

nmag.soton.ac.uk

Southampton School of Engineering Sciences

Micromagnetic study of pyramidal core-shell structures A Knittel¹, M Franchin¹, T Fischbacher¹, S Bending², H Fangohr¹

¹School of Engineering Sciences, University of Southampton ²Department of Physics, University of Southampton

1) Motivation

Growth of complex nanostructures by new chemical self-assembly

2) The micromagnetic method Micromagnetic study of idealised pyramid core-shell structures

Figure 2: Idealised core-shell structure two parameters: edge length a (size), rel. thickness height h set to a/2

Shape and size distribution tunable

 Hysteresis properties of ferromagnetic structures can be analysed with micromagnetic model • Due to complex shape: Generally only numerical treatment based on the finite element or an enhanced finite difference method possible

Figure 1: SEM image of a Nickel layer grown on a pyramidal Ag mesostructure (Nanoscience Group, Bath)

• Use of FEM based code (Nmag) • Model includes exchange, magnetostatic and external field contribution, anisotropy neglected • Use of hierarchical matrices improves efficiency • Stable configuration by relaxation of LLG equation

3) Results

Figure 3: Top view of different magnetic configurations. Those configurations are energetic ground states for different shapes (shell thicknesses) and sizes.

Figure4: Phase diagram showing energetic ground states for different pyramid sizes and shell thicknesses

Magnetic Reversal for pyramid shell with a=250 nm and $t_{ral}=50\%$:

Figure 6: Hysteresis for a pyramid shell with a = 250 nmand t = 50%.

with core on side face

(d) Vortex core moves over apex to opposite side

(c) reversed Flower-(e) Vortex core moves down the state side face

Figure 5: Top view snapshots of reversal process (see figure 6). Positive x-direction: -

The external field varies along the x-direction, see also figure 5.

Conclusions: Micromagnetic analysis of pyramidal core-shell structure. Different physical behaviour for thin shell structures. Interesting reversal behaviour for the remanent state with a vortex core on a side face.