
Approximation in Physics Problems

Remember: Approximation is meant to make life easier for you!

1 Approximation vs. Estimation

The object of estimation is to make educated guesses in the absence of information, to ‘get a feel’ for the
order of magnitude of a required result, to have a first stab at a problem which is complicated to solve in
detail.

The idea behind approximation is to simplify complicated mathematical expressions. So, approximation is
often used as a tool in estimation, but also in full-blown calculations.

2 Examples

Below are only a few examples where you can use approximations. Many more applications could be found.

2.1 Small angle approximation

In many situations you will come across the approximations sin(α)∼ α and cos(α)∼ 1 for ‘small’ α. What
does small mean in this context? The graphic shows the error made in percent by setting sin(α) = α as a
function of α:

So, if your measurement error for α is of order 1%, then you are not introducing an additional error for, say,
α < 10◦. Important: In ‘final’ calculations, approximation should not introduce an error larger than the
measurement error.
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Exercise: Two stars are both 57 lightyears away from us. Their positions on the sky are separated by an
angle α = 1◦±0.1◦.

(a) Calculate the physical distance between the two stars in lightyears using the correct formula involving
tan(α).

(b) Calculate the same distance using a small angle approximation.

(c) Determine the error introduced by the small angle approximation in (b) and compare to the measure-
ment error.

2.2 Binomial expansion

The binomial expansion is given by (1+ x)n ∼ 1+nx, for x� 1. Why is this useful?

Often you come across questions like ‘By how much does the energy stored in a spring, stretched to a length
x, increase (in percent) when I extend it by a further, small ∆x?’

The energy stored in the spring is E = kx2/2, with k = const.. The question above asks for ∆E/E where
E + ∆E = k (x+∆x)2 /2. So, we first have to calculate E and then E + ∆E and then subtract E from the
second result and then divide this by E . . .

. . . or may be not. Consider the following:

E +∆E =
k
2

(x+∆x)2

=
k
2

x
(

1+
∆x
x

)2

= E
(

1+
∆x
x

)2

Since ∆x/x is small, we use the binomial expansion . . .

E +∆E ∼ E
(

1+2
∆x
x

)
= E +2E

∆x
x

(1)

. . . and we finally get:
∆E
E
∼ 2

∆x
x

. (2)

Much simpler!

Exercise: By what percentage does the gravitational force on a climber change on top of Mt. Everest
(8850 m above average sealevel) compared to its value at the bottom? (Radius of Earth at average sealevel:
6378.137 km) Does the gravitational force increase or decrease?

How large is the error arising from the approximation made by using the binomial expansion?

2.3 Taylor expansion

Every mathematical function f (x) that can be differentiated ‘many times’ at the point x = 0 is given by

f (x) =
∞

∑
i=0

di

dxi f (x)
∣∣∣∣
x=0

xi

i!
. (3)
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In practice, often only a few or even only one differentiation are needed if x � 1, because the higher terms
decay as xi!

α

l

mg

α

restoring force

The Taylor expansion is very powerful! Consider the simple pendulum above. The restoring force is
mgsin(α) and so the correct equation of motion for the pendulum is:

m
d2(lα)

dt2 +mgsin(α) = 0

d2α

dt2 +
g
l

sin(α) = 0,

. . . but we are all very used to using
d2α

dt2 +
g
l

α = 0 (4)

instead. We can simply accept that this follows from the small angle approximation above. Or, we can show
that this simplification, and therefore the small angle approximation, follow from the Tyalor expansion of
sin(α):

sin(α) =
∞

∑
i=0

di

dαi sin(α)
∣∣∣∣
α=0

αi

i!
∼

i=1

∑
i=0

di

dαi sin(α)
∣∣∣∣
α=0

αi

i!
= sin(α)|

α=0 + cos(α)|
α=0 α = α. (5)

Exercise: Show that the small angle approximation is still correct even for i = 2.

Show that the binomial expansion is another special case of the Taylor expansion.

The kinetic energy of a particle with rest mass m travelling at velocity v is given by K = (γ−1)mc2, where
the Lorentz factor γ = 1/

√
1− v2/c2. Using the Taylor expansion of γ show that for v � c this reduces to

the non-relativistic form K = mv2/2.
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