
Example: Electric Field Due to a Charged Disk A circular disk of radius R has a uniform surface charge

density σ . What is the electric field at a point P, at distance z from the disk along its central axis?

rdr

z

ẑ
P

R

θ

Because of the rotational symmetry about the central axis, E will lie along the axis, E = Ez ẑ. Moreover, all

points in a thin ring of width dr at radius r in the disk are at the same distance from P and will give the same

contribution to Ez. Hence we can write the contribution from the ring as

dEz =
2πr dr σ

4πε0(r2 + z2)
cosθ .

Here, 2πr dr σ is the charge on the thin ring. The angle θ is marked on the figure: the cosθ factor is used to

pick up the electric field component along the axis. Using cosθ = z/(r2 + z2)1/2, we find,

dEz =
σz

2ε0

r dr

(r2 + z2)3/2
.

To get the total field we integrate over the whole disk:

Ez =
σz

2ε0

∫ R

0

r dr

(r2 + z2)3/2
=

σz

2ε0

[

−1

(r2 + z2)1/2

]R

0

=
σ

2ε0

[

1−
z

(R2+ z2)1/2

]

.

The field is plotted below as a function of z. Let’s check two limiting cases. First, let z → 0 (or let R → ∞ with

z fixed). This corresponds to a disk of infinite size, so we find the field of an infinite plane sheet of charge with

uniform surface charge density. As z → 0, the last term in square brackets in Ez drops out, so

Ez
z→0
→

σ

2ε0
.

This is the correct result for an infinite plane of charge. The other limit is to let z → ∞. As we get further and

further from the disk it looks more and more like a single point charge. We reexpress Ez as

Ez =
σ

2ε0

[

1−
1

(1+R2/z2)1/2

]

.
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The quantity R2/z2 gets smaller and smaller as z increases, so we have to do a binomial expansion of the last

term in the square brackets,

1

(1+R2/z2)1/2
= 1−

1

2

R2

z2
+ · · · .

Dropping higher order terms, we find

Ez
z→∞
→

σR2

4ε0z2
=

Q

4πε0z2
,

where Q = πR2
σ is the total charge on the disk. This is just the expected result for the field of a point charge

Q.
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Example: Electric Potential Due to a Charged Disk A circular disk of radius R has a uniform surface

charge density σ . What is the electric potential at a point P, at distance z from the disk along its central axis?

rdr

z

P

R

All points in a thin ring of width dr at radius r in the disk are at the same distance from P and will give the

same contribution to the potential V . The charge in the ring is

dq = 2πr dr σ .
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Its contribution to the potential is (using the result for a point charge)

dV =
dq

4πε0(r2 + z2)1/2
=

σ

2ε0

r dr

(r2 + z2)1/2
.

Now we integrate over the whole disk:

V (z) =
σ

2ε0

∫ R

0

r dr

(r2 + z2)1/2
=

σ

2ε0

[

(r2 + z2)1/2
]R

0
=

σ

2ε0

[

(R2 + z2)1/2
− z

]

.

The potential is plotted below as a function of z.
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Let’s check the limiting case where we are very far from the disk. As we get further and further away, it looks

more and more like a single point charge, so we expect the potential to look like that of a point charge. Rewrite

V as,

V (z) =
σz

2ε0

[

(1+R2/z2)1/2
−1

]

.

The quantity R2/z2 gets smaller and smaller as z increases, so we have to do a binomial expansion,

(1+R2/z2)1/2 = 1+
1

2

R2

z2
+ · · · .

Dropping higher order terms, we find

V (z)
z→∞
→

σz

2ε0

R2

2z2
=

σR2

4ε0z
=

Q

4πε0z
,

where Q = πR2
σ is the total charge on the disk. This is just the expected result for the potential of a point

charge Q.

In an earlier example we calculated the electric field on axis. You should check that −dV/dz gives the same

field we found before.
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