Example: Electric Field Due to a Charged Disk A circular disk of radius R has a uniform surface charge
density 0. What is the electric field at a point P, at distance z from the disk along its central axis?

Because of the rotational symmetry about the central axis, E will lie along the axis, E = E;Z. Moreover, all
points in a thin ring of width dr at radius r in the disk are at the same distance from P and will give the same
contribution to E,;. Hence we can write the contribution from the ring as
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Here, 27trdr o is the charge on the thin ring. The angle 6 is marked on the figure: the cos 0 factor is used to
pick up the electric field component along the axis. Using cos 8 = z/(r% +z2)/2, we find,
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To get the total field we integrate over the whole disk:
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The field is plotted below as a function of z. Let’s check two limiting cases. First, let z— 0 (or let R — oo with
z fixed). This corresponds to a disk of infinite size, so we find the field of an infinite plane sheet of charge with
uniform surface charge density. As z — 0, the last term in square brackets in E, drops out, so
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This is the correct result for an infinite plane of charge. The other limit is to let z — c. As we get further and
further from the disk it looks more and more like a single point charge. We reexpress E, as

c 1
E,=—|l——m—pr|.
$T2g (14+R2/z2)1/2



The quantity R?/z? gets smaller and smaller as z increases, so we have to do a binomial expansion of the last
term in the square brackets,
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Dropping higher order terms, we find
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where Q = R0 is the total charge on the disk. This is just the expected result for the field of a point charge
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Example: Electric Potential Due to a Charged Disk A circular disk of radius R has a uniform surface
charge density 0. What is the electric potential at a point P, at distance z from the disk along its central axis?

All points in a thin ring of width dr at radius r in the disk are at the same distance from P and will give the
same contribution to the potential V. The charge in the ring is

dg=2rnrdro.

2



Its contribution to the potential is (using the result for a point charge)
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Now we integrate over the whole disk:
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The potential is plotted below as a function of z.
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Let’s check the limiting case where we are very far from the disk. As we get further and further away, it looks
more and more like a single point charge, so we expect the potential to look like that of a point charge. Rewrite

V as,
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The quantity R? /z> gets smaller and smaller as z increases, so we have to do a binomial expansion,
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Dropping higher order terms, we find
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where Q = R?c is the total charge on the disk. This is just the expected result for the potential of a point
charge Q.

In an earlier example we calculated the electric field on axis. You should check that —dV /dz gives the same
field we found before.



