
Solutions

Example 1.1: Energy of an Extended spring

dW = k x dx

(positive sign because we are considering work done on the spring)

W =
∫ x2

x1

dW =
∫ x2

x1

k dx =
k

2

(

x2
2 − x2

1

)

Example 1.2: Non-linear spring

-F

x → dx x2x1

dW =
(

k x + α x3
)

dx

(positive sign because we are considering work done on the spring)

W =
∫ x2

x1

dW =
∫ x2

x1

(

k x + α x3
)

dx =

(

k

2

(

x2
2 − x2

1

)

+
α

4

(

x4
2 − x4

1

)

)
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Example 1.3: Potential energy of building structures

Consider a slice of the pyramid at a height h above the ground.

L

Hdh
l

h

Since the length, l of the side of a slice decreases linearly with height, from l = L at
height h = 0, to l = 0 at h = H, where H and L are the height and base length of the
pyramid, respectively, l is given by

l = L

(

1 − h

H

)

The mass of the slice is given by

dM = 4ρ l d dh = 4ρ L d

(

1 − h

H

)

dh,

where ρ is the density and d is the depth of the bricks.

The potential energy of the slice is

dV = dM g h = 4ρ L d h

(

1 − h

H

)

dh

The total potential energy of the bricks in the pyramid is

V =
∫ H

0
dV = 4ρ g L d

∫ H

0
h

(

1 − h

H

)

dh = 4ρ g L d H2
(

1

2
− 1

3

)

=
2

3
ρ g L d H2

Inserting numbers

V =
2

3
× 5000 × 9.8 × 20 × 0.15 × (15)2 = 2.2 × 107 J.
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Example 1.4: A non-uniformly accelerating car

(a)

v =
dx

dt

a =
dv

dt

For uniform acceleration starting from rest, at time t

v(t) =
∫ t

0
a dt′ = a t

x(t) =
∫ t

0
v(t′) dt′ =

∫ t

0
a t′ dt′ =

a

2
t2

(b)
dv

dt
= a(t) = 2

(

1 − et/8
)

dx

dt
= v(t) =

∫ t

0
a(t′)dt′ =

∫ t

0
2
(

1 − et′/8
)

dt′ = 2t + 16
(

e−t/8 − 1
)

x(t) =
∫ t

0
v(t′)dt′ =

∫ t

0

(

2t′ + 16
(

e−t′/8 − 1
))

dt′ = t2 − 16t − 128
(

e−t/8 − 1
)

At t = 10

x(10) = 100 − 160 − 128 × (.286 − 1) = 31 m

Example 1.5: A uniformly charged rod

• P

D r

dE

θ

x dx

Charge of small segment of width dx

dQ = ρdx

Distance r of segment at x from point P

r =
√

D2 + x2

3



Electrostatic field due to segment has a magnitude

dE =
dQ

4πε0r2
=

ρdx

4πε0(D2 + x2)

But dE is a vector quantity, so we must consider its direction as well as its magnitude. By
symmetry the resultant electric field only has a component in the vertical direction and so
we would need to calculate the component of the electric field in the that direction, dEV ,
from each segment.

dEV = dE cos θ,

where θ is the angle between the vertical and the line from the segment t0 the point P . It
is given by

cos θ =
D

r
=

D√
D2 + x2

The magnitude of the total electric field is then

E =
∫ l/2

−l/2

ρD

4πε0(D2 + x2)3/2
dx

Change of variable required
x = D y, dx = D dy

Limits y = ±l/(2D), so that finally we get

E =
∫ l/(2D)

−l/(2D)

ρ

4πε0D(1 + y2)3/2
dy =

ρ

2πε0D
√

1 + (l/2D)2
=

ρ

πε0

√
l2 + 4D2
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Solutions

Example 2.1: Average speed of a molecule in a gas

(a)
∫

∞

0
P (v)dv =

∫

∞

0
Nv2 exp

(

−mv2/2kT
)

dv = 1

Change of variables required

v =

√

2kT

m
x, dv =

√

2kT

m
dx

N

(

2kT

m

)3/2
∫

∞

0
x2e−x2

dx = N

(

2kT

m

)3/2 √
π

4
= 1

N =

√

2

π

(

m

kT

)3/2

(b)

v =
∫

∞

0
vP (v)dv =

∫

∞

0
Nv3 exp

(

−mv2/2kT
)

dv

Change of variables required

v =

√

2kT

m
x, dv =

√

2kT

m
dx

v = N

(

2kT

m

)2
∫

∞

0
x3e−x2

dx =
N

2

(

2kT

m

)2

=
2√
π

√

√

√

√

(

2kT

m

)

(c)

v2 =
∫

∞

0
v2P (v)dv =

∫

∞

0
Nv4 exp

(

−mv2/2kT
)

dv

Change of variables required

v =

√

2kT

m
x, dv =

√

2kT

m
dx

v2 = N

(

2kT

m

)5/2
∫

∞

0
x4e−x2

dx =
3N

√
π

8

(

2kT

m

)5/2

= 3
kT

m

Example 2.2: Average energy of a molecule in a gas

(a)
∫

∞

0
P (E)dE =

∫

∞

0
A
√

Ee−E/kTdE = 1

Change of variables required

E = kTx2, dE = 2kT x dx
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2A (kT )3/2
∫

∞

0
x2e−x2

dx =
A
√

π

2
(kT )3/2 = 1

A =
2√
π

(kT )−3/2

(b)

E =
∫

∞

0
EP (E)dE =

∫

∞

0
AE3/2e−E/kT dE

Change of variables required

E = kTx2, dE = 2kT x dx

E = = 2A(kT )5/2
∫

∞

0
x4e−x2

dx = 2A(kT )5/2 3
√

π

8
=

3

2
kT

(c)

E =
1

2
mv2.

This is expected as the energy, E, of a molecule in a non-interacting gas is E = 1
2
mv2.

Example 2.3: A non-uniformly charged rod

• P

D r

dE

θ

x dx

Charge of small segment of width dx

dQ = α|x|dx

Distance r of segment at x from point P

r =
√

D2 + x2

Electrostatic field due to segment has a magnitude

dE =
dQ

4πε0r
=

ρdx

4πε0(D2 + x2)

But dE is a vector quantity, so we must consider its direction as well as its magnitude. By
symmetry the resultant electric field only has a component in the vertical direction and so
we would need to calculate the component of the electric field in the that direction, dEV ,
from each segment.

dEV = dE cos θ,
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where θ is the angle between the vertical and the line from the segment t0 the point P . It
is given by

cos θ =
D

r
=

D√
D2 + x2

The magnitude of the total electric field is then

E =
∫ l/2

−l/2

α|x|D
4πε0(D2 + x2)3/2

dx

Split the integral into two ranges

−l/2 < x < 0, where |x| = −x

0 < x < l/2, where |x| = +x

E = −
∫ 0

−l/2

αxD

4πε0(D2 + x2)3/2
dx +

∫ l/2

0

αx

4πε0(D2 + x2)3/2
dx

In the first integral change variables x → −x, dx → −dx and reverse the limits. The first
integral becomes identical to the second integral and we get

E = 2
∫ l/2

0

αx

4πε0(D2 + x2)3/2
dx

Change variables to, y = D2 + x2, xdx = 1
2
dy, limits D2 < y < (l/2)2 + D2)

to get

E =
2α

4πε0

∫ (l/2)2+D2

D2

1

y3/2
dy = − α

πε0
√

y

∣

∣

∣

∣

∣

(l/2)2+D2

D2

=
α

πε0

(

1

D
− 4√

l2 + 4D2

)

Example 2.4: A particle wavefunction

P (x) =
2

L
sin2

(

π x

L

)

, 0 < x < L

(zero otherwise).

x =
2

L

∫ L

0
x sin2

(

π x

L

)

dx.

Change variables to θ where

x =
L

π
θ, dx =

L

π
dθ, limits 0 < θ < π

x = 2
L

π2

∫ π

0
θ sin2 θdθ =

2L

π2

π2

4
=

L

2
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Example 2.5: Volume and mass of a sphere

(a)
S(r) = 4πr2

V =
∫ R

0
S(r) dr = 4π

∫ R

0
r22dr =

4π

3
R3

(b) Mass of a shell of radius r and thickness dr is

dM = 4πr2ρ(r)dr = 4πr2ρ0e
−αrdr

Total mass

M =
∫ R

0
dM = 4πρ0

∫ R

0
r2e−αrdr

Change variables,

r =
x

α
, dr =

dx

α

M =
4πρ0

α3

∫ αR

0
x2e−xdx

Example 2.6: Potential energy of building structures

Consider a slice of the dome, whose circumference makes and angle θ with the vertical.

R
θ

r

h

The radius of this slice is
r = R sin θ,

where R is the radius of the dome.

Rdθ
δ

dθ
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The mass of the slice between angles θ and θ + dθ is

dM = 2π ρ r δ R sin θ = 2π ρ δR2 sin θdθ,

where ρ is the density and δ is the thickness of the dome.

The height of the slice is
h = R cos θ

Therefore the potential energy of the slice is

dV = dM g h = 2π ρ δ g R3 sin θ cos θ dθ

The total potential energy of the material of the dome is

V =
∫ π/2

0
dV = 2π ρ δ g R3

∫ π/2

0
sin θ cos θ dθ = 2π ρ δ g R3

[

sin2 θ

2

]π/2

0

= πρ δ g R3

Inserting numbers

V = π × 3000 × 0.1 × 9.8 × (30)3 = 2.5 × 108 J

Example 2.7: Compressing a perfect gas

For an adiabatic change in volume

P V γ is constant

If gas is initially at pressure P2 and occupies volume V2 then when the gas occupies volume
V , the pressure is

P (V ) = P2V
γ
2 V −γ

Work done on a gas at pressure P when its volume changes by an infinitesimal amount dV

dW = −P dV

Total work done is

W = −
∫ V1

V2

P (V ) dV = −
∫ V1

V2

P2V
γ
2 V −γdV =

P2V2

(γ − 1)

(

(

V2

V1

)γ−1

− 1

)
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