Introduction to magnetism

The interaction between two magnets can be described by the assumption that each magnet comprises two poles, a plus and a minus pole. Bringing together two magnets in such a way, that the plus pole of the one magnet faces the minus pole of the other one, will result in an attractive force between them. By contrast, they will repel each other if one brings together the two minus poles (or equivalently, plus poles). The magnetic properties of matter are (mainly) due to electrons which, as they have an electric charge and an intrinsic magnetic moment, act as small magnetic dipoles. While strictly speaking every material is magnetic, only ferromagnetic materials (for example Iron, Cobalt, Nickel) exhibit magnetic properties in the absence of an externally applied magnetic field. Ferromagnetic materials are the subject of our research. This poster presents our work on the magnetic properties of ferromagnetic, pyramid-shaped core-shell structures, which consist of only weakly magnetic pyramid (the core, here made of silver), which is covered by a ferromagnetic layer (the shell, here made of Nickel). These structures (figure 1) are grown by our collaborators at the University of Bath using a novel growth method based on electrodeposition. Here, we will concentrate on numerical investigations of these structure, for which we use the micromagnetic model. The simulated structures are currently about one order of magnitude smaller than grown structures.

The micromagnetic model

We treat magnetism on a mesoscopic scale, i.e. we spatially average the microscopic magnetic moments over a macroscopically large, but macroscopically small volume. The resulting, averaged quantity is a vector field, the magnetisation M(r). The magnetic state of the system is fully described by M(r). The standard micromagnetic model is used to compute for M(r) ferromagnetic structures. It defines four energy terms, each exerts a local torque on M(r). In figure 2 we discuss each term by adding it (from left to right) to a ferromagnetic cylinder system.

Ferromagnetic configurations in pyramid-shaped systems

The magnetic properties of ferromagnetic nanostructures are strongly shape and size dependent. This offers the possibility for the shape-controlled engineering of magnetic properties. Our work on magnetic core shell structures has to be seen in this context.

Varying the geometry (figure 3) we find different stable, micromagnetic states (see figure 4 and 5). The most interesting configuration is the asymmetric vortex state, which comprises a vortex with a core sitting on one of the side faces (see figure 4). The displaced core of the asymmetric vortex state can be moved to one of the three other side faces by applying a corresponding external magnetic field. This behaviour could be potentially useful in view of applications like storage devices or magnetic sensors.

http://www.soton.ac.uk/SES/research/ced/posters.html | email: fangohr@soton.ac.uk
Computational Engineering and Design Group, University of Southampton, SO17 1BJ, UK
This work has received funding from the Engineering and Physical Sciences Research Council (EPSRC) in the United Kingdom (EP / E040063/1, EP/E039944/1) and from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 233552 (DYNAMAG project).