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We study the effect of the magnetostatic field in a two-dimensional periodic square array of
Permalloy triangular rings by means of micromagnetic simulations. The rings have a lateral size
of 50 nm, an edge width of 8 nm and the thickness is 10 nm. Applying an external field to one
of the elements and assuming the rest of the array to be in the remanent state, we show how the
remanent magnetization and coercive field are affected by the magnetostatic field of the array, both
as a function of the distance between the elements and as a function of the number of elements used
to model the periodic array. We provide an estimate of the minimum distance for an independent
behavior of the elements, and we show that a model with the first and second nearest neighbors of
an element can accurately approximate the effect of a much larger array.

INTRODUCTION

A thorough understanding of magnetostatic coupling
in arrays of magnetic nanostructures is essential for high-
density magnetic recording applications. Large areal
densities are achieved reducing the distance between the
array elements, but magnetostatic effects could under-
mine their independent behavior.

A promising solution to reduce this problem is the use
of ring-shaped elements [1], where the closure-like natu-
ral magnetic configurations avoid the formation of strong
stray fields. Imperfections in the manufacturing process
can break the reversal symmetry and degrade the mag-
netic properties of circular rings [2], whereas in triangu-
lar rings the presence of the corners, which act as pinning
centers for the magnetization, allow to have an high con-
trol on the possible magnetic patterns [3].

The properties of isolated triangular rings have been
reported in a number of publications (e.g. [2–6]). In
this paper we consider an array of interacting triangu-
lar rings and present a numerical investigation of their
magnetostatic interactions as a function of the spacing
between the elements and the number of elements used
in the array.

COMPUTATIONAL MODEL

To study the magnetostatic interactions in arrays of
magnetic elements a common approach is to consider one
element of the array, to take the remanent magnetization
and coercive field as the characterization parameters, and
then to analyze how these parameters are affected by the
demagnetizing field produced by the rest of the array
[7, 8].

As shown in Fig. 1, the array is made of a square lat-
tice of triangular rings and we use the same periodicity
p for the x and y directions. The size of the array varies
between 3 × 3 and 11 × 11 rings with a periodicity p
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FIG. 1: Geometric characteristics of a 5 × 5 array with pe-
riodicity p. The applied field is directed roughly along the
x-axis, tilted by ∼ 5.7◦ in the x-y and x-z planes.

between 53 nm and 150 nm. Each ring is an equilat-
eral triangle with a lateral size of 50 nm, edge width
of 8 nm and a thickness of 10 nm. For the material, we
use the standard parameters of Permalloy: exchange cou-
pling constant A = 1.3 · 10−12 J/m, saturation magneti-
zation Ms = 860 · 103 A/m and zero magnetocrystalline
anisotropy. The external field is applied in-plane roughly
along the x-axis, tilted off by 0.1 radians (∼ 5.7◦) in the
x-y and x-z planes to avoid possible numerical artifacts
in the magnetic configurations assumed by the system.

For our simulations we use the Nmag micromagnetic
simulation software [9]. With reference to Fig. 1, we call
Nr = 5 the number of rows of the square lattice and we
study the behavior of the central triangular ring under
the influence of the (N2

r − 1) = 24 other triangular rings
and an applied field. The magnetization of the 24 outer
rings is kept fixed during the whole simulation.

We have obtained this fixed magnetization for the
outer rings by computing the equilibrium configuration
of a quasi-periodic Nr × Nr array of triangular rings
with an initial magnetization pointing uniformly in the x-
direction. In essence, this computational method [10] en-
forces that the magnetization is identical in all N2

r rings,
while taking into account the full (non-periodic) demag-
netizing field that emerges from all N2

r rings.
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FIG. 2: Hysteresis loop of an isolated ring. The magnetic con-
figurations at saturation, remanence and coercivity are shown
in Fig. 3.

In more detail, this is achieved by simulating only one
triangular ring, and simulating the presence of the peri-
odic copies by adding extra contributions to the Bound-
ary Element Matrix which come from magnetic surface
dipoles on the displaced copies. This introduction of
magnetic “mirage charges” into the FEM/BEM method
[11] parallels the introduction of mirror charges in elec-
trostatics. Using this method we can obtain the demag-
netizing field of a very large array with the memory re-
quirement of a single-ring simulation.

The remanent magnetization obtained with this proce-
dure is virtually identical to the remanent magnetization
of an isolated ring as shown in Fig. 3-II. As all rings have
the same magnetization, this configuration will overesti-
mate the demagnetizing field (because the rings do not
have the freedom to react individually).

ISOLATED RING

The hysteretic behavior of an isolated ring is shown in
Fig. 2. Starting from an applied field of 106 A/m, cor-
responding to the saturated magnetization distribution
in Fig. 3-I, the field is decreased in steps of 5 · 103 A/m.
At remanence (Fig. 3-II) the magnetization bends on the
top corner and bottom edge to reduce the demagnetiz-
ing field from surface charges on the lateral edges. The
lateral corners L and R in Fig. 3-I act as pinning cen-
ters around which the magnetization rotates. As shown
in Fig. 3 the angle α of the magnetization at these cor-
ners goes from 0◦ at saturation, to 30◦ at remanence and
reaches 60◦ right before the switching. The coercive field
is Hc = 157.5 · 103 A/m, corresponding to 198 mT.

The switching mechanism occurs without the inter-
mediate vortex states found in larger rings [4]. The
out-of-plane component of the magnetization is largest
at the top corner of the ring. At Hc this corner acts as a
nucleation region and the magnetization reverses simul-
taneously over all the ring.
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FIG. 3: Bending angle α of the magnetization at the lateral
corners L and R going from the saturation configuration (I)
to the remanence (II) and the coercive field (III) in Fig. 2.
The reversal is driven by the magnetization in the top corner
T, where the out-of-plane component is largest.

FIG. 4: Coercive field and remanent magnetization as a func-
tion of the array periodicity. The values for an isolated ring
are those with p =∞.

EFFECT OF PERIODICITY

To study the variation of the remanent magnetization
and coercive field as a function of the periodicity p we
use an array of 121 elements on a 11× 11 square lattice.

We compute the hysteresis loop of the central ring in
the presence of the neighbor rings as described in sec-
tion II and determine the coercive field and the rema-
nent magnetization. We use values of the periodicity p
between 53 and 150 nm, corresponding to spacings be-
tween 3 and 100 nm between the rings. We find that
the reversal mechanism remains the same as that of the
isolated ring for all the values of p except 53 nm. In
that case the reversal goes through an intermediate state
where the magnetization assumes an out-of-plane config-
uration in the left corner of the ring.

The remanent and coercive fields as a function of pe-
riodicity are shown in Fig. 4.

The coercive field Hc of the isolated ring (p = ∞ in
Fig. 4) is maintained for values of p of 150 nm, 100 nm
and 80 nm. For smaller values of p the magnetostatic
interactions affect the switching point of the ring and
the magnitude of Hc decreases up to 127.5 · 103 A/m
(corresponding to 160 mT) at periodicity p = 53 nm.

Concerning the remanent magnetization Mr, a devia-
tion from the isolated ring case is present for all finite
values of p. The largest difference, of about 4%, occurs
at p = 53 nm. At p = 80 nm, where the deviation of Hc
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from the ideal case (isolated ring) is negligible, the devi-
ation of Mr is below 1%. Assuming that a 1% difference
in Hc and Mr can be taken as a good approximations of
the ideal behavior, we deduce that a spacing of 30 nm is
the lower limit for an independent behavior of the rings.

REDUCED ARRAY

Carrying out the simulations of the array of rings is
more demanding in required execution time in compari-
son to the isolated ring, while the memory requirements
are the same (because we store out the BEM matrix con-
taining the sum of the contributions from the periodic
copies). This extra time effort is proportional to the
number of periodic copies, and proportional to the square
of the number of surface nodes in the mesh of one ring
(which determines the size of the BEM matrix). In order
to minimize the setup time of the simulation it is then
interesting to know which is the minimum size of the ar-
ray which guarantees a good approximation of the truly
periodic system. To answer this question we consider the
set of square arrays ranging from 3 × 3 to 11 × 11 ele-
ments, and compare their Hc and Mr. The results of this
analysis are shown in Fig. 5 and 6.

FIG. 5: Coercive field of reduced arrays as a function of the
lateral size and the spacing between the elements.

FIG. 6: Remanent magnetization of reduced arrays as a func-
tion of the lateral size and the spacing between the elements.

Reducing the number of elements of the array, the mag-
netic behavior for different values of p is qualitatively sim-
ilar to the largest system considered (11× 11 elements).

However, from a quantitative point of view, the number
of lateral elements needed to reproduce the periodic be-
havior increases going from 30 nm to 3 nm spacing (cor-
responding to p ranging from 80 to 53 nm). Concerning
the remanent magnetization, a 3 × 3 array is sufficient
to create a remanent magnetization within 99% of the
11× 11 value for all the spacings considered. For the co-
ercive field an equivalent deviation is achieved with a 5×5
array. The effect from first and second nearest neighbors
in a square array is therefore a good approximation of a
much larger array.

SUMMARY

We investigate the effect of the demagnetizing field in
a square array of 50-nm size triangular elements as a
function of the spacing between the elements and as a
function of the number of elements used to approximate
the array. We find that 30 nm spacing between the el-
ements is sufficient to have a deviation smaller than 1%
from the behavior of an isolated ring. Our analysis also
shows that 5× 5 elements are sufficient to have the same
effect as a much larger array, since the deviation in Hc
and Mr between 5× 5 and 11× 11 elements is below 1%.
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Sandoval, J. Magn. Magn. Mat. 305, 133 (2006).

[7] R. Hertel, J. Appl. Phys. 90, 5752 (2001).
[8] J. Jorzick, C. Krämer, S. O. Demokritov, B. Hillebrands,

E. Sondergard, M. Bailleul, C. Fermon, U. Memmert, A.
N. Müller, A. Kounga, U. Hartmann, and E. Tsymbal,
J. Magn. Magn. Mat. 226, 1835 (2001).

[9] Nmag - a micromagnetic simulation environment (2007),
http://www.soton.ac.uk/∼fangohr/nsim/nmag

[10] H. Fangohr, G. Bordignon, M. Franchin, and T. Fis-
chbacher, submitted (2007).

[11] D. R. Fredkin and T. R. Koehler, IEEE Trans. Magn.
26, 415 (1990).


