). It is these renormalized Green functions which are used to construct
the S-matrix elements.

It is useful to work in terms of “truncated” or “one-particle irreducible” Green functions. These
are Green functions calculated from graphs which cannot be separated into two or more graphs
by cutting though one internal line. or a four-point Green function, the box graphs, such as

are one-particle irreducible, since we need to cut through
two internal lines to separate them into two graphs.

whereas vertex or self-energy graphs such as can be
cut into two by cutting a single internal line (in several ways), and are therefore not one-particle
irreducible.

We use the symbol Γ to refer to one-particle irreducible graphs, and the relation between the
renormalized and the bare one-particle irreducible Green functions is

Γ(n)
R (p1 · · · pn−1,λR,mR) = Zn/2Γ(n)(p1 · · · pn−1,λ0,m0,Λ). (2.2)

(The self-energy Σ is the same as Γ(2).)

2.1 Counterterms

We should think of renormalization as adjusting the masses and coupling constants (by a cut-off
dependent amount if necessary), such that the S-matrix elements calculated to higher orders are
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cut-off independent and expressed in terms of physically measurable masses and couplings. In
order to perform these higher order calculations it is convenient to view renormalization as the
process of subtracting counterterms, in each order of perturbation theory, for some one-particle-
irreducible Green function.

We do this by writing the Lagrangian in terms of bare parameters as a sum of two terms, one being
the renormalized Lagrangian in terms of renormalized parameters and renormalized fields and the
other being a set of counterterms. Thus for the φ3 theory we have

L =
1
2
(

∂µφ∂µφ−m2
0φ2)− λ0

3! φ3

The fields are the “bare” fields and are related to the renormalized fields by

φ =
√

ZφR

so we may write the Lagrangian as
L = LR +LCT ,

where, in terms of renormalized fields, masses and couplings

LR =
1
2
(

∂µφR ∂µφR−m2
Rφ2

R

)

− λR

3!
φ3

R

and
LCT =

1
2(Z −1)∂µφR ∂µφR−

1
2(Zm −1)m2

Rφ2
R− (Z1 −1)

λR

3! φ3
R,

with
m2

0 =
Zm

Z
m2

R

and
λ0 =

Z1
Z3/2 λR.

We now calculate a Green function to any order using LR, i.e. in terms of renormalized masses
and couplings. We will sometimes obtain UV divergences, which are cancelled when we consider
a graph of lower order with a counterterm insertion.

It is convenient to view these counterterms as extra Feynman diagrams such as X or

X , where X represents the counterterm. The subtraction of the counterterm graphs from
the unrenormalized Green functions renders them finite up to a factor of

√
Z for each external line.

For example, for the two-point function (self-energy) we calculate the quantity

Σ(p2,λR,mR,Λ),

which has an explicit Λ dependence, but the subtracted quantity

ΣR(p2,λR,mR) =
(

Σ(p2,λR,mR,Λ)− (Z −1)p2 − (Zm −1)m2
R

)

, (2.3)
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is finite and equal (by eq.(2.2)) to Z Σ(p2,λ0,m0,Λ). The contribution from these counterterms is
therefore equivalent to replacing the renormalized masses by bare masses and multiplying by Z.

For the three-point function, we have

Γ(3)(p1, p2,λR,mR,Λ)

and the renormalized (finite) quantity is obtained as

Γ(3)
R (p1, p2,λR,mR) = Γ(3)(p1, p2,λR,mR,Λ)+(Z1 −1)λR,

which, by eq.(2.2) is equal to Z3/2 Γ(3)(p1, p2,λ0,m0,Λ)

How many counterterms are needed to make all renormalized Green functions finite? The superfi-
cial degree, ω(G), of divergence for some Feynman graph, G, is

ω(G) = 4L+ ∑
vertices

δv − IF −2IB = ∑
vertices

(δV −4)+3IF +2IB +4, (2.4)

where L is the number of loops, δV is the number of derivatives in the Feynman rule for the vertex
(each introduces a power of momentum), and IF(B) is the number of internal fermion (boson) lines.
Internal fermion lines carry a power of momentum in the numerator of their propagators.

L = IB + IF +1−V,

where V is the number of vertices.

Define
ωV = δV +

3
2 fV +bV ,

where fV , (bV ) are the number of fermions (bosons) emerging from a vertex. Using the fact that
one end of each internal line must end on a vertex we have

∑
vertices

ωV = ∑
vertices

δV +3IF +2IB +
3
2

EF +EB,

where EF(B) are the number of external fermions (bosons).

Thus we end up with
ω(G) = 4− 3

2EF −EB + ∑
vertices

(ωV −4) (2.5)

If ωV > 4 then as we go to higher orders more and more graphs will have a non-negative degree of
divergence (EF and EB increase for a given degree of divergence). These are non-renormalizable
theories, since we need more and more counterterms as we go to higher orders.
Examples of such non-renormalizable theories are theories with interaction terms of the form λφ5,
or gΨ̄γµΨ∂µφ, for which ωV = 5
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If ωV = 4 we have a renormalizable theory. We require counterterms for all one-particle-irreducible
Green functions for which 3

2EF +EB ≤ 4, but once these counterterms appear at the one-loop level,
no further counterterms are required in higher order.
Examples of such renormalizable theories are those with interaction terms of the form λφ4, gΨ̄γµΨAµ,
gΨ̄φΨ, gφ∂µφAµ. These have ωV = 4.

There is one exception:
The above analysis of the degree of divergence assumes that propagators for bosons of momentum
p always behave as 1/p2 as p → ∞. For massive vector particles the propagator is

−i

(

gµν − pµ pν/m2

p2 −m2

)

and some of the components are constant as p → ∞. Theories involving massive vector particles
are in general NOT renormalizable. The exception is the case in which the mass of the vector boson
is generated by Spontaneous Symmetry Breaking of a gauge theory. In that case it is possible to
choose a gauge in which the propagator of the vector boson does indeed vanish like 1/p2 as p →∞.

If ωV < 4 we have a super-renormalizable theory in which the number of counterterms needed to
render the Green functions finite decreases as the number of loops increases. The interaction λφ3 is
an example of such a theory. The only cut-off dependent counterterm is the mass renormalization
and this is only cut-off dependent at one loop. What this actually means is that beyond one loop
the counterterms which we introduce in order to express S-matrix elements in terms of physical
quantities are cut-off independent.

For the rest of this section we assume that we are dealing with a renormalizable, rather than a super-
renormalizable, theory with generic coupling constant λ so that we assume that vertex correction
graphs are ultraviolet divergent and that the divergences do persist in higher orders.

The real degree of divergence of a Feynman graph is the largest superficial divergence of any
subgraph

For such graphs, in a renormalizable theory such as QED, the superficial divergence of the entire
graph is negative (box-graphs are UV finite †), but the real degree of divergence is the divergence
of the self-energy insertion on one of the internal lines. This means that in association with the
above graph we require a counterterm graph

†In a non-abelian gauge theory box diagrams with four external gauge-bosons also require renormalization. This
is because there is a four-point coupling between four gauge-bosons at the tree level proportional to g2 and the renor-
malization of the coupling constant, g gives rise to a counterterm for the four-point gauge-boson graph.
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X

This counterterm renormalizes the mass of the internal line to which it is attached and also con-
tributes to the renormalization of the couplings at either end of that line.

The other graphs which contribute to the renormalization of the couplings are all the remaining
vertex corrections at all four vertices and all other self-energy insertions on internal and external
lines, e.g.

,

etc.

If we look at the one-loop graph with the coupling constants taken to be the bare couplings

λ0 λ0

λ0 λ0

and write

λ0 =
Z1

Z3/2 λR,

expand Z and Z1 to order λ2
R we get the above diagram with λ0 replaced by λR everywhere plus all

the possible counterterm graphs such as

X

,

X

etc.

Together with the counterterms associated with mass renormalization, these counterterms render
all the divergent subgraphs finite up to a factor of

√
Z for each external line. The renormalized

Green function expressed as a power series in the renormalized coupling and using renormalized
masses is therefore cut-off independent, provided the counterterms associated with all the superfi-
cially divergent subgraphs have been accounted for.

This technique can also be used for the higher order computation of a Green function which itself
has a non-negative degree of superficial divergence.
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For example, at two loop level there is a graph contributing to the self-energy which is

To this we must add a counterterm which renormalizes the mass
of the lower propagator, and a counterterm (Z−1) which contributes to the renormalization of the
couplings of the one-loop graph.

X The remaining contribution (which for a general renormalizable
theory will still be cut-off dependent), contributes to the λ4

R term in the expansions of Z and δm.

Sometimes we will have overlapping divergent sub-diagrams such as

Associated with this we have two counterterm graphs, corresponding to renormalizations of the
vertex on the left- and right- of the graph.

X X

There are also some graphs which have no divergent subgraphs, but which are nevertheless diver-
gent and contribute to a counterterm at order λ4

R

The subgraphs are all four-point, which we assume to be finite in the
theory we are considering, but there is an overall divergence which contributes to Z1 at order λ4

R.

The central theorem of renormalization (proved by Bogoliobov, Parasiuk, Hepp and Zimmerman
(BPHZ) ) states that this procedure can be used to render cut-off independent all renormalized
Green functions provided their superficial degree of divergence is negative. In other words, for
a renormalizable theory we have a finite number of counterterms, which, in general, have cut-off
dependent contributions in all orders in perturbation theory. Provided these counterterms are used
in association with all divergent subgraphs, then as we go to higher orders we do not have to
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introduce further counterterms to cancel off infinities that occur in subgraphs.

2.2 Regularization:

A regulator is a process which renders finite a momentum integral which is superficially diver-
gent. Ideally, we would like the regulator to preserve the symmetries of the theory, so that the
counterterms calculated using that regulator automatically preserve the symmetries.

The simple cut-off procedure used previously does not in general do this.

Pauli-Villars Regulator
Before the relevance of gauge-theories was recognized, the most popular method of regulating
ultraviolet divergent integrals was to replace a propagator

1
k2 −m2

by the regulated propagator
∞

∑
i=0

ai
1

k2 −m2
i

,

where a0 = 1 and m0 = m.

If we expand each term of this sum as a power series in k2 we get

∞

∑
i=0

ai

k2 +
∞

∑
i=0

aim2
i

k4 +O
(

1
k6

)

.

For a renormalizable theory the maximum superficial power of divergence of any integral is
quadratic, so that the O(1/k6) terms are ultraviolet finite. The finiteness of the regulated inte-
gral is then guaranteed by requiring that

∞

∑
i=0

ai = 0,

∞

∑
i=0

aim
2
i = 0.
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Dimensional Regularization
The above method of regularization is unsuitable for gauge-theories, because gauge invariance
requires that the gauge-bosons should be massless, so that the Pauli-Villars regulated propagator,
which introduces masses, would break this gauge invariance.

A more useful method is the method of “dimensional regularization”, which relies on the fact that
most symmetries (excluding supersymmetry, which will be discussed briefly later) do not depend
on the number of dimensions of the space in which we are working.

The integral that we wish to regulate is performed not in four dimensions, but in a number of
dimensions, d, for which the integral is finite. An analytic continuation is made in the variable
d. This analytic function can be expanded as a Laurent series about d = 4 and the fact that the
symmetry is preserved in all dimensions means that each term in the series will respect the sym-
metry. The divergences appear as poles at d = 4 and the regularization is effected by removing
these poles.

In d dimensions the typical integrals that we obtain after going through the steps of Feynman
parametrization, shifting the variable of integration, and rotating to Eucidean space is of the form

I0(α) ≡ i
(−1)α

(2π)d

Z

ddk
(k2 +A2)α = i

(−1)α

(2π)d

Z

dΩd kd−1 dk
(k2 +A2)α .

Z

dΩd =
2πd/2

Γ(d/2)

is the area of the surface of a sphere in d dimensions, and
Z ∞

0

xd/2−1 dx
(x+1)α =

Γ(d/2)Γ(α−d/2)

Γ(α)
,

so that the integral we are left with is

I0(α) = i
(−1)α

(4π)d/2
Γ(α−d/2)

Γ(α)
Ad−2α (2.6)

If α > (d/2), the integral in finite. As an analytic function of d, it has poles if (α−d/2) is zero or
a negative integer.

We perform a Laurent expansion about d = 4, defining the quantity ε † by

d = 4−2ε,

giving rise to a pole term at ε = 0 for any integral which is superficially divergent in four di-
mensions, plus terms which are finite as ε → 0. Each of these terms preserves the (dimension
independent) symmetries of the theory.

†Many authors use a definition of d = 4− ε. We choose this definition because d/2 appears very often in the
formulae for the integrals.
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For example of α = 2 we get

i
Γ(ε)
16π2

(

4π
A2

)ε
=

i
16π2

(

1
ε

+ ln
(

4π
A2

)

− γE +O(ε)
)

,

where we have used
Γ(ε) =

1
ε
− γE +O(ε).

In the so-called “minimal subtraction (MS)” renormalization scheme the pole part

i
16π2 ε

is associated with the counterterm and the regularized integral is the remaining part

i
16π2

(

ln
(

4π
A2

)

− γE

)

.

However, the ln(4π) and the Euler constant γE . always appear in the finite part of the integral.
They have no physical significance and are merely an artifact of the subtraction scheme. A more
convenient scheme is the so-called “MS” scheme, in which the ln(4π) and the γE are subtracted off
along with the pole part, so that the counterterm is

i
16π2

(

1
ε

+ ln(4π)− γE

)

and the regulated integral is
− i

16π2 ln
(

A2) .

We note that choosing the counterterms to be the pole part as in the MS scheme or using the MS
scheme are perfectly valid renormalization prescriptions. However, in these schemes the renor-
malized coupling constant is not directly related to any physical measurement. Furthermore the
renormalized mass is not the physically measured mass. Nevertheless the renormalized couplings
and masses obtained in these schemes can be used as parameters, and all physical observables -
including masses - can be calculated in terms of these renormalized parameters.

A further integral, which will occur often in higher order calculations is of the form

i
(−1)α

(2π)d

Z

ddk kµkν

(k2 +A2)α

Now by symmetry this will only be non-zero if µ and ν are in the same direction, so we may write

i
(−1)α

(2π)d

Z

ddk kµkν

(k2 +A2)α = −I2(α)gµν, (2.7)
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(the minus coming from the fact that we have rotated to Euclidian space). Contracting both sides
with gµν are recalling that gµνgµν = d, we have

I2(α) = −i
(−1)α

d(2π)d

Z

ddk k2

(k2 +A2)α

Writing k2 = (k2 +A2)−A2, we have

I2(α) =
1
d

(

I0(α−1)−A2I0(α)
)

Using Eq.(2.6), this gives

I2(α) = −i
(−1)α

(4π)d/2 Ad+2−2α
(

Γ(α−1−d/2)

d Γ(α−1)
− Γ(α−d/2)

d Γ(α)

)

.

Manipulating the Γ functions this reduces to

I2(α) = −i
(−1)α

(4π)d/2 Ad+2−2α Γ(α−1−d/2)

2Γ(α)
(2.8)

Another useful integral is obtained by contracting both sides of eq.(2.7) and using eq.(2.8)

i
(−1)α

(2π)d

Z

ddk k2

(k2 +A2)α = d I2(α) = −i
(−1)α

(4π)d/2
d
2

Ad+2−2α Γ(α−1−d/2)

Γ(α)
(2.9)

Other consequences of dimensional regularization are:

1. The action, which must be dimensionless, is now

S =

Z

d4−2εxL .

From the quadratic part of the Lagrangian density, we conclude that a fermion field, which
enters as Ψ̄γ ·∂Ψ must have dimension 3

2 −ε, whereas a bosonic field, which enters as (∂µφ)2

or FµνFµν, must have dimension 1− ε.
When we consider the interaction terms, this in turn implies that the couplings acquire a
dimension which differs from its dimensionality in four dimensions. For a renormalizable
theory, the couplings are dimensionless in four dimensions. However, in 4−2ε dimensions
this will not be the case. For example, the bare electromagnetic coupling in QED, defined
by the interaction term in the action

Z

d4−2εxe0Ψ̄γµAµΨ,

must be replaced by
Z

d4−2εxẽ0(µ)µεΨ̄γµAµΨ,
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where µ is some mass scale and ẽ0(µ) is a dimensionless quantity. In other words the bare
coupling e0 has dimension ε.
When this is expanded as a power series in ε, we find that there is always a term ln(µ2)
accompanying the pole at ε = 0. This scale µ serves as the subtraction point in the renormal-
ization procedure.

2. In dimensional regularization, the Dirac algebra must also be carried out in 4− 2ε dimen-
sions.

{γµγν} = 2gµν,

but
gµνgµν = 4−2ε

γµγµ = (4−2ε)I

Thus, for example
γµγνγµ = −2(1− ε)γν,

γµγνγργµ = 4gνρ −2εγµγρ,

γµγνγργσγµ = −2γσγργν +2εγνγργσ.

Strictly, we should also have
Tr I = 2d/2,

but it turns out that one can always use

Tr I = 4,

and absorb the factor of 2d/2−2 into the renormalization of the coupling.

Dimensional Reduction:
This method of regularization is not suitable for dealing with supersymmetry which only holds
in a given number of dimensions. For example, in a four dimensional supersymmetric theory a
Majorana fermion has two degrees of freedom and is accompanied by two scalar superpartners. A
vector field has four degrees of freedom and is accompanied by a Dirac fermion, which also has
four degrees of freedom.

The solution to this problem is to introduce extra scalar particles called “ε−scalars” which com-
pensate for the “lost” bosonic degrees of freedom as the number of dimensions is reduced below
four. Thus, for example, in three dimensions a vector field is replaced by a vector field with
three degrees of freedom plus a new scalar field which interacts with the fermions with the same
coupling. In this way, the fermion, the vector field and the extra scalar can be combined into a
supermultiplet.

The upshot of this scheme is that the Dirac algebra is once again carried out in four dimensions,
using the rules of the four dimensional, whereas the integrals over the loop momentum is carried
out in 4−2ε dimensions.
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