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1 Introduction

This is a sequel to an essay I wrote a few years ago entitled “I don’t Understand Quantum
Physics”. I used this title because nobody understands Quantum Physics. The microscopic
world behaves in a way which is so orthogonal to our experiences in the macroscopic world
that the human mind is simply incapable of conceptualising the microscopic world which is
described by Quantum Physics. The best we can do is to assimilate a set of rules which
enable us to determine the measurable behaviour of microscopic systems and compare our
theoretical predictions with experimental data.

This is not the case for Special or General Relativity. I believe that I have a reasonable
understanding of how systems behave when they travel at speeds comparable with the speed
of light or are accelerating under the influence of gravity. It is my view that the reader will
also be able to grasp the necessary concepts - at least for Special Relativity - provided (s)he
is prepared to jettison certain pre-conceived ideas. i.e to accept that certain “reasonable”
assumptions are in fact incorrect. We have only come to assume their validity because in
the case of systems which are travelling (relative to us) at speeds which are much smaller
than the speed of light, they are correct to very good (but not perfect) accuracy. I list these
in the next section.

Meanwhile, let me explain what is meant by Special and General Relativity.

Special Relativity:
This is the study of systems which are moving relative to each other at constant speeds
which are comparable to the speed of light, in the absence of a gravitational field.

General Relativity:
This is the study of systems which are moving in a gravitational field and therefore (in
general) accelerating relative to each other. I will only touch this subject briefly - it is indeed
conceptually difficult and to do it properly requires a University level of mathematics.

For Special Relativity, no sophisticated mathematics is required. What is required is
an understanding of Pythagoras’ theorem. There is a refresher in Appendix A for the
reader who has only a vague recollection (or none at all) of this theorem, and discusses
some of its applications. Some algebraic manipulations are required, such as the ability to
use Pythagoras theorem to calculate the length of one of the sides of a right-angle triangle
adjacent to the right-angle, given the length of the hypotenuse (the side opposite the right-
angle) and the length of the other adjacent side. Don’t worry - this is explained in Appendix
A and, as always, the reader who is uncomfortable with this level of algebraic manipulation
can still follow this essay provided (s)he is prepared to accept any algebraic results quoted.

I have also assumed familiarity with some aspect of classical mechanics, such as the
concept of momentum and its conservation in collisions, centre-of-mass, and the projection
of a vector into its components different directions¿ A brief summary of these is given in
Appendix B.
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The symbol c is used to denote the speed of light, in a vacuum. It takes the value

c = 299.792458 million metres per second ≈ 3× 108 m.s.−1.

In comparison with this, the fastest jet aircraft today has a top speed of about 1000 metres
per second. So we see why a subject which is only important at speeds comparable with the
speed of light has little effect on our everyday experiences.

Relativity is about comparing the experiences (and for physicists this means the results
of measurements) of two observers, A and B who are moving relative to each other. I will
usually call these observers Albert (for obvious reasons) and Brenda and I deliberately use
non-gender neutral pronouns so that the reader can easily identify which of these is being
referred to.

I have tried to minimise the number of technical terms and to define them as they occur,
but I cannot know with which of these terms the reader is likely to be familiar. Therefore I
have appended an extensive glossary, which I hope is helpful. If there is a term with which
the reader is unfamiliar, it can probably be found in the glossary.

2 Five Things We Assume but are Actually “Wrong”

1. If two events at different places are observed by one observer, Albert, to occur simul-
taneously, they will also be observed to occur simultaneously by a second observer,
Brenda, moving relative to Albert.

2. If observer Brenda is moving relative to Albert, her clock will tick at the same time as
Albert’s. - i.e time is universal.

3. If observer Albert launches an object with a velocity u (in a given direction), then to
an observer Brenda, moving relative to Albert (in the same direction) with velocity v,
the object is seen to have a velocity w = u− v. For example, if you are following a car
on the motorway travelling at 130km/hr and you are travelling at 110 km.hr then the
car in front is pulling away from you at 130-110 = 20 km/hr.

4. If an observer Albert measures the length of a 1 metre measuring rod, held by Brenda,
who is moving relative to Albert in the direction of the length of the measuring rod,
it would also be observed to be 1 metre in length.

5. If masses m1 and m2 of two chemical elements fuse to form a compound of the two
elements (e.g. sodium combining with chlorine to produce common salt – sodium
chloride), the mass of the compound will be exactly m1 + m2, i.e. the sum of the
masses of the ingredients.

I have put “wrong” in inverted commas, for two reasons. Firstly, it really means “in-
consistent with the postulates of Special Relativity”. However, since there has been very

6



substantial experimental verification of the results of Special Relativity, we can safely assume
it to be correct - so this point is perhaps unnecessarily pedantic.

The other reason is because although the assumptions are actually wrong they work
well to a fantastically high level of accuracy when applied to relative motion which is small
compared with the speed of light. Let’s look at all of these and see the discrepancies for usual
relative velocity magnitudes, and see how fast things need to move for the discrepancies to
become significant.

Assumption 1:
Consider a train travelling at 30 metres per second and a railway carriage 22 metres long. If
there are flashes of light at the ends of the carriage, which are observed to be simultaneous
to a passenger on the train, an observer on the platform will see them to be asynchronous
by an amount 0.000000000000007 seconds (so (s)he probably wouldn’t notice !). On the
other hand if the railway carriage were 100000 kilometres long and the train was travelling
at 200000 kilometres per second then the two flashes would be seen by the observer on the
platform to be 0.22 seconds apart.

Assumption 2
Brenda is a pilot, flying an MiG Foxbat at 1000 metres per second. She synchronises her
watch with ground control and flies for 10 hours. After the flight her watch will be behind
that of ground control by 0.00000002 seconds. This is far too little to be observed at this
time, but experiments carried out on a space station travelling at 7800 metres per second
over a period of six months produced an observable time dilation of 7 milliseconds.

Assumption 3:
Albert is the pilot of an F-111 Aaadvark jet which only has a top speed of 750 metres per
second, flying behind a MiG Foxbat which is flying at 1000 metres per second. The speed
of the MiG relative to the F-111 is actually 250.000000000025 metres per second.

Assumption 4:
The ISS space station which measures 108 metres from end to end and travels at 7800 metres
per second, is seen by an observer on Earth to contract by about 0.000004 metres.

Assumption 5:
If we take 23 gmd of sodium (1 mole) and 35 gms of chlorine (1 mole) and combine them
together to make sodium chloride, the mass of the sodium chloride will be less than the sum
of the masses of the sodium and the chlorine by 0.0000000045 gms. Thus mass difference
(called a “mass defect”) is converted onto the chemical binding energy of a mole (58 gmns)
of salt, at the conversion rate given by the famous equation of Special Relativity E = mc2.
This is the energy released when the chemicla reaction takes place.

In a nuclear reaction the mass deficits are not so small. 2 gms of deuterium (hydrogen
with a nucleus consisting of a proton and a neutron) and 3 gms of tritium (hydrogen with
a nucleus consisting of a proton and two neutrons) can fuse to make helium and a neutron.
In this case the mass deficit is 20 milligrams – releasing a very large quantity of energy (18
bIllion kiloJoules !).
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3 A Few Definitions

Before we proceed, let us consider the definitions of some terms that will crop up a lot.

Event:
An event is something that occurs at a particular point at a particular time.

The use of this word is similar to its use in everyday parlance, but in physics we need to
be more precise (i.e. pedantic). Whereas we might say that a concert in Hyde Park starting
at 2 p.m. next Sunday is an event, in physics we need to state precisely where and when
something happens. So if the concert starts with a drumbeat at precisely 2:04:15 then the
event might be at the point of contact of the drumstick with the drum at precisely that
time. We would specify the place that this occurred by precisely by giving a coordinates
(x, y, z) of the point of contact of the drumstick and drum. This allows more precision than
the statement “The concert is in Hyde Park, which is opposite the Royal Albert Hall.” So
the event is specified by four numbers x, y, z, t, where t is the number of seconds after our
clock was set to zero, when the concert started. Probably the best thing to think about as
an example of an event is an instantaneous flash of light.

Frame of Reference:
This is a coordinate system with measuring rods along three perpendicular axes x, y and z
with an agreed orientation and agreed origin, together with a clock that has been set to zero
at an agreed time. This way an event can be specified by the four numbers x, y, z, t.

“Frame of reference” is usually abbreviated to “frame.”

At this point we need to be careful about what we mean by the time of an event that
happened far away. An event is observed after it occurs because it takes time for the light
from the event to reach the observer. For example, the nearest star to Earth after the sun is
Alpha Centauri, which is 4.2 light years away, so when we observe it, we see it as it was 4.2
years ago. When we specify the time t that an event occurred we subtract the time taken
for the light from the event to reach the observer from the time it was observed. In this way
all observers who are at rest relative to us agree on the time of the event, even though they
may be standing at different distance from the event. If the start of the concert described
above is observed 85 km away in Winchester at 2:04:15.60741, then it actually started at

2 : 04 : 15.60741− 0 : 0 :
85

300000
= 2 : 04 : 15.60713.

At Exeter, which is 252 km away it is observed at 2:04:15.60797, but the observer in Exeter
(who is not moving relative to the observer in Winchester) agrees with the observer in
Winchester, that the concert started at

2 : 04 : 15.60797− 0 : 0 :
252

300000
= 2 : 04 : 15.60713.

Inertial frame:
This is a frame of reference which is moving, in the absence of a gravitational field, at
constant velocity relative to any other inertial frame, i.e. it is not accelerating.
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Special Relativity ignores gravity. Accounting for a gravitational field is the subject of
General Relativity and for General Relativity this definition will need to be refined. Of
course, we know that on Earth, the gravitational field is not absent but it is one hundred
million times weaker than the gravitational field strengths at which General Relativity effects
become significant.

4 Relative Motion - Galilean transformations

The main result of Special relativity is that mass m can be converted into energy E at the
rate

E = mc2. (4.1)

Alternatively, it is possible to convert energy into matter using the same relationship. It is
this that is exploited in high-energy particle physics experiments in which massive particles
such as Higgs bosons are created through collisions of particles which have been accelerated
up to sufficiently high energies and converted into particles whose mass exceeds the masses
of the incident particles involved in the collisions.

The relation between energy and mass turns out to be a logical consequence of the
observation that motion is relative and one has no way of knowing which inertial frame is
“stationary” and which is moving. The connection between these two is certainly not a priori
obvious, but if we follow strictly the logical steps that Einstein took in the development of
the Special Theory of Relativity, we can see that the proposition that “all motion is relative”
does indeed have the consequence that energy and mass can be converted into each other at
a rate given by (4.1).

Most of us have experienced this by sitting on a train and observing the relative motion
of the train on the adjacent railway line and being unable to determine if our train is moving
and the other train is still stationary or vice versa (or both)1. This was first understood
by Galileo and was refined by Einstein. Two inertial frames which are moving relative to
each other at speeds much smaller than the speed of light, are (approximately) subject to
“Galilean Transformations” with the following rules:

1. All (constant) motion is relative and cannot be detected without reference to an outside
point.

2. The laws of motion are the same in any inertial frame.

3. The time at which an event occurs is the same in any inertial frame.

4. If an object C is travelling with velocity u as measured by an observer in inertial frame
A, then an observer in inertial frame B which is moving with velocity v relative to A
(in the same direction) measures its velocity to be u− v.

1Actually there is a difference when a train first moves off because the moving frame accelerates and is
therefore not strictly an inertial frame. However in reality the acceleration is so small that we do not notice
it.
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5. If the clocks in inertial frames A and B are synchronised at the moment when their
origins coincide and then an event occurs at time t and at a distance xA as measured
by an observer in frame A, then for an observer in frame B, which is moving with
velocity v (in the same direction) the event is observed at distance

xB = xA − vt. (4.2)

as can be seen from Figure 1.
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Figure 1: At time t = 0 origins of frames A and B coincide (left-hand diagram). At
time t (right-hand diagram) an event (black dot) is observed at a distance xA in frame A
corresponding to a distance xB in frame B. The origin of frame B has advanced a distance
vt from the origin of frame A.

We have already stated that rules 3 and 4 are approximations which break down for
speeds comparable with the speed of light, where relativistic effects have to be taken into
account, and this also applies to rule 5.

At the age of sixteen, Einstein already noticed that there was something not quite right
with Galileo’s rules as we approach the speed of light. He considered a “thought experiment”
in which an observer holds a shaving mirror at arms length and starts to accelerate. The light
from his face is reflected in the mirror and he sees his reflection. This occurs despite the fact
the the mirror is moving away and so the light approaches the mirror with a lower velocity
than it does when the mirror is stationary. But when the person holding the mirror moves
with the speed of light, the light never reaches the mirror and the reflection disappears. This
contradicts rule 1 since it provides a method of distinguishing a frame moving with the speed
of light without reference to any outside point.

At the end of the nineteenth century James Clerk Maxwell developed the theory of
electromagnetism which describes the properties of electric and magnetic fields. In general,
such fields are both time dependent and position dependent. Maxwell’s theory provided
equations which relate the dependence of electric fields to the space-dependence of magnetic
fields and vice versa. Maxwell also showed that light consisted of wave of oscillating electric
and magnetic fields and was able to relate the energy of a light beam to the amplitudes
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of these oscillating fields. Einstein used his theory of Special Relativity to determine how
electric and magnetic fields change when measure in inertial reference frames which are
moving relative to each other. This was an important step in the derivation of his equation
relating energy, E, and mass, m: E = mc2.

We can avoid using the mathematically complicated equations of Maxwell and instead
use a result which Einstein himself had derived in his explanation of the photoelectric effect.
Einstein’ explanation was that light (or any other electromagnetic radiation) comes in dis-
crete packers called “quanta” which have energy h f where f is the frequency of the light and
h is Planck’s constant. These quanta behave like particles and are now called “photons”,
and as such they also carry momentum. The next section is a diversion which discusses the
difficulties that existed in interpreting the results of experiments on the photoelectric effect
and Einstein’s explanation, which formed the foundation of Quantum Physics.

5 The Photoelectric Effect.

When light (visible or ultraviolet) is incident on certain metals, electrons can be emitted.
This is called the “photoelectric effect”. It is the mechanism by which a light meter for
a camera works. It was discovered by Heinrich Hertz in 1887. We can understand this
effect in terms of the wave nature of light. At any fixed point, an electromagnetic wave (e.g.
visible light) is an oscillating electric and magnetic field. When incident upon a metal, which
contains loosely bound electrons, the electric field applies a force on these electrons which
can sometimes be large enough to liberate them from their binding in the metal. However,
when we consider the quantitative effect of such a wave, we predict results which are at
variance with experiment. The higher the frequency of the electromagnetic radiation the
more often we would expect an electron to be emitted. The maximum kinetic energy of
the emitted electrons is expected to increase with increasing intensity of the incident light.
Furthermore for very low intensity incident light one would expect a delay before observing
the emission of such electrons (known as “photoelectrons”) in order to allow the metal to
absorb enough energy to free the electrons from the metal.

The first quantitative experiment on the photoelectric effect was conducted in 1902 by
Philip Lenard. The maximum energy of the emitted photoelectrons was determined by
applying a retarding potential to the emitted electrons and adjusting the applied potential
until it reached the “stopping potential”, V0, above which no electrons were collected at
the collector electrode. A diagram of the experimental setup is shown in Figure 2. Lenard
found that when he increased the frequency of the incident light, the stopping potential
increased, i.e. the maximum kinetic energy of the photoelectrons increased. The rate at
which the electrons were emitted was found to increase as one increases the intensity of
the incident light, but keeping the frequency of the light constant. On the other hand,
the electron emission rate was found to be (surprisingly) independent of the frequency of
the illuminating light, whereas the classical wave interpretation would imply that at higher
frequencies the rate of electron emission would be higher as the electrons were “shaken” with
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Figure 2: The experimental setup for the photoelectric effect. A voltage is applied so that
the emitted electrons are accelerated towards the collecting anode, C. The photoelectric
current is measured by the galvanometer, G. The stopping potential is determined by
reversing the potential so that it retards the (negatively charged) electrons.

higher frequency. Furthermore, even with the lowest intensity light sources, there was no
delay between the initial incidence of the radiation and the emission of the photoelectrons.

The explanation of this enigmatic behaviour was provided by Einstein in 19052:

Light (or any other electromagnetic radiation) comes in packets or “quanta” of energy,
E, given by

E = h f (5.1)

where f is the frequency of the light and h is Planck’s constant, which takes the value 6.63×
10−34 Joule-seconds. These “quanta” behave like particles (they are now called “photons”).
These particles scatter off the electrons in the metal. Some of the energy, φ , is used to free
the electrons from the metal. This energy is called the “work function” and it is a property
of the metal from which the electrons are emitted. Some or all of the remaining energy of
the photon can be transferred to the emitted electrons, so the maximum energy which the
photoelectrons can have is the difference h f − φ. This maximum is the stopping potential
multiplied by the charge, e, of an electron. We therefore have the simple formula relating
the frequency, f , of the incident electromagnetic radiation to the stopping potential V0

h f = φ + eV0 (5.2)

This formula was tested in detail by Robert Millikan in 1916. His results for the stopping
potential for various different frequencies is shown in Figure 3. The points lay on a very
good straight line whose slope was proportional to Planck’s constant. This was the most

2Together with Planck’s theory of blackbody radiation, Einstein’s theory of the photoelectric effect con-
stitute the birth of Quantum Physics. It was this theory that won Einstein the Nobel prize in Physics in
1921 and not the Theory of Relativity.

12



Figure 3: The result of Millikan’s experiment on the photoelectric effect showing the stopping
potential against the frequency of incident radiation. The slope, ∆V/∆f is Planck’s constant
divided by the electric charge of the electron. The intercept is equal the work function divided
by Planck’s constant.

accurate measurement of Planck’s constant at that time yielding h = (6.57 ± 0.03) × 10−34

Joule seconds. The intercept, i.e. the value of frequency, f0, at which the line crosses the
x-axis can be used to determine the work function, since h f0 is the energy of a photon which
causes the emission of an electron with zero kinetic energy.

From the wave viewpoint one might have expected the energy of the emitted electrons
to increase as the intensity of the incident light increases. Increasing the intensity increases
the rate of energy per unit area incident on the metal and this increases the total energy of
the emitted electrons - but if the frequency of the incident light is held constant then this
increase in total energy of emitted electrons manifests itself on an increase in the rage at which
electrons ar emitted and not in the energy of the individual electrons. The increase in the
rate of electrons emitted with increasing intensity of incident light (keeping the frequency is
explained by the fact that increased intensity of light means a larger flux of incident photons
– and therefore a larger number of interactions which can free an electron from the metal.3

6 Conversion of Energy to Matter and Vice-versa

Einstein’s postulate that light is emitted in packets that behave like particles, already leads
to the idea that energy and matter can be converted into each other.

3Einstein’s explanation of the photoelectric effect can also be used to explain the observation made by
Philipp Lenard in 1900 that light can ionise gases, for which he received the Nobel Prize in 1905. This is
very ironic. Lenard was a staunch supporter of National Socialism and condemned the Theory of Relativity
on the grounds that it was “Jewish physics.”
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A thought experiment is shown in Figure 44.

.

.

CM CM
v

Figure 4: A photon is emitted from the left wall of the box. The recoil causes the box to
move backwards until the photon impinges on the right wall. The walls of the box have
moved backwards but the centre of mass of the box remains in the same place since there is
no external force acting on the box. This means that some of the mass of the box has been
transported by the photon from the left wall toi the right wall.

Suppose we have a cubic box of mass M and side L, and that a photon is emitted from
the left-wall of the box. This photon (which behaves as a particle) must have momentum,
p as well as energy, E. This means that by conservation of momentum the box must recoil
with velocity v in the opposite direction (the recoil is clearly far too small to be observed
which is why this has to be a thought experiment). The box moves backwards until the
photon hits the opposite wall. At this point the box stops, but it has been displaced by a
small amount ∆x.

On the other hand, there has been no external force on the box and by Newton’s first
law of motion this means that the centre of mass (CM) of the box remains in the same place.
This can only be possible if the photon transports a small mass ∆m from the left wall to
the right wall. So what happens is that the emission of the photon amounts to converting
a small quantity of mass from the left wall into energy and when the photon is absorbed,
the energy is converted back into mass (The reader who is not familiar with mechanics is
welcome to skip the rest of this section and just assimilate the fact that the interpretation of
photons as particles leads to the concept of the convertibility of energy and mass.)

Using conservation of momentum, and the time, L/c, taken for the photon, moving with
velocity c, to cross the box of length L, it can be shown that the displacement of the box is

4Einstein was very keen on thought experiments but rather less interested in actual experiments. He
failed the course on practical because he attended very few of the laboratory sessions.
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given by

∆x =
L

Mc
p. (6.1)

(6.1) follows from the fact that during the flight of the photon, the box has momentum
p = Mv in the opposite direction from the momentum, p, of the photon. The small quantity
of mass transferred from one side of the box to the other can be shown to be related to the
shift, ∆x, of the box and its mass M , by

∆mL = M∆x (6.2)

Combining (6.1) and (6.2), we find

∆m =
p

c
(6.3)

The only remaining step in he derivation of E = mc2 is to show that the momentum, p
of a photon5 is related to its energy, E by

E = pc.

This will emerge later, after we have derived the relativistic expressions for the energy
and momentum of a moving particle.

7 Einstein’s Postulates

Einstein’s theory of Special Relativity is derived from two simple postulates.

1. The laws of physics are the same in any inertial frame.

2. The velocity of light in a vacuum is the same in any inertial frame

The first is a strengthening of Galileo’s rules 2 and 3. It tells us that not only are the
laws of motion the same in any inertial frame but that all laws of physics (and hence all laws
of Nature) are the the same in all inertial frames. This means that you cannot perform any
experiment which would distinguish between any two frames.

The second is not really an independent postulate. In 1865, James Clerk Maxwell devel-
oped the theory of electromagnetism, in which he showed that electric forces and magnetic
forces were related and that light consists of a wave of an oscillating electric field and an oscil-
lating magnetic at right-angles to each other and at right-angles to the direction of motion of

5In non-relativistic dynamics the momentum of a particle of mass m travelling with velocity v is given
by p = mv, but this is only valid for particles with velocities much small tan the speed of light. A photon
can have momentum, despite the fact that photons have no mass.
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the light-wave. He showed that the speed of light6 was related to the ratio of the electrostatic
force, Felectric(Q1, Q2, r) between two charges, Q1 and Q2 separated by a distance r, and the
magnetic force, Fmagnetic(I1, I2, r), between two wires of length L, separated by a distance r
carrying currents I1 and I2. We don’t need to know the details of this relation - just the
fact that the value of the speed of light follows from Maxwell’s theory of electromagnetism,
which is valid in any reference frame - implying that the speed of light must be the same in
any reference frame.

For those who wish to see the relevant formulae - here they are - but the reader can skip
to after (7.3) without losing the thread.

The electrostatic force Felectric(Q1, Q2, r) between two electric chrges Q1 and Q2 separated
by a distance r obeys the inverse square law (Coulomb’s law) – the force is proprtional to
the product of the two charges and inversely proportional to the square of their separation:

Felectric(Q1, Q2, r) = κE
Q1Q2

r2
, (7.1)

The electromagnetic force per unit length between two wires carrying currents I1 and I2 sepa-
rated by a distance r is proportional to the product of the currents and inversely proportional
to the separation of the two wires: given by

Fmagnetic(I1, I2, r)

L
= κM

I1I2
2r

(7.2)

Maxwell showed that light was a wave of an electric field and a magnetic field, perpendicular
to each other, whose wave velocity c, was the square root of the the ratio between the two
constants κE and κM of (7.1) and (7.2):

c =

√
κE
κM

(7.3)

This second postulate is then the assertion that Maxwell’s equations are correct (they
have been thoroughly tested by experiment) and are valid in any inertial frame of reference.

These two postulates appear benign. However, the statement that the speed of light
is the same in all inertial frames is in conflict with rule 4 for Galilean transformations. If
Albert throws an object with velocity u in a given direction, it “stands to reason” that the
velocity of the object as measured by the observer Brenda moving at a velocity v relative to
Albert is u − v. However much this “stands to reason”, it is wrong if the object is a light
beam, for which the velocity is c in both Albert’s and Brenda’s frames of reference (or any
other frame).

6We have been using the terms “speed of light” and “velocity if light”. Strictly, velocity is a vector which
has a direction and the speed is the magnitude of that vector. Nevertheless, we will often use the term
”velocity v” meaning velocity of magnitude, i.e. speed, v, in some specified direction.
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Thus either the postulates of Special Relativity are incorrect, or distance and time differ
in different frames so that the measured velocity of light (how far, ∆x, does light travel in a
given time interval ∆t) can be still equal in two different inertial frames because ∆x and ∆t
are different in the two inertial frames. The rules for transforming between inertial frames
are only approximately valid for relative velocities which are small compared with the speed
of light.

Strange as this may seem, it is not illogical. We will examine whether two events which
are observed to be simultaneous in one inertial frame are simultaneous in another inertial
frame. But first let’s discuss a famous experiment which verified that the speed of light
is the same in any inertial frame (despite the fact that the experiment actually set out to
demonstrate the contrary).

8 Michelson-Morley Experiment

The universality of the velocity of light (in a vacuum) as postulated by the Special Theory
of Relativity has to be verified by experiment.

In the nineteenth century, it was believed that there existed a medium called the the
“aether” which carried light waves, in the same way that sound waves are carried by a
medium (the air), and that the speed of light meant the speed relative to this aether.

In 1887 Albert Michelson and Edward Morley set out to measure the velocity of the
Earth relative to the aether. It was a remarkable experiment and so it is worth spending a
little time describing the experiment, which used an interferometer designed by Michelson
and which is still used in optics today,

A schematic diagram of the interferometer is shown in Figure 5. Light is
split by a half-silvered mirror such that one wave is reflected at an angle of
90° and is reflected by mirror 1, placed at a distance d from the splitting
mirror. The other wave continues and is reflected from mirror 2, which is
also at a distance d from the splitting point. If the distances are exactly
the same then the two light-waves which are detected directly below the splitting point are
in phase and will add, leading to a bright spot at the centre. But at a small angle away
from directly below the splitting point the two waves of the (monochromatic) light will have
travelled distances which differ by half a wavelength so that the two light-waves are out of
phase and will interfere destructively, giving rise to an interference minimum, The resultant
interference pattern consists of concentric circular fringes as shown above on the right.

Now suppose that the interferometer is travelling through the aether with velocity v in
the direction of mirror 2. Since the velocity of light is c relative to the aether the light travels
against the aether more slowly from the splitting point to mirror 2 than it does for the return
journey from mirror 2 back to the splitting point. The other light-wave, which is travelling
perpendicular to the direction of the aether will travel with yet a different speed. The result
is that the times taken for the two waves to complete their journeys will be different – the
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Figure 5: The Michelson interferometer.

two waves will have completed a different number of oscillations and so the fringe pattern
will be different.

It is not possible to observe this different fringe pattern just by looking at the fringes.
There is only a bright spot in the centre in the idealised situation where the mirror distances
d are exactly the same - to within a small fraction of the wavelength of the light. Nevertheless
we can see the fringe pattern and are able to measure their separation. If the interferometer
is moving through the aether, then as we rotate the apparatus through 90° so that it is
moving relative to the aether in the direction of mirror 1, one would observe a shift in the
interference pattern fringes owing to the interchange of the different journey times of the
two waves, as the apparatus is rotated. One expects to see the fringes migrating through
the field of vision of the microscope used to observe the fringes.

The arms of the interferometer were 11 metres long and the entire interferometer was
floated on mercury for ease of rotation. The microscope used to detect any shift in the inter-
ference fringes was able to detect a shift of one hundredth of a fringe-width. Nevertheless,
no shift in the fringes was observed when the apparatus was rotated through 90°,

The initial reaction to the null result of the Michelson-Morley experiment was to seek
some explanation which maintains the hypothesis that light travels on the aether. The most
famous of these was “aether drag”. It was suggested that the Earth dragged the aether
with it as it performed an orbit around the sun, so that the aether was always stationary
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relative to the Earth. However, if that were the case one would observe “stellar aberration”,
i.e. shifting of the observed positions of stars as the light from them is bent in different
directions when it penetrates the moving aether.

A second explanation was provided by Hendrik Lorentz and George FitzGerald, and
is called the “Lorentz-FitzGerald contraction”. Their solution was that objects which are
moving with velocity v in the direction of the aether contract by a factor of

√
1− v2/c2

(for a derivation of this formula see the first worked problem in the Appendix). This would
restore the equality of the times taken for light to complete their journey from the splitting
mirror to the mirrors at the end of the arms and back, thereby explaining the null result.
However, if this were true then this contraction would be observed in the changes of shapes
of planets as they rotate in their own orbits around the sun. No such changes of shape are
observed.

The only viable interpretation of the null result is that there is no aether and that light
travels with the same velocity in a vacuum relative to any observer.

Einstein did not rely on the result of this experiment to formulate the Special Theory
of Relativity, although he mentioned “unsuccessful attempts to discover any motion of the
earth relatively to the ‘light medium’, He did not refer to this particular experiment in his
paper of 1905, but he did say about it later: “If the Michelson–Morley experiment had not
brought us into serious embarrassment, no one would have regarded the relativity theory as
a (halfway) redemption.”

9 Simultaneity

The first casualty of the universality of the speed of light is the notion that if two events occur
simultaneously in one inertial frame, they will be observed to be simultaneous in another
inertial frame.

That this is not the case can be seen from Figure 6, which depicts a railway carriage with
the passenger on the train (Albert), seated exactly in the middle of the carriage passing an
observer on the platform (Brenda) at time (a). At that moment, as seen by Brenda, lamps
at either end of the carriage flash. The light from the two flashes arrives at the observer
Brenda on the platform at time (c) and since the flashes occurred at equal distance from the
observer, she concludes that the events themselves were simultaneous. However, at time (b)
which was before time (c) the light from the front end of the carriage passes the observer,
Albert, seated on the train whereas the light from the rear of the carriage has not yet reached
him. Once again he is sitting in the middle of the carriage - exactly half-way between the
events and therefore concludes (correctly in his frame) that the front flash occurred before
the rear flash.

Conversely, if the light from the two flashes had reached the passenger, Albert, simulta-
neously, he would have concluded that the events were simultaneous, but the light from the
flash at the rear of the carriage would already have passed Brenda, on the platform, whereas
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Figure 6: Two events seen as simultaneous by an observer B on the platform

the light from the flash at the front of the carriage would not yet have arrived – Brenda
would conclude (again correctly in her frame) that the flash from the rear of the carriage
occurred before the flash at the front.

Note that it makes no difference whether the source of the events (the lamps) are on the
train or on the platform. The light from each of them travels at the same speed for both
observers.

10 Time Dilation

Not only is the concept of simultaneity dependent on the inertial frame, a time interval itself
depends on the inertial frame in which it is measured.

20



Figure 7: A light clock at rest in Albert’s frame ticks when light emitted at P is reflected
from a mirror at Q and detected again at P . But for the observer Brenda, who is moving
with velocity v relative to A in a direction perpendicular to the direction of the light-clock
PQ, the light has to travel further and so since the velocity of light is the same in both
frames, Brenda measures a longer time-interval between ticks.

To see how this works, we consider a light-clock shown in Figure 7. A light-signal is sent
from an emitter at P to a mirror at Q a distance L away. The light-signal is reflected and
when it is detected at P , the clock ticks and another light-signal is emitted immediately. In
Albert’s frame in which the light-clock is stationary, the time interval between ticks is

tA =
2L

c
. (10.1)

However, for Brenda, who is moving with velocity v perpendicular to the arm of the
light-clock ( the line from the emitter P to the mirror Q), the interval tB, between ticks is
longer and during the time interval tB, the light-clock has moved a distance vtB relative to
Brenda. The clock mirror moves half that distance, vtB/2, between the time that the light
is emitted from P and the time that the signal reaches the mirror at Q1.

The light travels further from P to Q1 and then from Q1 to P2, than it does in Albert’s
frame in which it just moved from P to Q and back. This means that the interval between
ticks of this clock is longer than the interval between ticks measured by Albert. There is a
time-dilation between the two frames.

To determine how this time dilation depends on the velocity of Brenda relative to Albert
we will need Pythagoras’ theorem. The reader who is daunted by this, but is prepared to
accept the result can skip to (10.3).

From P to Q1, the light travels along the hypotenuse of a triangle whose adjacent sides
are L and vtB/2. The light travels with velocity c, so the total time taken for the light
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journey as measured by Brenda is given by

c tB = 2
√
L2 + v2t2B/4. (10.2)

Substituting for L from (10.1) and re-arranging terms (see problem 2 in the Appendix), we
see that in frame B the time interval tA is dilated to

tB =
tA√

1− v2/c2
. (10.3)

This type of clock is rather unusual (and probably doesn’t exist in reality). Nevertheless
all possible ways of measuring time - an hour-glass, a sun-dial, the period of a pendulum, a
quartz watch, the half-life of radioactive isotopes, the biological ageing of living organisms,
etc. must display exactly the same time dilation, otherwise we would have a mechanism for
identifying which frame is stationary and which is moving.

Note also, that tA is the time interval between two events (the emission and detection of
the light-signal) at the same position. This is referred to as the “proper-time” It is usually
dnoted by the Greek letter τ (“tau”). . The time interval tB is the dilated time interval
between two events which, the the frame B, occur at different positions.

The most spectacular evidence for this time dilation is the observation on Earth of muons
created by collisions with cosmic rays in the upper atmosphere, 15 km above the surface of
the Earth, travelling at an average speed of 0.994c. Muons have an average lifetime of 2.2
microseconds before decaying, so that even though they travel at nearly the speed of light, a
negligible fraction would reach the Earth if they decayed, on average, after 2.2 microseconds.
However, the lifetime of 2.2 microseconds refers to the lifetime in the frame of the muons
themselves (where the two events - the production of the muon and the decay of the muon
are at the same place), whereas for an observer on Earth the lifetime is dilated to around
20 microseconds (measured by a clock on Earth), which is sufficient time for around 10% of
the muons to reach the Earth before decaying.

The Twin “Paradox”:
“Stayathome” (S) and “Traveller” (T) are two identical twins. On their tenth birthday, T
sets off on a journey, moving away from S at four-fifths of the speed of light (0.8c) for nine
years and then turns around and returns to Earth and to his twin brother, S. He agrees to
send S a birthday greeting on each of his birthdays. These greetings are messages that travel
from T to S at the speed of light. T sends a total of 18 such birthday greetings and when
he returns he is 28 years old.

While T is moving away from S, S receives the birthday greetings at time intervals, ∆t→S
which are more than one year. This is for two reasons. Firstly, when T sends his next
greeting he is further way by an amount v∆t→S and so takes v/c∆t→S = 4/5 ∆t→S longer to
reach S. In addition we need to account for the time dilation - T is sending messages at
intervals of one year at the same place in his frame.
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S receives 1st message

→ T sends 1st message

→ T sends 2nd message

S receives 2nd message

S receives 10th message
S receives 11th message

T sends 10th message←

T sends 11th message←

Figure 8: Stayathome’s x-coordinate and clock. When Traveller sends the second message
he is further away than he was when he sent the first message, so it takes longer for the
signal to reach Stayathome - the interval between Stayathome receiving the first and the
second massage is longer than the interval beteen the times that they were emitted. On
the ther hand, by the time Traveller sends bois tenth message he is on his return journey
and when he sends the eleventh message he is closer to Stayathome than when he sends
the previous message. The time taken for the signal to reach Stayathome is shorter and is
the tiime interval between Stayathome’s receipt of messages 10 and 11 is shorter than the
difference between times that Traveller sent the messages.

The upshot of this is that S receives messages from T at intervals of

∆t→S =
1√

1− (4/5)2

(
1 +

4

5

)
= 3 years

He receives nine such messages and this takes a total time of 27 years. This is illustrated in
the lower section of Figure 8.

When T is travelling back to Earth, S receives birthday greetings at intervals of less than
a year, because for the return journey T is nearer to S than he was when he sent the previous
greeting. The interval ∆t←S between the reception of T’s greetings is now given by

∆t←S =
1√

1− (4/5)2

(
1− 4

5

)
=

1

3
year
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S receives 9 such greetings over a period of 3 years. This illustrated in the upper sections of
Figure 8.

This means that as measured by S, the total time taken for the journey is 27+3 = 30
years. S is now 40 years old whereas his twin brother is only 28 !!

This phenomenon is sometimes (erroneously) called the “twin paradox” because at first
sight it would appear that the equivalence of the inertial frames of the two twins is broken
by the fact that one of the twins is older than the other. This is a trap – the two twins
are not always both inertial frames, since in order for T to return to Earth, he needs to
decelerate and then accelerate in the opposite direction, during which time he is not an
inertial frame. Because of this, Stayathome and Traveller are not equivalent observers.
Traveller has experienced a period of deceleration and acceleration which Stayathome has
not.

As mentioned above, this dilation has been observed by comparing the time measured
by an atomic clock on the ISS space station which travels at 7800 m/s (v/c ≈ 0.000026)
with and atomic clock on Earth. The clock on the space station gains 7 milliseconds every
six months.

11 The Relativistic Doppler Effect

The Doppler effect occurs in any wave-motion and is caused by the motion of a wave source
relative to the receiver.

We start by considering sound. The source is an oscillation in the pressure of the medium
in which the sound-wave is carried, with frequency fS, meaning that the time interval ∆tS
between two successive maxima of the pressure, known as the “period of oscillation” is the
reciprocal of the frequency, 1/fS. However, if the observer is moving away from the source
at a velocity v, the sound from successive maxima have a further distance, v∆t, to travel
and therefore the interval between the reception of successive maxima by the observer is

∆tO = ∆tS +
v

w
∆tS, (11.1)

where w is the velocity of the sound-wave. Using the fact that the time interval between
successive maxima is the reciprocal of the frequency, this gives the relation between the
emitted frequency, fS, and the observed frequency, fO, as

fO =
fS

(1 + v/w)
. (11.2)

There is a further correction to this formula due to the time dilation. The period of
oscillation of the source is the proper-time between successive maxima as these occur at the
same place, but the period between maxima in the frame of the observer is dilated, so that
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(11.1) should really be written

∆tO =
∆tS√

1− v2/c2
(

1 +
v

w

)
, (11.3)

and the relation between frequencies becomes

fO =
√

1− v2/c2 fS
(1 + v/w)

(11.4)

If the wave-motion is light (travelling in a vacuum) rather than sound then we simply
replace the wave-velocity, w by c to obtain

fO =
√

1− v2/c2 fS
(1 + v/c)

=
√

(1− v/c)(1 + v/c)
fS

(1 + v/c)
=

√
1− v/c
1 + v/c

fS (11.5)

In the case of sound and other waves that travel on a medium, one can easily distinguish
between the case in which the source is moving relative to the medium or the observer is
moving relative to the medium (in the opposite direction). On the other hand, with light
travelling through a vacuum (w = c) there is no way to distinguish between a source moving
with velocity v relative to the observer and the observer relative to the source with velocity
−v. The result (11.5) is consistent with this, as it can be inverted to give

fS =

√
1 + v/c

1− v/c fO, (11.6)

so that the frequency of the source in terms of the frequency measured by the observer is
obtained simply by reversing the sign of v. This reciprocity, required by the postulates of
Special Relativity, only holds because of the time dilation between the source’s clock and
the observer’s clock.

12 Length Contraction

By now, we should be aware that in Special Relativity space and time are intertwined and
if there is a time dilation between two inertial frames moving with a velocity v relative to
each other then we expect lengths to be dilated also.

The length, LA of a measuring rod which is stationary in Albert’s frame can be measured
by running a probe along it. The probe produces a light flash when it arrives at the near
end of the rod at time t = 0 and again when it leaves the far end at time t = ∆tA. The
length of the rod is therefore

LA = v∆tA.

But ∆tA is not the proper-time: the probe has moved so that the two flashes do not occur
at the same place.
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Figure 9: Measuring the length of a rod, in Albert’s frame by running a probe along it at
velocity v. Brenda is stationary relative to the probe but sees the rod moving with velocity
v.

The proper-time is the interval ∆tB between the two flashes in Brenda’s frame, as Brenda
is moving along with the probe. Brenda sees the measuring rod as moving in the direction
of its length at a velocity v (in the opposite direction), so the flashes occur at the same place
in her frame (see the right-hand side of Figure 9). From the time dilation formula relating
proper-time to the time in another frame,

∆tA =
∆tB√

1− v2/c2
,

Brenda measures the length of the rod to be

LB = v∆tB = v
√

1− v2/c2∆tA =
√

1− v2/c2LA. (12.1)

A rod of length LA in its rest frame, but which is moving with velocity v, is seen to contract
by a factor of

√
1− v2/c2.

This is the same factor as was derived by Lorentz and FitzGerald to explain the null
result of the Michelson-Morley experiment. However, its interpretation is different. The
Lorentz–FitzGerald contraction refers to contraction of an object which is travelling relative
to the aether (which does not exist), whereas the contraction (12.1) refers to the contraction
in any frame in which the object is moving.

A train whose length is L (at rest) is approaching a tunnel whose length is also precisely
L. According to the train driver the tunnel has contracted and is shorter than the train
so that it is impossible to fit the train inside the tunnel. On the other hand, according to
the signal operator in the signal box beside the tunnel, the train has contracted and she
momentarily encloses the train in the tunnel by shutting two gates at the end of the tunnel.

The key to this apparent dichotomy, is to do with simultaneity. The signal operator
closes the front and rear gates of the tunnel simultaneously and because the moving train
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is shorter than the tunnel, the gates momentarily enclose the train in the tunnel, before it
crashes through the front gate (if the train slows down and stops in the tunnel it is no longer
an inertial frame). As seen by the train driver, the front gate is closed before the rear gate
– by the time the rear gate is closed the front of the train has already crashed through the
front gate, since in the train driver’s frame the tunnel is shorter than the train.

13 Lorentz Transformations

Suppose that Albert releases a flash of light at his origin, xA = yA = zA = 0, at the time
when he sets his clock to zero tA = 0.

The light travels outwards at speed c in all directions, so that at time tA the light’s
wavefront is a sphere of radius r = c tA.

By Pythagoras theorem, (see the Appendix), the coordinates, (xA, yA, zA), of a point on
the wave-front obeys the relation

x2A + y2A + z2A = r2 = c2t2A. (13.1)

We can imagine a sensor situated at the point (xA, yA, zA), which triggers an event when
the light wave-front reaches it. This means that the time of position of the event are related
by (13.1).

At time t = 0 Brenda passes Albert at a velocity v in the x-direction and sets her clock
to zero at the moment that her origin coincides with Albert’s. The wave-front of the light at
time tB on Brenda’s clock is also (in Brenda’s frame) a sphere whose radius is c tB and it is
also the case that the same event is observed by Brenda at time tB at the point (xB, yB, zB)
where

x2B + y2B + z2B = c2t2B. (13.2)

If Brenda moves in the x-direction relative to Albert, the coordinates of the event in the
perpendicular, y− and z−directions, must be equal, i.e. yB = yA and zB = zA, otherwise we
would have a means of distinguishing between the two inertial frames. This means that the
combination x2 − c2t2, must take the same value in both frames

x2A − c2t2A = x2B − c2t2B (13.3)

even though xA and xB are different and so are tA and tB.

Note that we have chosen the example of a light front for which x2 + y2 + z2 = c2t2 in
order to derive the relation (13.3) we know that if the relative motion between Albert and
Brenda is only in the x-direction then for any event the y- and z-components of the event will
be the same – yA = yB, zA = zB even if the two event is not triggered by a light wavefront.
The relation (13.3) is therefore valid for any event if the relative motion between the two
frames is in the x-direction.
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The relations between the locations of an event xA and xB in Albert’s and Brenda’s
frames and between the times tA and tB of the event are called “Lorentz transformations”.
They were first studied in 1889 by the Dutch physicist Hendrik Lorentz.

These transformations have to obey (13.3). Furthermore, since Brenda moving away
from Albert with velocity v (in the positive x-direction) is equivalent to Albert moving
away from Brenda with velocity −v (in the same direction), one must be able to invert the
transformation equations such that xA and tA can be found in terms xB and tB using the
same relations as those giving xB and tB in terms of xA and tA but with the sign of the
velocity reversed.

Before writing down the explicit expressions for the Lorentz transformations, we should
note that the Galilean transformations, (4.2), which hold at low velocities,

xB = xA − vtA

tB = tA,

cannot satisfy the condition (13.3). If we construct the combination x2 − c2t2 and apply
the Galilean transformations to the qunatity x2A − c2t2A in Albert’s frame, whereas we get in
Brenda’s frame

x2B − c2t2B = x2A − (c2 − v2)t2A − 2vxAtA,

so that even if v2 is much less than c2, there is a cross-term proportional to xAtA. This
can only be cancelled if, contrary to rule 3 of the Galilean transformations, which asserts
(erroneously) that time is the same in all frames, the time transforms between frames, such
that the expression for tB, contains a term proportional to xA, generating a cancelling cross-
term, in t2B. This dependence of tB on xA reflects the fact that a time interval between two
events depends on the separation of the two events (as discussed above when comparing a
time interval in one frame with the proper-time in another). This has no analogue in non-
relativistic dynamics, but it is a necessary consequence of the requirement that two inertial
frames are equivalent (a wave-front which is spherical in Albert’s frame with a radius that
increases at the speed of light is also spherical in Brenda’s frame with radius increasing at the
same speed). As we shall see, it is this dependence of tB on xA that is responsible for the fact
that the familiar rule for the addition of velocities, does not hold for velocities comparable
with the speed of light.

The Lorentz transformations which satisfy the required conditions discussed above con-
ditions are

xB =
xA − vtA√
1− v2/c2

(13.4)

tB =
tA − vxA/c2√

1− v2/c2
(13.5)

The reader who is skilled at algebraic manipulations can check that these relations respect
(13.3), and also that one can make xA and tA the subjects of these equations to obtain (as
expected)
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xA =
xB + vtB√
1− v2/c2

(13.6)

tA =
tB + vxB/c

2

√
1− v2/c2

(13.7)

Suppose we have two events separated by small distances ∆xA, ∆yA, ∆zA and by a time
interval ∆tA in Albert’s frame, then we define the “proper-time” interval, ∆τ , between these
events as

∆τ 2 = ∆t2A −
1

c2
(
∆x2A + ∆y2A + ∆z2A

)
(13.8)

This is consistent with our previous definition of a proper-time interval, namely the time
interval between two events in the frame in which the events occur at the same place. If they
occur at the same place in Albert’s frame then this means that ∆xA = ∆yA = ∆zA = 0,
and we see that we can reproduce the time dilation expression (10.3) by setting xA to zero
(Albert holds his clock at his origin) in (13.5),to get

tB =
1√

1− v2/c2
tA.

The invariance under a Lorentz transformation (13.3) tells us that the proper-time is the
same in Brenda’s frame, or indeed in any inertial frame moving with any velocity in any
direction relative to Albert’s frame. It is known as a “Lorentz invariant quantity”.

14 Addition of Velocities

Albert launches an object with velocity uA in the x-direction. The object flashes regularly.
He observes the flashes at time intervals, ∆tA, (after allowing for the time taken for for light
from the flashes to travel the extra distance between Albert and the object). The distance
between successive flashes is measured by Albert to be ∆xA, The velocity, uA of this object
as measured by Albert is therefore

uA =
∆xA
∆tA

(14.1)

(The object travels a distance ∆xA = uA∆tA in the time interval ∆tA).

The velocity of the object as measured by Brenda who is moving with velocity v in the
same direction is

uB =
∆xB
∆tB

.

∆xB and ∆tB can be expressed in terms of ∆xA and ∆tA using the Lorentz transformations
discussed in the previous section. We find

∆xB
∆tB

=
(∆xA − v∆tA)

(∆tA − v∆xA/c2)
.
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Dividing throughout by ∆tA and using the expression (14.1) for uA, we arrive at the rela-
tivistic law for the addition of two velocities (in the same direction)

uB =
(uA − v)

(1− uAv/c2)
(14.2)

There are four noteworthy features of (14.2).

1. The deviation from the “expected” result uB = uA − v, which we get by applying a
Galilean transformation, arises because what we mean by uB is the distance that the
object under investigation travels, as measured by a measuring rod held by Brenda, in
a time interval of one second as measured by Brenda’s clock. Since we have established
that the length of Albert’s and Brenda’s measuring rods are different and the rate of
ticks of Brenda’s and Albert’s clocks are also different, we have a qualitative under-
standing of why Brenda’s measurement of the velocity is not simply equal to Albert’s
measurement minus Brenda’s velocity relative to Albert.

2. If we invert it ( i.e. make uA the subject of the equation) we find

uA =
(uB + v)

(1 + uBv/c2)
. (14.3)

In other words the velocity uA is related to uB by the same rule but with the opposite
sign for the velocity, v, of one frame relative to the other, as required by the equivalence
of the two frames.

3. If either v or uA is equal to the speed of light c, then uB = c. The speed of light is the
same in all inertial frames.

4. If uA or v is much smaller than c then we approximate the familiar rule for adding
velocities – namely if a missile passes Albert and he measures the velocity to be uA,
then Brenda, who is moving with velocity v relative to Albert in the same direction,
will measure the velocity of the missile to be (approximately) uA − v, provided v and
vA are both much smaller than the speed of light.

Nothing can travel faster than the speed of light. If Albert flies past us in the direction due
West at a velocity of nine tenths of the speed of light and Brenda flies past us in the direction
due East also at a velocity of nine tenths of the speed of light, then Albert’s measurement
of Brenda’s velocity, vBA (or vice versa) is

vBA =
(0.9c+ 0.9c)

(1 + 0.9× 0.9)
=

180

181
c,

– nearly the speed of light but very slightly less.
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15 Relativistic Momentum

The relativistic expression for the addition of velocities has ramifications for the conservation
of momentum in a collision between two particles of mass m. In Albert’s frame the two
particles initially head towards each other with equal and opposite velocity, vA, whereas in
Brenda’s frame the target particle in initially at rest.

Albert

Before:

After:

vAvA

vA

vA

BrendavA

Before:

After:

vB

vA

v′

v′

x

y

Figure 10: Collision of two equal mass particles in two different inertial frames

In Albert’s frame the two particles are moving toward each other in the x-direction with
equal and opposite velocity vA and the collision is such that after the collision they move in
opposite directions in the y-direction (i.e. perpendicular to their initial direction of motion).
The total momentum of the two particles is zero before the collision and after the collision,
so that momentum is conserved as required.

Brenda is moving with velocity vA relative to Albert in the negative x-direction so she
sees a particle of mass m moving with velocity

vB =
2vA

1 + v2A/c
2
, (15.1)

(using (14.2)), colliding with a particle of equal mass which is initially at rest. After colli-
sion the particles move off on the positive x-direction with velocity of magnitude v′, whose
component in the x-direction must be vA - since in Albert’s frame, the particles have zero
velocity in the x-direction.

But now the x-component of the velocity times by the mass before the collision is

mvB = 2m
vA

1 + v2A/c
2
.
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whereas after the collision it is
2mvA.

These are unequal and so something has gone wrong with momentum conservation.

The problem is repaired if we redefine the momentum p of a particle as

p = m
v√

1− v2/c2
(15.2)

(p and v are written in boldface to remind us that they are vectors and have direction as
well as magnitude, p and v respectively).

Substituting the relation (15) in the expression for the momentum of the incident particle
in Brenda’s frame

p = m
vB√

1− v2B/c2
and performing some tedious algebra, we can show that

m
vB√

1− v2B/c2
= 2m

vA√
1− vA/c2

so that momentum is conserved also in Brenda’s frame.

16 Relativistic Kinetic Energy

In non-relativistic dynamics we learn that a particle of mass m travelling with velocity v has
momentum mv and kinetic energy 1

2
mv2. However, these two formulae are not independent.

If an object is subjected to a constant force F , then by Newton’s second law of motion the
rate of change of momentum (in the direction of the force) is F , so that if the object starts
from rest at time zero then at time t, its momentum is F × t. During this time, the force
has moved through a distance x and the work that the force does is F × x. This work goes
to increase the kinetic energy of the particle, so we see that momentum and kinetic energy
are indeed related.

In non-relativistic dynamics a constant force generates a uniform acceleration, (as can be
seen on the left-hand graph of Figure 11 in which the velocity is increasing linearly in time).
However if we use the relativistic expression for momentum (15.2) then the acceleration
decreases as the object gains speed and the velocity never exceeds c. We can explain this by
interpreting the quantity

m√
1− v2/c2

as the “relativistic mass” which increases with increasing velocity v so that the “inertia”
increases with velocity, making it accelerate more slowly.

The right-hand graph of Figure 11 shows the velocity against the work done by the force.
For non-relativistic dynamics this leads to the formula 1

2
mv2 for the kinetic energy. But in
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Figure 11: Velocity against time (multiplied by the constant force) in the non-relativistic
and relativistic cases (left) and velocity against work done by applied constant force in the
non-relativistic and relativistic cases (right).

the relativistic case the velocity increases more slowly as the particle picks up speed - again
reflecting an increase in the inertia of the particle. The velocity gets close to c but does not
actually reach c for any finite kinetic energy – it requires an infinite amount of energy to
reach c.

The derivation of the expressions for kinetic energy from the expressions for momentum
require the use of integral calculus, so we ask the reader to accept the relativistic formula
for the kinetic energy, T ,

T =
mc2√

1− v2/c2
−mc2 (16.1)

For velocities which are much smaller than c, the right-hand side of (16.1) is approxi-
mately 1

2
mv27. We can see in both the graphs of Figure 11 that the relativistic and non-

relativistic expressions almost coincide for small velocities. We can check this with a numer-
ical example. A body of mass 1 kg travelling at a speed of 108 metres per second (one third
of the speed of light) has a kinetic energy (using the relativistic expression) of 5.46 × 108

Joules, whereas the non-relativistic formula 1
2
mv2 yields the value 5× 108 Joules – the error

of the Newtonian formula is less than 10% even for speeds as large as one third of the speed
of light!

17 Relativity and Maxwell’s Equations

This section is included for historical reasons. The reader may skip this without losing the
narrative.

7Showing this requires use of the binomial theorem so once again the reader is asked to accept this result.
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The most significant development in Physics at the end of the nineteenth century was
Maxwell’s Theory of Electromagnetism, which describes the relation between electric and
magnetic fields. More precisely it provided relations between the variation of an electric field
in space and the variation of a magnetic field in time – and conversely between the variation
of an magnetic field in space and the variation of a electric field in time. The mathematics
of these relations is very complicated and requires advanced calculus, so henceforth we will
only discuss the results qualitatively.

A static distribution of electric charge generates an electric field and a distribution of
electric current generates a magnetic field. However, an electric current is nothing other
than a moving electric charge. This means that if in Albert’s inertial frame, we have a static
electric charge and consequently an electric field but no magnetic field, then in Brenda’s
inertial frame, moving relative to Albert, we have an electric current and consequently a
magnetic field.

From the Lorentz transformations which relate space an time in different inertial frames
and the fact that, from the first postulate of Special Relativity, Maxwell’s equations, which
relate the space and time dependence of electric and magnetic fields, must be valid in all
inertial frames, Einstein was able to determine how electric and magnetic fields transform
between inertial frames, moving relative to each other.

One of the main results of Maxwell.s theory was that electromagnetic waves (e.g. light) is
a wave of oscillating electric and magnetic fields and that the energy flux passing through a
given area in a given time interval, was related to the magnitude of these fields. Furthermore,
Maxwell showed that electromagnetic radiation carried momentum which was proportional
to the energy flux.

From all this, Einstein showed (using a great deal of tortuous mathematics) that the
energy of light signal varied from one inertial frame to another in precisely the same way as
the frequency of the wave varied, which is given by the relativistic Doppler effect discussed
above.

Ironically, this follows immediately from the interpretation of the photoelectric effect,
which he had published earlier that year. If the ”light-signal” consists of a single photon, th
is energy is proportional to the frequency of the photon.

18 The Master Equation

We are now ready to piece all of this together to get to the relation between energy and
mass.

Einstein considered an atom losing energy, ∆E, by emitting two light signals. If the atom
remains at rest then the two light-signals must have equal and opposite momenta and hence
the same energy, ∆E/2 but in another inertial frame in which the atom is moving such that
it possesses some kinetic energy the energy of the light beams differ by an amount given by
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the Doppler effect. Einstein equated the change in the energy of the light signals with the
difference in the kinetic energy of the atom before and after the light emission, and conclude
that for energy to be conserved the atom must lose mass when it emits energy in the form
of light.

At that time, unstable elementary particles were unknown. Today we know examples
of particles which decay entirely into two photons, thereby converting its entire mass into
the energy of the two photons. One such example is the neutral pion, π0, whose mass is
mπ = 2.4× 10−28 kg.

Albert

Before:

After: f f

Brendav

Before:

After:

v

f1 f2

Figure 12: Particle decaying into photons from rest (left-hand) and moving at velocity v in
the direction of the emitted photons (right-hand).

Consider a particle of mass m at rest in Albert’s frame, which decays into two photons.
The photons behave like particles and therefore have a momentum whose magnitude depends
on the energy of the photons, which is proportional to their frequency (as shown by Einstein’s
explanation of the photoelectric effect). Therefore for a particle at rest (momentum zero),
by conservation of momentum, the two photons must have the same frequency, f , and move
in opposite directions, so that the combined momentum of the two photons is zero. The
energy, E, liberated in the decay is the sum of the energies of the two photons

E = 2hf,

(h is Planck’s constant).

Now consider the same process in Brenda’s frame. Brenda is moving with velocity v in
the direction of one of the emitted photons. In her frame, the photon moving towards her
has a frequency f1 which is smaller than f , owing to the (relativistic) Doppler shift. From
(11.5)

f1 = f

√
1− v/c
1 + v/c

= f
(1− v/c)√
1− v2/c2

whereas the photon moving away from her has a frequency f2, which is larger than f owing
to the (relativistic) Doppler effect, and is also obtained from (11.5), reversing the sign of v:

f2 = f

√
1 + v/c

1− v/c = f
(1 + v/c)√
1− v2/c2
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Therefore, the combined energy of the photons in Brenda’s frame is

h(f1 + f2) =
2hf√

1− v2/c2

This exceeds the energy, E, of the two photons in Albert’s frame by

∆E = E

(
1√

1− v2/c2
− 1

)
. (18.1)

Historically this was not the way Einstein derived this result. The decay of a particle
into two photons was unknown in 1905. Instead he considered a particle emitting light
with energy E in equal and opposite directions. Using the fact that Maxwell’s equations of
electromagnetism were valid in any inertial frame and the Lorentz transformations of space
and time, he determined how electric an magnetic fields varied from one reference frame to
another and showed that the energy given off by the light in a frame moving with velocity
v (in the direction of the emitted light, increases by ∆E given by (18.1), so that actually
Einstein’s derivation did not make direct use of his explanation of the photoelectric effect
and the existence of photons.

This excess energy has to be equal too the excess energy of the decaying particle, i.e. its
kinetic energy, T , (in Brenda’s frame) before it decayed. From (16.1) this is

T =
mc2√

1− v2/c2
−mc2. (18.2)

Equating T and ∆E and comparing (18.1) and (18.2), we finally arrive at

E = mc2 (18.3)

In the case of the decay of the π0 from rest, the energy released is

E = 2.4× 10−28 ×
(
3× 108

)2
= 2.16× 10−11 Joules

The frequency, f , of each of the photons is

f =
E

2h
=

1

2
× 2.16× 10−11

6.63× 10−34
= 1.63× 1022 Hertz

(corresponding to a wavelength ≈ 2 × 10−14 metres - well into the γ-ray region of the
spectrum).

If Brenda is moving with a velocity 0.6 c in the direction of one of these photons, then
the photon towards her has frequency

f1 =

√
(1− 0.6)

(1 + 0.6)
f =

√
0.4

1.6
× (1.63× 1022) = 8.15× 1021 Hertz
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and the photon moving towards her her has frequency

f2 =

√
(1 + 0.6)

(1− 0.6)
f =

√
1.6

4
× (1.63× 1022) = 3.26× 1022 Hertz

The total energy of the photons is

h(f1 + f2) = 6.63× 10−34 ×
(
8.15× 1021 + 3.26× 1022

)
= 2.7× 10−11 Joules

This exceeds the total energy of the photons is Albert’s frame by

∆E = 2.7× 10−11 − 2.16× 10−11 = 5.4× 10−12 Joules

The kinetic energy of the π0 in Brenda’s frame before it decays is

T = 2.4× 10−28 ×
(
3× 108

)2 ×
(

1√
1− 0.62

− 1

)
= 5.4× 10−12 Joules

We see that T = ∆E, as expected.

A deuteron (hydrogen nucleus containing one proton and one neutron) has a mass, md,
of 3.344× 10−27 kg. Two such nuclei can fuse to make a nucleus of 4He, which has a mass,
mHe, of 6.646× 10−27 kg – slightly less than the mass of two deuterons. The mass difference
is converted into energy, so that the fusion reaction releases energy ∆E, where

∆E = (2md −mHe) c
2

=
(
2× (3.344× 10−27)− (6.646× 10−27)

)
×
(
3× 108

)2
= 3.78× 10−12 Joules

This may not seem much, but one gramme of deuterium generates over half a million kilowatt-
hours of energy !

It has been quite a long haul to get to E = mc2 – but all the steps were logical conse-
quences of the postulates of Special Relativity. Let us recapitulate all six of the steps which
led to this “master equation”.

1. From the postulates of Special Relativity, we can derive the Lorentz transformation
rules for an event which relate the position and time of the event in one inertial frame
with the position and time of the event in another frame.

2. From the time dilation (included in the Lorentz transformations) we can derive the
expression for the relativistic Doppler effect of light.

3. From the Lorentz transformations we can derive the relativistic expression for the
addition of velocities.
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4. The relativistic correction to the addition of velocities implies a relativistic modification
of the expression for the momentum of a particle moving with velocity v, so that the
law of conservation of momentum in elastic collisions is obeyed in all inertial frames.

5. Since by Newton’s second law, the force on an object is equal to the rate of change
of its momentum and the work done by that force is the change of its kinetic energy,
there is a also a relativistic modification of the expression for the kinetic energy of a
particle moving with velocity v.

6. We consider a particle of mass m which decays from rest by the emission of two photons
with equal frequencies f . The total energy of the photons is 2h f . When this decay is
observed in a frame moving with velocity v, in the direction of the emitted photons, the
frequencies of the photons undergo a Doppler shift and consequently the total energy
of the photons increases. This increase must be equal to the kinetic energy of the
particle in the moving frame, which is only possible if the total energy of the photons
in the rest-frame of the decaying particle is mc2.

As we have now reached the master equation E = mc2, the exhausted reader may like to
stop here. But I would like to outline some of the ideas of General Relativity. This was the
real genius of Albert Einstein and was described by the Indian theoretical physicist Sivara-
makrishna Chandrasekhar as “probably the most sublime creation of the human mind”.
Even if the reader does not follow the theoretical ideas, it is worth reading about some of
the remarkable experiments that have been conducted to test the surprising predictions of
this theory.

Before we can launch into General Relativity, we need to discuss a few more details of
Special Relativity.

19 Transformations of Momentum and Relativistic En-

ergy

If we add the “mass energy”, mc2, sometimes called the “rest energy” to the kinetic energy
we get the (total) “relativistic energy”, E, which, in a frame in which the particle is moving
with velocity v is:

E = mc2

(
1√

1− v2/c2
− 1

)
+mc2 =

mc2√
1− v2/c2

(19.1)

Comparing this with the relativistic expression for the (magnitude of) momentum, p, (15.2),
we see that

E2 = p2c2 +m2c4. (19.2)

This immediately answers the question of the momentum of a photon. A photon of
frequency f has energy hf and has zero mass (only massless particles travel at the speed of
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light - and they always move with the speed of light8). Therefore, a photon has momentum p
and energy pc. This is equal to hf , where f is the frequency of the photon. The momentum
of a photon of frequency f is therefore

p =
hf

c
(19.3)

A particle of mass m with momentm pA and relativistic energy EA in Albert’s frame
will have a different momentum, pB, and different relativistic energy, EB, in Brenda’s frame,
moving relative to Albert. But from (19.2), we see that there is a combination of energy and
momentum that is Lorentz invariant - it takes the same value in all inertial frames.

E2
A − p2Ac2 = E2

B − p2Bc2 = m2c4 (19.4)

This is clearly the same since mass of the particle is a property of the particle itself and not
the frame in which it is observed.

Furthermore since Albert’s and Brenda’s frames are equivalent the expressions for the
energy EA and momentum pA is Albert’s frame can be obtained in terms of the energy
EB and momentum pB in Brenda’s frame, by using the expressions for EB, pB in terms of
EA, pA by reversing the sign of the relative velocity v. This is analogous to the Lorentz
transformations between xB, tB and xA, tA for an event. Strictly speaking we need to divide
by factors of c to get the dimensions correct - so it is actually the quantities, p and E/c2 that
transform in the same way as x and t. This means that observer Brenda, moving relative
to observer Albert with velocity v in the x-direction, the x-component of momentum px and
relativistic energy E in the two frames are related by

pxB =
pxA − vEA/c2√

1− v2/c2

EB =
EA − vpxA√

1− v2/c2
(19.5)

As with the Lorentz transformations for the position and time of an event, we can check

1. E2 − p2xc2 is the same in both frames.

2. (19.5) can be inverted to make EA and pxA the subject of the equations, yielding a set
of relations similar to (19.5) with v replaced by −v.

The components of momentum perpendicular to the direction of motion of Brenda relative
to Albert are the same in both frames - as required by the equivalence of the two frames.

8The only known massless particles are photons and gravitons - the quanta of a gravitational field.
Originally neutrinos were also thought to be massless, but in 1998 a very small mass for neutrinos was
detected.
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For a particle at rest in Albert’s frame, EA = mc2 and pxA = py A = pz A = 0. In
Brenda’s frame the same particle is moving with velocity −v in the x-direction and we
reproduce the relativistic expressions for total energy and momentum (using (19.5)):

EB =
mc2√

1− v2/c2

pxB = − mv√
1− v2/c2

,

(the sign indicating that in Brenda’s frame the particle is moving in the opposite direction
to the direction of Brenda’s motion relative to Albert). We also have py B = pz B = 0.

20 Minkowski Diagrams

θ xA

yA

P

Q

xB

yB

∆xA

∆yA

∆xB

∆yB

∆s

Figure 13: Two points P and Q whose x- and y-coordinates differ by ∆xA and ∆yA in
coordinate system A (red), and by ∆xB and ∆yB in frame B (blue), which is rotated (about
the z-axis relative to coordinate system A. The distance, ∆s, between the two points is the
same in both coordinate systems.

Let’s consider two neighbouring points, P and Q, whose locations differ by ∆xA in the
x−direction and ∆yA in the y−direction, as measured by Albert’s coordinate system (we
consider only two dimensions for simplicity, i.e. we assume that the two points lie in the x−y
plane with the same value of z). Brenda has her own coordinate system which is rotated
through angle, θ, relative to Albert’s. In Brenda’s system the points differ by ∆xB in her
x-direction and by ∆yB in her y-direction (see Figure 13). Whereas these are both different
∆xB 6= ∆xA and ∆yB 6= ∆yA, the distance, ∆s, between the two point is the same for
both Albert and Brenda. By Pythagoras’ theorem

∆s2 = ∆x2A + ∆y2A = ∆x2B + ∆y2B. (20.1)

The distance between two points does does depend on the angle from which you look at
them.
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Therefore, under a rotation the coordinates ∆xA and ∆yA transform into ∆xB and ∆yB
in a way that preserves the quantity ∆s, the distance between the two points. The transfor-
mation that does this is9

xB =
xA + wyA√

(1 + w2)

yB =
yA − wxA√

(1 + w2)
(20.2)

Trigonometry can be used to show that the parameter w is related to the angle of rotation,
θ, of Brenda’s coordinate system relative to Albert’s by

w = tan θ.

xA

tA

P

Q

xB

tB

∆xA

∆tA

∆xB

∆tB

Figure 14: Two events P and Q which occur a distance ∆xA apart and at a time interval ∆tA
in Albert’s frame (red). The corresponding separation of events is ∆xB and time interval
∆tB in Brenda’s frame (blue) which is moving relative to Albert (in the direction of the
spatial separation of the two events). The proper-time interval is the same in both frames.
In Brenda’s frame, the x-axis and t-axis are rotated towards each other by an amount which
increases with increasing relative velocity.

All this is reminiscent of the difference in the x-coordinate and time, t, of two events in
Albert’s and Brenda’s frame of reference, where Brenda is moving relative to Albert with
velocity v in the x-direction. We assume that the two events occur at the same point in
the y − z plane, i.e. yB = yA and zB = zA. In this case, the analogue of distance between

9We have assumed that Albert and Brenda have a common origin, i,e, the point xA = yA = 0 corresponds
to the point xB = yB = 0. As we are discussing the differences in coordinates of two neighbouring points,
this assumption is not necessary as a shift in origin cancels between the two points.
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two points is the difference in proper-time between the two events. This is the same in both
frames.

∆τ 2 = ∆t2A −
(

∆xA
c

)2

= ∆t2B −
(

∆xB
c

)2

(20.3)

and the transformations which achieve this invariance of the proper-time are the Lorentz
transformations (13.4) and (13.5). These differ from the rotation (20.2) in the assignment
of the signs, reflecting the difference in sign of the expression for proper-time difference in
terms of ∆x and ∆t compared with the corresponding expression for the distance between
two points in terms of ∆x and ∆y when we consider a rotation in the x− y plane.

Nevertheless, we can represent a Lorentz transformation diagrammatically, in the same
way that we represent a rotation diagrammatically in Figure 13 for rotations, but in this case
the axes are x/c and t (we have divided x by c so that the axes have the same dimension,
but this only affects the scaling of the diagram). Such a diagram is called a “Minkowski
diagram” and an example is shown in Figure 14. A point in the diagram represents an
event. In Albert’s frame, we draw the x- and time axes at right-angles to each other with
the time-axis vertical. The axes representing x-coordinate and time in Brenda’s frame are not
simply rotations of the axes in Albert’s frame, but rather the x-axis is rotated anticlockwise,
but the t-axis is rotated clockwise, through an angle related to the relative velocity v. In
Brenda’s frame the axes are not perpendicular to each other. This reflects the sign difference
in the transformations rules for rotation and for Lorentz transformations (rotations preserve
∆x2 + ∆y2 whereas Lorentz transformations preserve ∆t2 − (∆x/c)2.)

We can see that such a representation immediately encodes the relativistic nature of
simultaneity. Two events represented on a horizontal in the diagram are simultaneous in
Albert’s frame, but occur at different times in Brenda’s.

As the velocity of Brenda relative to Albert increases Brenda’s x-axis and t-axis rotate
towards each other. The maximum possible relative velocity is the one for which Brenda’s
x- and t- axes coincide. The magnitude of this velocity is the speed of light.

The fact that we can represent transformations in space-time (i.e. Lorentz transforma-
tions of an event between two inertial frames) with diagrams that are similar to rotations,
leads us to consider an enlarged space in which time is the fourth coordinate. A graph which
represented all four coordinates would have to be four-dimensional. Most of us (perhaps all
of us) cannot envisage a four-dimensional space, but it exists as a mathematical entity. We
can, however, imagine two or three dimensional subspaces, such as the subspace shown in
Figure 14. We therefore treat time as a fourth dimension in a four dimensional space called
“Minkowski space” in which the invariant quantity is proper-time interval, ∆τ , given (in the
full 4-dimensions) by

∆τ 2 = ∆t2 − 1

c2
(
∆x2 + ∆y2 + ∆z2

)
. (20.4)

This quantity is invariant under a rotation of any of the space-axis (a rotation does not affect
the time axis) as well as under Lorentz transformations in which the time axis and one of
the space axes rotate in opposite senses.
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We now go on to discuss some of the features of General Relativity and we will see that
the definition of this invariant quantity is modified by the presence of a gravitational field.

21 Fundamentals of General Relativity

So far, we have been dealing with inertial frames in the absence of any gravitational field,
which are moving relative to each other with constant velocity.

Actually, we are not in an inertial frame but rather we live in a gravitational field which
leads to an acceleration of about 10 metres per second per second. We are used to this
gravitational field. It makes us feel comfortable and keeps our breakfast in the pit of our
stomach where it belongs. If we were very far away from any massive body which produces
a gravitational field we would experience the unfamiliar feeling of weightlessness – we can
experience this for short periods on a roller-coaster when the vehicle is in free-fall. Astronauts
in space stations experience this because the force of gravity produces their centrifugal
acceleration – so that they are effectively in free fall. They need to adjust their lifestyle
to cope with this.

If we found ourselves very far away from any gravitating body, so that we were weightless,
the familiar feel of the Earth’s gravitational field can be simulated by travelling in a rocket
which is accelerating upwards at 10 metres per second per second. This would totally restore
the effect of the Earth’s gravity and there is no way to distinguish between the two scenarios.

This is essentially Einstein’s strong equivalence principle, which states that in a small
region around an observer one cannot perform an experiment which distinguishes between a
gravitational field and an acceleration.

Since we now wish to discuss reference frames in a gravitational field, we need to amend
the definition of an inertial frame. The amended definition of an inertial frame is a reference
frame which is in free-fall (hence we are only an approximation to an inertial frame). It is
in two such free-falling inertial frames that the result of any experiment must be identical.
In the absence of a gravitational field two inertial frames are moving with constant velocity
relative to each other (as we have been considering hitherto), but if the frames are at positions
with different gravitational potential they will be accelerating (or decelerating) relative to
each other.

An immediate consequence of this is that light is bent by gravity as shown in Figure 15 in
which the right-hand diagram shows an upwardly accelerated frame. Between the time that
the light is emitted from the source and the time it hits the far wall, the upward velocity of
the module, in which the experiment is being conducted, has increased and so the light beam
lands at a place which is lower down in the module. Since upward acceleration is equivalent
to a downward gravitational field, this means that light is bent by gravity.

Unfortunately, this is another example of a seemingly benign phenomenon, which leads to
a possible inconsistency, whose resolution is the essence of the General Theory of Relativity.
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Figure 15: Path of a light beam in no gravitational field (left) and in an upward accelerating
frame equivalent to a downward gravitational field (right). Note that the observer on the
right is not in an inertial frame. She is either stationary relative the surface of the surface
of a planet producing a gravitational field or is in an accelerating frame in outer space. In
either case this is different from an observer in free fall in a gravitational field.

Suppose Brenda and Albert are orbiting the Earth in space stations and Brenda’s space
station is further away from the centre of the Earth, so that the gravitational field is weaker
than in Albert’s space station. She jumps out of her space station in a landing module and
hurtles towards the Earth in free fall. Just before she passes Albert’s space station, Albert
also jumps out in a landing module (don’t worry – both the landing modules are equipped with
retro-rockets which will fire before the landing modules crash to the Earth). At the time that
Brenda passes Albert she is moving with some velocity relative to him, but at that moment
they are accelerating at the same rate as they are both the same distance from the centre of
the Earth. However, some time later Brenda is closer to the Earth than Albert, where the
gravitational field is stronger and therefore she is accelerating relative to Albert. She now
fires a light-beam across her landing module. Because of her downward acceleration Albert
sees this beam as being bent upwards whereas Brenda, who is also an inertial observer in
free fall sees it as a straight line. One of the laws of Physics is that light travels in straight
lines and as both Albert and Brenda are in free fall they both should observe straight lines.

The “fix” requires a careful definition of a “straight line” as the shortest distance between
two points On a flat surface this is what we usually mean by a straight line but of we look
at a curved surface then the shortest distance between two points is not a straight line but
a curve. Mathematicians (who love inventing words that other people do not understand)
call such curves “geodesics”.

Therefore, we modify the statement “light travels in straight lines” to “light takes the
shortest path between to two points”. Now we interpret a gravitational field as the agent
that causes space to be curved (actually it’s both space and time that is curved in the four-
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dimensional Minkowski space described in the previous section) and a gravitational field can
be described by specifying the properties of this curved space-time. Since a gravitational
field is caused by the presence of matter, Einstein’s equations describing gravity are actually
equations which relate certain properties of curved space-time to the density and energy of
matter. We cannot go into the details of this but we can discuss some of the features of
curved space.

21.1 Properties of Curved Space

The geometry that we learn at school is geometry in flat space and is a set of theorems
concerning the properties of shapes drawn on a flat sheet of paper, such as the sum of the
angles of a triangle, the circumference of a circle of a given radius, Pythagoras’ theorem etc.

The study of geometry in curved space is called “Riemannian geometry” and it is very
advanced mathematics.

We cannot imagine curved space in three dimensions, let alone a curved four-dimensional
space-time, but we can consider geometry in a two-dimensional sub-space which is curved,
such as the surface of a balloon or a globe. On such a curved surface, many of the theorems
which we learned about the properties of shapes in flat space (called “Euclidean geometry”
as the foundation of the subject was due to the ancient Greek mathematician Euclid of
Alexandria), do not hold.

14/10/2021, 11:26 Google Maps

https://www.google.com/maps/@40.6976701,-49.7824701,4z 1/1

Map data ©2021 Google, INEGI 500 km 

Total distance: 6,890.27 km (4,281.41 mi)
Measure distance

Figure 16: Shortest path between Rome and New York. It is not due West, but has a starting
direction 55° North

If you were a pilot plotting a route from Rome to New York, which are approximately
on the same latitude, you might be tempted to head due West. But that route is 7130 km
long. The shortest route (geodesic on the Earth’s curved surface) starts in a direction which
is approximately North-West and has length 6891 km.

The sum of angles in a triangle drawn on the Earth’s surface depends on the size of
the triangle. If the triangle is much smaller than the radius of the Earth then it is almost
indistinguishable from a triangle drawn on a flat surface, so the sum of their angles is very
close to 180°, but for larger triangles we get a larger angle sum. For example, start at
the North pole and draw a line down the Greenwhich meridian (longitude 0°) as far as
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Figure 17: Octant of a sphere whose boundary is a triangle with three right-angles

the equator, turn through a right-angle and go due East until you get to the meridian at
longitude 90°, turn again through a right-angle and return along the 90° meridian to the
North pole. You approach the North pole at 90° to the Greenwich meridian. This means
that you have drawn a triangle with three right-angles - a sum of 270°.

The circumference of a circle of radius R is less than 2πR and depends on the size of the
circle. Again, for small circles whose radius is much smaller than the Earth’s surface the
curvature, has a negligible effect. On the other hand, suppose we draw a circle whose radius,
R, is 1

4
of the circumference of the Earth, with its centre at the North pole. Such a circle is,

in fact, the equator and the circumference is therefore 4R - somewhat less than 2πR for a
circle of the same radius drawn in flat space.

Albert is on vacation in a village called Avang-Biloug, which is on the equator in Gabon.
He sets the origin of his coordinate system at the centre of Avang-Biloug, with the x axis
pointing East and the y-axis pointing North. He has bought a map of Gabon, which is flat -
but this is okay since the entire size of Gabon is much smaller than the radius of the Earth
and so the curvature of the Earth’s surface can be neglected. He travels 12 km due North
and 16 km due East to reach the neighbouring village of Andokh Ngang. Using Pythagoras’
theorem he deduces that the shortest distance between the villages is

√
122 + 162 = 20 km.

Furthermore his GPS tells him that it makes no difference if he first goes North and then
East or the other way around.

He now wishes to visit Brenda who is on vacation in the remote Russian village of
Bobrovka, which is 8000 km due East and then 6000 km due North. Not understanding the
effect of the curvature of the Earth, he uses Pythagoras’ theorem to deduce (incorrectly)
that Bobrovka is

√
80002 + 60002 = 10000 km away. In fact, the distance of Bobrovka from

Avang-Biloug is only 9600 km. Even more bizarre is the fact that if Albert first travels 6000
km due North and then 8000 km due East he ends up in Novaya – which is 1300 km away
from Bobrovka to the East. Over large distances it matters in which order you travel given
distances. This is a consequence of the curvature of the surface of the Earth.

Brenda sets her coordinate system up in the same way as Albert - namely she places her
origin at the centre of Bobrovka with the x-axis pointing East and the y-axis pointing North.
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Figure 18: Albert’s view (from Avang-Biloug) of Brenda’s axes (in Bobrovka). Note that
Brenda’s y-axis is seen to be inclining to the West and curved. We can picture the y-axes in
Albert’s and Brenda’s frames as two meridian lines at different longitudes.

But if Albert looks at her coordinate system (while he is still in Gabon) he sees her x-axis
pointing in the same direction as his, whereas he sees her y-axis as pointing at an angle of
125° to the x-direction rather than at right-angles. Moreover, the inclination of Brenda’s
(North-pointing) y-axis increases as one goes North and this means that Albert’s view of
Brenda’s y-axis is actually curved (see Figure 18).

All this unfamiliar behaviour can be encoded by amending the expression for the distance,
∆s, between two neighbouring points (20.1) to

∆s2 = gxx∆x
2 + gyy∆y

2 (21.1)

where the coefficients gxx and gyy depend on position. For small x and y - where we are near
the origin, they are both very close to one, so that flat-space (Euclidean) geometry is a very
good approximation.

In the case of a spherical surface of radius R, gxx and gyy are

gxx =

√
1− y2

R2

gyy = 1,

so we see that if y is much smaller than the radius R the effect of the curvature is negligible.
But for points with larger values of y, the x-axis “shrinks”. On a globe this is equivalent to
the fact that the distance between places with a given difference in longitude, decreases as
one moves away from the equator. The distance between two places on the equator whose
longitudes differ by 1° is 111 km, whereas the distance beween Pisa and Florence which are
almost at the same latitude and approximately 1° apart in longitude, is only 80 km.

We can, of course, have other types of curved surfaces for which gxx has a different
dependence of position (x, y), and gyy differs from one.
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Figure 19: Albert and Brenda are both inertial observers in free fall towards the Earth from
opposite sides.

In General Relativity, the effect of the curvature is to amend the definition of proper-time
(20.4). For a static gravitational field in the x-direction the proper-time is amended to

∆τ 2 =
(
1 + 2Φ/c2

)
∆t2 − 1

(c2 + 2Φ)
∆x2 − 1

c2
(
∆y2 + ∆z2

)
(21.2)

where Φ is the (position dependent) gravitational potential. We see that in the absence of
gravity (Φ = 0) the proper-time coincides with (20.4).

An example of how a gravitational field leads to curvature of space-time can be seen in
Figure 19, which depicts Albert and Brenda in free fall towards the Earth but from opposite
sides (n direction x), so that as viewed by a distant observer they are accelerating towards
each other. Both are inertial observers. However, in Albert’s frame his world-line plotted
on his space-time Minkowski diagram, is a straight line parallel to th time-axis, since his x-
position remains unchanged as his clock ticks, but he observes Brenda to be moving towards
him with increasing speed world so that he sees her world-line as a curve in a similar way to
the view from Avang-Bilong of a north pointing ruler located further East at Bobrovka, which
is seen to be curved as a result f the curvature f the surface of the Earth. On the other hand,
Brenda views her world line t be a straight line parallel to her time axis whereas she sees
Albert’s world-line too be a curve representing th fact that she sees Albert as accelerating
towards her. This is analogous to the curvature of a north pointing rules in Avang-Bilong
as seen by an observer in Bobrovka.

Very large gravitational fields are required for this curvature to make any noticeable
difference. For example, the Earth’s gravitational potential, Φ at the Earth’s surface is such
that Φ/c2 is about one millionth of a millionth.

For gravitational potentials that are not too large, the determination of the path in
space-time taken by an object moving in a space whose proper-time is given by (21.2) is
almost identical to the path taken by an object moving in the same potential (e.g. an apple
falling from a tree), calculated using Newton’s law of gravity. But for a larger gravitational
potential, which is no longer negligible compared with c2, there are corrections to Newton’s
law of gravity due to General Relativity.
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21.2 Gravitational Time Dilation

a,(v)

Figure 20: Path of light between two mirrors of a light clock in a frame which is accelerating
relative to the observer (red) compared with moving with constant velocity relative to the
observer (green).

The curvature of space-time means that there is a further contribution to time dilation
arising from the presence of a gravitational field. If Brenda is accelerating towards the Earth
relative to Albert (she is closer to the Earth and has a smaller gravitational potential) and
is holding a light-clock then Albert’s observation of the light path between the mirrors will
be a curve (even though it is seen by Brenda to be a straight line - see Figure 20). Since
light travels with the same speed in all frames it will take longer, according to Albert, to
travel the curved distance between the mirrors of Brenda’s light clock. This is in addition
to the time dilation owing to the motion of Brenda’s light-clock in Albert’s frame.

Although for the Earth’s gravitational field this is a tiny effect, it has actually been
observed in atomic clocks held at different altitudes and the effect has to be accounted for
in modern GPS devices.

21.3 The Gravitational Red-shift

The wavelength of light moving away from a massive body is shifted towards the red end
of the spectrum as a result of the interaction of light with a gravitational field. This grav-
itational red-shift can be understood qualitatively by the realisation that gravity actually
couples to the total relativistic energy of a particle and not its mass. For slow-moving parti-
cles the relativistic energy is approximately the mass energy, mc2, so the Newtonian theory
of gravity in which the force of gravity on an object is proportional to its mass, is a very
good approximation. But photons have energy even though they have no mass and there-
fore photons couple to gravity – meaning that light is bent by gravity – and the red-shift
is a result of the loss of energy of a photon as it moves away from a massive body which
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generates a gravitational potential. This is the exact analogy to the loss of kinetic energy of
a massive particle which is thrown up in the air and is moving away from Earth. There is
also a gravitational blue-shift experienced by light which is falling towards a massive body.

The bending of light by gravity was demonstrated by Arthur Eddington in 1919 in Brazil,
where there was a total eclipse of the sun. During this eclipse Eddington was able to observe
a group of stars known as Hyades, which was directly behind the sun, but could nevertheless
be observed owing to the bending of the light from Hyades caused by the gravitational
field of the sun. There is some controversy today over whether Eddington’s quantitative
measurements were consistent with the predictions of General Relativity.

The gravitational red-shift was first observed in 1925 by Walter Adams from observations
of the white dwarf star Sirius B. He measured one of the spectral lines of hydrogen (the Hα

line). It was found to have a wavelength which is larger than that observed from a terrestrial
measurement of the same spectral line by 0.03%. From this red-shift and the radius of Sirius
B we can deduce its mass (which is approximately the same as the mass of the sun.)

21.4 The Rebka-Pound experiment

In 1959, Robert Pound and Glen Rebka detected this gravitational shift using a technique
developed by Mössbauer. A radioactive isotope which emits γ-rays can also absorb the γ-rays
with exactly the same frequency. This is called “resonance absorption”. But it only works if
the absorber is stationary relative to the source. If source and absorber move relative to each
other then the frequency of the emitted γ-rays, as measured by the absorber is shifted due
to the Doppler shift and the absorption does not take place. This technique can detect shifts
in γ-ray frequencies of one part in a hundred million million. On the other hand, if the γ-ray
frequency is shifted by a tiny amount due to the gravitational red-shift, then by adjusting
the velocity of the absorber until the red-shift is cancelled by the Doppler effect due to
the moving absorber, resonance absorbtion is recovered, The velocity needed to recover this
resonance absorption can then be used to determine the gravitational shift in the frequency
of the γ-rays.

They placed a source sample of the iron isotope 56Fe on the top of the tower of the
Jefferson Laboratory at Harvard University, 22.6 metres above ground-level, and an absorber
sample at the bottom of the tower, with a scintillation counter below it. The velocity at
which the source must move relative to the absorber to recover resonance absorption, was
0.00074 mm per second. This very small velocity, at which absorption was observed, was
measured by placing the sample at the top of the tower in the cone of a loudspeaker to which
they applied a pure signal with frequency that ranged between 10 and 50 Hertz. Absorption
occurs once every cycle when the velocity of the loudspeaker membrane is exactly equal to
the resonant velocity. The determination of the precise phase of the oscillation at which
this absorption is observed allowed them to calculate the velocity of the membrane of the
loudspeaker at which absorption occurs. In order to improve the accuracy, the experiment
was conducted both with the upper sample as the source and the lower sample as the absorber
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and the other way around.

They obtained a result which was within 10% of the theoretical result. This accuracy
was later improved to 1%.

21.5 The Orbit of Mercury

Kepler’s laws of planetary motion were originally derived from astronomical observations but
were later derived by Newton using Newtonian mechanics and Newton’s law of gravitation.

One of these laws states that planets revolve around the sun in fixed elliptic orbits. The
orbit of the Earth around the sun is almost circular – the Earth is 3% close to the sun in
January than in July. But the orbit of Mercury is a much more eccentric ellipse. At its
point of closest approach (called its “perihelion”) it is two-thirds of the distance when it is
furthest away (called the “aphelion’).

Figure 21: Precession of the orbit of Mercury

Although Kepler’s laws predict a fixed elliptic orbit, the orbit of Mercury has been
observed to precess very slowly at a rate of 575′′ of arc every century. This was known
in the nineteenth century and it was assumed that this was caused by the gravitational
pull of other nearby planets in the solar system (such perturbations are not accounted for
in the derivation of Kepler’s laws). Much work was done in calculating the effect of such
gravitational interaction with neighbouring planets, but the result yielded a precession rate
of only 532′′ of arc every century.

If Einstein’s equations are applied to determine the path of the planet Mercury in a
space, which is curved due to the gravitational potential of the sun, we almost find the ellipse
expected from Kepler’s laws, but with some very small correction. Einstein calculated that
the effect of this General Relativity correction contributes 43′′ per century of the precession
of Mercury’s orbit. This accounts for the shortfall of the calculation of the precession from
perturbations caused by other planets and the observed rate of precession.
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21.6 Black Holes

The gravitational potential at a distance x away from the centre of a sphere of mass M is

Φ(x) = −GM
x

, (21.3)

where G is the gravitational constant (6.67 × 10−11 Joules metres per kilogram). This
expression holds for values of x larger than the radius of the sphere, i.e. it only applies
outside the surface of the sphere.

This is one of the assumptions of Newtonian gravity, but it can be derived from Einstein’s
equation of General Relativity, which relates the curvature properties of a curved space to
the energy and momentum distribution of matter.

This means that the expression for the proper-time difference, ∆τ , between two events
at a distance x from the centre of the massive object is (see (21.2))

∆τ 2 =

(
1− 2GM

xc2

)
∆t2 − 1

c2

(
1− 2GM

xc2

)−1
∆x2 − 1

c2
(
∆y2 + ∆z2

)
(21.4)

This is only valid outside the radius of the gravitating sphere. In most cases the radius
of the sphere is sufficiently large that the gravitational potential only has a small effect on
the proper-time. For example at the surface of the sun, mass M� and radius R� we have

GM�
R�c2

≈ 0.000004.

However, there are objects which are so massive that all the matter in the object is
confined to within a radial distance, RS, from the centre, for which the coefficients of ∆t2

and ∆x2, in the expression for the proper-time, change sign. Such objects are called “black
holes”. The radial distance from the centre, RS, which is outside the black hole, is called
the “horizon” given by

RS =
2GM

c2
, (21.5)

(the subscript ‘S’ stands for Schwarzschild after Karl Schwarzschild who first derived this
solution to Einstein’s equations). Any matter approaching the black hole from outside, that
crosses the horizon falls into the black hole and can never get out again.

A way to understand this is to recall that a rocket which can escape the Earth’s gravita-
tional field has to exceed a certain velocity known as the “escape velocity”. For the Earth,
this escape velocity is about 11 km per second. The escape velocity increases with increasing
ratio of the mass to the radius of the body. Since no rocket can travel faster than the spped
of light, c, any body which is sufficiently dense that the escape velocity exceeds c is a black
hole - the rocket (or any other object) simply can’t get out.

Clearly, nobody has been inside a black hole and then come back to tell us about it,
but it seems that the world inside a black hole is very strange. From the expression for the
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proper-time, corrected by General Relativity, we see that for values of distance x from the
centre which are less than the horizon radius, RS, the coefficient of ∆t2 in the expression for
proper-time is negative, whereas the coefficient of ∆x2 is positive - contrary to the situation
outside the black hole. It appears then that distance outside the horizon becomes time inside
the horizon and time outside the horizon becomes distance inside the horizon. Viewed from
outside the horizon, a black hole appears to occupy a finite volume in space, but is time
independent – it lasts for ever – whereas inside the horizon the black hole appears to last for
a finite time interval, but exists everywhere. Don’t even try to picture this!

There are now many examples of black holes which have been detected. They cannot
be seen directly as light cannot get out of them, but they are usually accompanied by a
visible star which rotates rapidly around it, due to the large gravitational field surrounding
the black hole. From the period of the rotation and the distance of the visible star from the
centre of rotation one can deduce the mass black hole and hence calculate the radius of its
horizon (using (21.5)).

Actually, black holes do not last for ever. Stephen Hawking showed that they eventually
evaporate through “Hawking radiation”. The mechanism for this makes use of the fact that
close to the horizon of a black hole, the gravitational field is so intense that the gravitational
energy can exceed 2mc2. This is sufficient energy so that a particle of mass m can be created
out of the empty space surrounding the black hole together with its anti-particle. The
particle falls into the black hole but the anti-particle is radiated outwards (or vice versa).
The net effect of this is that the radiated particle carries off some of the energy of the black
hole – so the mass of the black hole decreases, until it becomes below the critical mass and
the black hole disappears.

21.7 Gravitational Waves

Einstein’s equation of General Relativity generalises Newton’s law of gravity in the same
way that Maxwell’s equations of electromagnetism generalise Coulomb’s inverse square law
for the electric field at a distance x from a charged particle.

It is an equation for the curvature of space-time, and hence for the gravitational field,
in the presence of moving massive objects, in terms of their energy and momentum. This is
the gravitational analogue of Maxwell equations for electric and magnetic fields in terms of
moving electric charges.

Maxwell’s equations predict the the existence of electromagnetic waves – such as light
– in which electric and magnetic fields are oscillating and advancing in the direction of the
wave.

Likewise the equations of General Relativity predict the existence of waves of a gravita-
tional field, which can be thought of as oscillations in the curvature of space advancing in
the direction of the wave. Because gravity is such a weak force, these waves have very low
intensity and are impossible to detect unless the source of the gravitational wave is a very
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violent event in space.

In 2015 the LIGO collaboration detected gravitational waves from the collision of two
black holes 1.3 billion light-years away. They used an interferometer which was similar
in design the Michelson interferometer used in the Michelson-Morley experiment, but in
this case the arms were 4 km long. The gravitational wave can be thought of as a wave
disturbance in the curvature of space. This resulted in a change in the length of one of the
arms of the interferometer by one million-million-millionth (10−18) of a metre. Nevertheless
this remarkable experiment was able to detect the minute shift in the interference pattern
of the laser beams in the two arms, confirming the passage of the gravitational wave caused
by the collision of the two black holes
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22 Appendix A: A Pythagoras Refresher

x

y
r

Figure 22: A right-angle triangle with hypotenuse (side opposite the right-angle) length r
and sides adjacent to the right-angle with sides of length x and y.

Figure 22 shows a right-angle triangle. The longest side (called the “hypotenuse”) is the
one opposite the right-angle and has length r. The other two sides have lengths x and y.
Pythagoras’ theorem states simply that

r2 = x2 + y2. (22.1)

So for example of x is 3 metres and y is 4 metres, then the length, r, of the hypotenuse is
given by

r =
√

32 + 42 =
√

9 + 16 =
√

25 = 5 metres.

x

y

x

y
r

P

Figure 23: The point P in the x− y plane (i.e. z = 0) with coordinates (x, y)

If a point P has coordinates (x, y), as shown in Figure 23, then the distance, r, of P from
the origin can be obtained by Pythagoras’ theorem.

r =
√
x2 + y2 (22.2)
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Figure 24: A point in three dimensions with coordinates x, y, z.

We can extend this to calculate the distance from the origin of a point in three dimensions
with coordinates (x, y, z). The projection of the point in the x − y plane has coordinates
(x, y, 0). Its distance from the origin is r, where

r2 = x2 + y2.

But the hypotenuse in the x−y plane is at right-angles to the z-axis, and so we have a further
right-angle triangle shown on the right of Figure 24. We can therefore use Pythagoras again
to show that the total distance R of the point (x, y, z) from the origin is given by

R2 = r2 + z2 = x2 + y2 + z2 (22.3)

Pythagoras’ theorem is also used in the determination of the magnitude of a vector in
terms of its components. If p is a vector (a quantity which has a direction as well as a
magnitude, such a velocity or momentum), which has component px in the x-direction, py
in the y-direction and pz in the z-direction. The magnitude |p| of the vector is given by

|p| =
√
p2x + p2y + p2z.

We often need to use Pythagoras’s theorem to calculate the length, y, of one of the
adjacent sides in terms of the lengths of the hypotenuse, r, and the other adjacent side x:

y2 = r2 − x2 = (r + x) (r − x) ,

where is the last step we have used the expression for the difference of two squares to show
that the square of the length of one of the adjacent sides is the sum of the lengths of the
hypotenuse and the remaining adjacent side, times by their difference.
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Now let’s do two problems which use Pythagoras’ theorem for their solution.

Problem 1: Adam and Eve go down to the river to bathe. The river has a width wA and
is flowing with speed v. Both swimmers can swim at a speed u relative to the flow of the
river. They start their swim at the same time and Adam swims across the river and back,
whereas Eve swims downstream a distance wE and then turns back and swims upstream
back to the point of departure. They find that they both arrive at the starting point at the
same time (their elation at this is responsible for the birth of Cain !). Show that the distance
downstream, wE, that Eve swam is given by

wE = wA
√

1− v2/u2

u

v

ADAMEVE

√
(u

2
−

v
2
)

u− v

u+ v
wE

wA

Figure 25: Eve swims downstream a distance wE and then upstream again, whereas Adam
points himself in such a direction that his resultant velocity (the velocity relative to the river
plus the velocity of the flow of the river) is exactly across the river.

Solution:
Clearly we can neglect any relativistic effects.

Eve swims downstream a distance wE with a velocity relative to the river bank (v + u)
(see left-hand part of Figure 25) so that the time taken for her to reach her destination is
wE/(u+v). When she swims back upstream her velocity relative to the river bank is (u−v).
Therefore time taken for her to swim back top her starting point is wE/(u − v). The total
time, tE, taken for Eve’s swim is

tE =
wE

(u+ v)
+

wE
(u− v)

=
2uwE

(u+ v)(u− v)
=

2uwE
(u2 − v2)

Adam swims with velocity u relative to the steam in such a direction that his resultant
velocity is exactly across the river, perpendicular to the stream. As can be seen from the
right-hand part of Figure 25, his velocity is the hypotenuse of a right-handed triangle of
length u and the length of one of the adjacent sides is v. By Pythagoras’ theorem, Adam’s
velocity across the river is therefore

√
u2 − v2). The time taken for Adam to swim across

the river and back is therefore

tA =
2wA√
u2 − v2
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If the two swims take the same total time we can equate tA and tB to obtain

2wA√
u2 − v2

=
2uwE

(u2 − v2)
A little rearranging yields the desired result

wE = wA
√

1− v2/u2 (22.4)

Problem 2:

E

N

House Waitrose

Sainsbury’s

Figure 26: Waitrose is due East of the house where Albert and Brenda live. Sainsbury’s is
due North of Waitrose.

Albert and his wife Brenda go shopping. They leave the house together, but whereas
Brenda goes to Waitrose which is due East, Albert goes to Sainsburys which is due North
of Waitrose, but there is a path leading directly there. Because Albert walks at a speed vA
which is faster than Brenda’s speed vB, they both arrive at their destination shops at the
same time.

One day Albert tells Brenda that after he has finished his shopping at Sainsburys’s, he
wants to come to Waitrose to buy something else (not available at Sainsbury’s) and asks
Brenda to wait for him after she has finished her shopping at Waitrose (which takes exactly
the same amount of time as Albert’s shopping at Sainsbury’s). Brenda agrees and finds she
has to wait a time T for Albert to join her.

Show that the time taken for either of them to reach their usual shop is

T√
1− v2B/v2A

. (22.5)

Solution:
There are three possible approaches for the reader:
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1. This is far too complicated for me. It makes my head spin. I will simply accept that
this is the correct answer.

2. I am not going to derive the result but I am prepared to use Pythagoras’ theorem to
check the answer:

The house, Waitrose, and Sainsbury’s form a right-angle triangle with the right-angle
at Waitrose. The path from the house to Sainsbury’s is the hypotenuse If the time
taken for Albert to walk to Sainsbury’s at speed vA is given by (22.5) then the distance
to Sainsbury’s along the hypotenuse has length

Distance to Sainsburys’ =
vAT√

1− v2B/v2A
.

Likewise, the distance that Brenda walks to Waitrose, at speed vB, is

Distance to Waitrose =
vBT√

1− v2B/v2A
,

The distance from Sainsburys to Waitrose is vAT , since it takes time T for Albert to
walk it, at speed vA.

So by Pythagoras, theorem, the length of the hypotenuse (the distance from the house
to Sainsbury’s is

v2AT
2 +

v2BT
2

(1− v2B/v2A)
=

T 2

(1− v2B/v2A)

(
v2A
(
1− v2B/vA)2 + v2B

))
=

v2AT
2

(1− v2B/v2A)
,

which is indeed the square of the distance to Sainsburys, so the answer is correct..

3. Derive the result from first principles:

Let the time taken to reach their shops be X, so that the distance between the house
and Sainsbury’s is vAX, the distance to Waitrose is vBX, and the distance from Sains-
bury’s to Waitrose is vAT (it takes Albert time T to walk it as speed vA). Now by
Pythagoras’ theorem

v2AT
2 + v2BX

2 = v2AX
2

Rearranging
v2AT

2 = (v2A − v2B)X2

Dividing both sides by (v2A − v2B)

X2 =
v2AT

2

(v2A − v2B)

Divide numerator and denominator by v2A and take the square root to get

X =
T√

1− v2B/v2A
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23 Appendix B: Some Results from Classical Mechan-

ics

In this Appendix, we always assume that particles are moving with velocities that are much
smaller tna the speed of light, so that all relativistic effects are neglected.

• Momentum
A particle with mass m moving with velocity v has momentum p = m× v

• Vectors
Velocity v and momentum, p are examples of vectors which have direction as well
as magnitude. They have components in each of the x-, y-, and z-directions. These
components transform into each other if the axes are rotated, but the magnitude of
the vector remains invariant.

• Newton’s second law of motion
The momentum of a particle which is subjected to as force, F , increases at a rate equal
to the force. For a body whose mass, m, is constant, this means that the force is equal
to the mass times the acceleration of the particle.

• Conservation of Momentum In a collision between several particles in which there
is no external force, the total momentum of the particles (in each direction) is the same
before and after the collision.

• Kinetic Energy A particle of mass m with velocty v has kinetic energy T = 1
2
mv2.

• Conservation of Energy In an elastic collision between several particles the total
kinetic energy is the same before and after the collision.

• Centre-of-Mass A solid body has a centre of mass. For an ensemble of particles of
mass mi at a distances xi in the x-direction from a given origin, the distance from the
origin in the xi-direction of the cetnre of mass is the sume of mi × xi divided by the
total mass.

For exmaple if we have a dumbbell with a weight of mass 1 kg at one end (the origin)
and a weight of mass 2 kg at a distance of 025 m., then the centre of mass or the
dumbbell is at a distance, x from the smaller weight, where

x =
0× 1 + 2× 0.25

1 + 2
= 0.167 m.
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24 Glossary

• Acceleration: The rate at which a body gains speed.

• Aether: A postulated medium on which light travels. This has been shown not to
exist.

• Anti-particle: of a given particle, is a particle with precisely the same mass but
opposite electric charge (and other properties). The positron is a positively charged
particle with the same mass as the electron – it is the anti-particle of the electron.

• Aphelion The point of furthest distance of an ellipse from a focus.

• Blackbody Radiation: Radiation from an object which absorbs all of the radiation
incident upon it.

• Black hole: An object which is so dense that the associated gravitational field is so
strong that any object which enters cannot escape.

• Component: of a vector. The projection of a vector in a given direction.

• Coordinate: The distance of a point along a given axis.

• Electromagnetic Wave: A wave of an oscillating electric field and a perpendicular
osicllating magnetic field, both perpendicular to the direction of motion of the wave.
Light is an electromagnetic wave with a wavelength in the visible range.

• Escape velocity: Velocity required by a body in a gravitational field to escape that
gravitational field. In other words the velocity which is such that the kinetic energy is
equal to the gravitational potential energy.

• Euclidean Geometry: A set of theorems about properties of shapes in flat space.

• Event: Something that takes place at a point in space and a given instant in time. It
is specified by the three coordinates, indicating its position, and a time. These values
are different in different inertial frames.

• Frame of Reference: A set of measuring rods, which constitute a coordinate system
with a given origin and given orientation, together with a clock which has been set to
zero at some given time.

• Frequency: Number of oscillations performed in unit time (per second).

• Galilean Transformations: Non-relativistic transformation of the location of an
event between two different frames of reference, in which the time of the event is the
same in both frames.

• General Relativity: The mechanics of bodies moving in the presence of a gravita-
tional field and are accelerating relative to each other.
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• Geodesic: The generalisation of a straight line in curved space, defined as the shortest
distance between two points in the curved space.

• Gravitational Potential: The potential energy of a body at a given location in a
gravitational field, divided by the mass of the body.

• Gravitational Constant: Gravitational potential due to a particle of mass 1 kg at
a distance of 1 metre ftom the particle.

• Gravitational Red-shift: The increase in wavelength of light (or other electromag-
netic radiation) radiated from a body, due to the interaction of the radiation with the
gravitational field produced by the body.

• Greenwhich Meridian: The meridian with longitude 0°. It passes through Green-
wich.

• Hawking Radiation: The mechanism by which black holes evaporate. Particles and
their anti-particles are produced out of the vacuum surrounding the black hole as a
result of the intense gravitational field.

• Hertz: Unit of frequency equal to one oscillation per second.

• Inertial Frame: A frame of reference which is in free fall in a gravitational field. In the
absence of a gravitational field an inertial frame moves with constant velocity relative
to any other inertial frame. Inertial frames at different locations in a gravitational field
are accelerating relative to each other.

• In Phase: Two monochromatic waves of the same frequency are said to be in phase
if their maxima and minima coincide.

• Interference pattern: A configuration of bright and dark rings or fringes at positions
where the motion of two light-waves are in phase so that the waves add leading to a
maximum, and positions where the two waves are out of phase so that they cancel.

• Interferometer: A device for detecting interference pattern. These are often used to
measure the wavelength of a light wave by measuring the separation of the bright and
dark fringes or rings.

• Kepler’s Laws: The description of the paths of planets orbiting the sun.

• Kinetic Energy: The energy that a moving body possesses as a result of its motion.

• LIGO: Laser Interferometer Gravitational-Wave Observatory. An experiment de-
signed to detect the existence of gravitational waves.

• Lorentz Invariant: Takes the same value in all inertial frames.

• Lorentz Transformations: Relativistic transformations of the position and time of
an event in different inertial frames.
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• Lorentz-FitzGerald Contraction: The contraction of the length of an object due to
its motion. Originally intended to refer to motion relative to the aether in an attempt
to explain the null result of the Michelson-Morley experiment, but now used to describe
the contraction of any object in the direction of its motion relative to the observer.

• Mass Energy: The energy of a body at rest, due to its mass.

• Maxwell’s Equations: A set of equations relating electric and magnetic fields to
each other and to distributions of electric charge and electric current.

• Meridian: A line from the North pole to the South pole of fixed longitude.

• Minkowski Diagram: A graph of one space dimension and time. The axes can be
perpendicular in one inertial frame, but will not be perpendicular in another inertial
frame.

• Minkowski Space: a four-dimensional space, in which the fourth dimension is time.
An event at a given time and location is a point in this space. The invariant quantity
under rotations of both the space and time axes is the proper-time difference of two
neighbouring events.

• Momentum: A property of a moving body. It is a vector in the direction of the
velocity of the body. The momentum of a body remains unchanged if there is no
external force acting on it. Total momentum is conserved in elastic collisions.

• Monochromatic Light: Light of a single wavelength.

• Neutrino: A particle with mass much smaller than that of an electron, which is
emitted together with an electron in radioactive β-decay.

• Out of Phase: Two monochromatic waves of the same frequency are said to be out
of phase if the maxima of one wave coincides with the minima of the other.

• Perihelion: The closest distance of a point on an ellipse from a focus.

• Period of Oscillation: Time interval between two subsequent maxima, (or two sub-
sequent minima) of an oscillating system, which could be a wave at a fixed point in
space.

• Photoelectric Effect: The emission of electrons from certain metals when illuminated
with visible or ultraviolet light.

• Photo-electron: An electron emitted from an irradiated target, due to the photo-
electric effect.

• Photon: A particle of light (or other electromagnetic radiation).

• Planck’s constant: The ratio between the energy of a photon and its frequency.
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• Proper-time: A property of the difference between two neighbouring events. In the
absence of gravity the square of the proper-time difference is the square of the time
difference between the two events minus the square of the spatial distance between
the two events, divided by the speed of light. In the presence of a gravitational field
there are corrections to account for the curvature of space-time in the presence of a
gravitational field. For a given pair of events, it takes the same value on all inertial
frames.

• Pythagoras’ Theorem: The relation between the length of the hypotenuse of a
right-angled triangle and the lengths of the sides adjacent to the right-angle.

• Refraction: The change in the direction of light when it passes from one medium to
another.

• Relativistic Energy: The kinetic energy of a body plus its mass energy

• Resonance: Enhanced response of a system at a particular frequency.

• Rest Energy: Alternative term for mass energy.

• Resultant: The sum of two vectors, usually pointing in different directions.

• Riemannian Geometry: The study of the properties of curved spaces.

• Special Relativity: Mechanics of objects moving with constant velocity relative to
each other, in the absence of a gravitational field.

• Spectral Lines of an atom or molecule are the discrete frequencies of the radiation
absorbed or emiterd by the atom or molecule when it makes a transition from one
energy level to another.

• Stellar Aberration; The shift in the observed positions of stars due to the refraction
of the light from the star by the Earth’s atmosphere.

• Vector: A quantity which has direction as well as magnitude.

• Velocity: A vector property of a body, whose magnitude is the speed of the body and
whose direction is the direction of motion of the body.

• Wavelength: The distance between adjacent corresponding points on a wave, at a
given instant in time.

• Work Function: The energy required to free an electron from the surface of a metal.
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