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Using micromagnetic simulations, we have investigated spin dynamics in a spin-valve bi-layer in
the presence of a thermal gradient. The direction and the intensity of the gradient allow to excite the
spin wave modes of each layer selectively. This permits to synchronize the magnetization precession
of the two layers and to rectify the �ows of energy and magnetization through the system. Our study
yields promising opportunities for applications in spin-caloritronics and nano-phononics devices.

PACS numbers:

The recent discovery of the Spin-Seebeck e�ect [1, 2]
is at the core of spin-caloritronics [3], an emerging �eld
where the generation and control of spin currents by a
thermal gradient in nano-electronics and magnonic de-
vices is in focus. In recent years, this �eld has been the
object of intense investigation, yielding promising oppor-
tunity in energy e�cient spintronics devices [3]. An es-
sential step in this direction is the realisation of a diode
that recti�es spin-current. In the present paper, we in-
vestigate through micromagnetic simulations a realistic
device, that behaves as a thermo-magnonic diode, allow-
ing the propagation of energy and magnetization currents
in one direction only.

The system consists of a spin-valve nano-pillar made
of two Permalloy (Py) circular disks coupled by dipolar
interaction, see Fig.1(a). A uniform thermal gradient is
applied along the z direction. The origin of the recti�ca-
tion e�ect, which is similar to the case of the conventional
thermal diode [5], resides in the fact that the spin-wave
(SW) spectra of the disks are temperature dependent and
their overlap can be controlled by the gradient.

This device has novel features with respect to both

Figure 1: (Color online).(a) Bi-layer system studied in our
simulations. The magnetization is decomposed into the static
component Mz and the transverse components Mx and My),
which precess at the Larmor frequency in the x− y plane. A
uniform thermal gradient is set along the z axis. (b) Symmet-
ric (s) and anti-symmetric (a) precession states of the system.

the conventional thermal diode and the spin-caloritronics
devices studied so far. In particular the recti�cation of
two coupled currents is a novel phenomenon that has not
been investigated before. Then, the SW spectra of the
nano-pillar have several SW modes. Only some of those
modes can overlap in the presence of a thermal gradi-
ent, leading to a "partial phase-locking" between the two
disks. The de�nition of magnetization current between
the two layers emerges naturally within the formulation
of the problem, and extends the notion of the usual SW-
spin current [6] to discrete multi-mode systems coupled
by dipolar interaction. Finally, the present study is per-
formed on a realistic device [7, 8], suggesting possible
experimental investigations .
Let us start with a brief review of the magnetization

dynamics inside our system, before discussing the e�ect
of the thermal gradient. The local dynamics of the mag-
netization in a ferromagnet is described, at the length
scale of the exchange length, by the classical Landau-
Lifshiz-Gilbert (LLG) equation of motion [9, 10]

∂M

∂t
= −γ0M ×He� +

α

Ms
M × ∂M

∂t
. (1)

Here, γ0 is the gyromagnetic ratio, α is the Gilbert damp-
ing parameter andMs is the saturation magnetization of
the sample. The �rst term at the rhs of Eq.(1) is the adi-
abatic torque, which describes the precession of the mag-
netization M around the e�ective �eld Heff [11]. Here,
the latter contains respectively external, exchange and
demagnetizing �eld [7, 8]. The second term at the rhs
of Eq.(1), describes energy dissipation at a rate propor-
tional to α, so that in absence of external excitations the
magnetization eventually alignes with Heff .
Below we brie�y review the classi�cation of the SW

modes of our system, see Refs.[7, 8] for a thorough
discussion. The magnetization dynamics in a con�ned
nano-structure is described by the continuous magneti-
zation vector �eld M(r, t). In the case of thin layers
considered here, M is uniform along the thickness, so
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that the LLG equation simpli�es to two equations de-
scribing the circular precession of Mx and My around
z [12]. These equations can be rewritten as one com-
plex equation for the dimensionless SW amplitude c =
(Mx+iMy)/

√
2Ms(Ms +Mz), which depends on the po-

lar coordinates (ρ, φ).
The dynamics of the two disks, written in terms of

c(ρ, φ, t) is described by the equations

ċ1 = iω1(p1)c1 − Γ1(p1)c1 + ih12c2, (2)

ċ2 = iω2(p2)c2 − Γj(p2)c2 + ih21c1,

which are the equations of motion of two coupled nonlin-

ear oscillators with resonance frequency ωj(pj), j = 1, 2.
The term Γj(pj) is the damping rate, responsible for the
�nite linewidth of the resonance peaks [11, 12]. Both
terms depend on the SW power pj = |cj |2, which de-
scribes the amplitude of the oscillations in each disk [12].
The coupling strength hjj′ , due the dynamical dipolar
coupling between the two disks, is an e�ective term ob-
tained averaging the dipolar �eld over the volumes of the
samples, see Ref.[8] for the explicit expression.
The normal SW modes of an isolated disk are given by

c`,n(ρ, φ, t) = J`(k`,nρ) exp(+i`φ) exp(iω`,nt) where J`s
are Bessel functions of the �rst kind, ω`,n is the reso-
nance frequency and k`,n is the norm of the in-plane SW
wave vector. In this notation, n and ` represent respec-
tively the radial and azimuthal mode index. The ` index
determines the coupling of the system with an external
rf source: the ` = 0 modes are excited only by a uniform
in-plane �eld, while the ` = 1 modes are excited only by
an orthoradial �eld [7, 8].
In the case of two thin disks coupled via dipolar in-

teraction considered here, the spatial pro�le of the SW
modes is unchanged, while the collective magnetization
dynamics separates into a bonding (or symmetric, s) and
an anti-bonding (antisymmetric, a) state with di�erent
resonance frequencies. The �rst corresponds to an in-
phase precession of the two disks, that occurs mainly in
the thin layer, while the latter corresponds to an anti-
phase precession, that occurs mainly in the thick layer,
see Fig.1(b) for a cartoon.
To resume, each peak of the SW spectrum is identi�ed

as s`,m/a`,m, according to the disk which precesses the
most, and to the azimuthal and radial indexes.
Let us now turn to micromagnetic simulations. The

system studied, shown in Fig.1, consists of two Permalloy
disks Pyj , j = 1, 2, separated by 10 nm. The layers have
thicknesses tj of 4 and 15 nm correspondingly, and a
radius R = 125 nm. The exchange sti�ness of Py is A =
1.3× 10−11 J/m. The magnetic parameters of the disks,
taken from Ref.[7], are Ms1 = 7.8 × 105 A/m, Ms2 =
9.4 × 105 A/m, α1 = 1.6 × 10−2, α2 = 0.85 × 10−2 and
γ0 = 1.87×1011 rad×s−1×T−1. The sample is saturated
by an external �eld of 1 T in the z direction.
The simulations were performed with the Nmag �nite

element micromagnetic solver [13]. The integration of

Figure 2: (Color online). (a) and (b) SW spectrum for ` = 0
and ` = +1 modes respectively.(c) Tabulation of the corre-
sponding frequencies.

the LLG equation at each mesh site is performed by the
Sundials ODE solver [14], which is based on variable steps
multistep methods. The tetrahedral mesh, automatically
generated by the Netgen package [15], has a maximum
intersite distance of 6 nm, of the order of the Py exchange
length.
Thermal �uctuations are introduced by adding to the

e�ective �eld Hk
eff at site k of the mesh, a stochas-

tic �eld Hk
th. The latter is assumed to be a Gaus-

sian random process with zero mean and amplitude〈
Hk

th,iH
l
th,j

〉
= 2Dkδijδklδ(t − t′). Here i, j = x, y, z

stand for the cartesian components of the �eld, while k, l
refers to the sites on the mesh. The �uctuation ampli-
tude is Dk = (2αkBTk)/(Msγ0µ0Vk), where kB is the
Boltzmann constant, µ0 is the vacuum magnetic perme-
ability, Tk is the temperature at site k and Vk is the
volume containing the magnetic moment at site k [16].
In Permalloy, the parameter α does not depend on the
temperature [17].
The quantity of interest in our simulations is the space-

averaged magnetization 〈Mj(t)〉 = 1
Vj

∫
Vj
Mj(r, t)d3r of

the disk j = 1, 2, which is used to compute the SW am-
plitude cj . The power spectrum is computed from the
collective SW amplitude averaged over the sample thick-
nesses [8]: c = (c1t1 + c2t2)/(t1 + t2).
The ` = 0 modes (displayed in blue tones) are excited

starting from an initial condition where the magnetiza-
tion uniformly tilted of 8◦ in the x direction with respect
to the precession axis z. The ` = +1 modes (displayed
in red tones) are excited applying to the magnetization
aligned with the z axis the perturbation orthoradial vec-
tor �eld θ(ρ, z) = εẑ × ρ̂, where ε = 0.5 and ρ̂ is the
unit vector in the radial direction. Starting from these
conditions, we have computed the time evolution of the
system for 50 ns, with an integration time step of 1 ps.
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Figure 3: (Color online). SW spectrum for di�erent ` modes
in the presence of thermal gradient (expressed in K/nm). (a)
and (b): positive gradient, (c) and (d) negative gradient. Pos-
itive (resp.) negative gradients excite only the s (resp. a)
modes.

Figures 2 (a) and (b) show the power spectrum of
the system at zero temperature. The frequencies of the
peaks, tabulated in Fig.2(c), agree with Refs.[7, 8]. The
relative height of the peaks depends on the initial condi-
tions, which in our case favour the low frequency modes
(a00, a10, s00, s10). We focus on the analysis of those
modes, that dominate the spectrum.
Let us now turn to the description of the system in the

presence of the temperature gradient. We consider the
gradient positive when the temperature increases along
z (thin layer hotter than the thick one) and negative in
the opposite case. The low temperature side of the disks
is always kept at 0 K. The computatons at �nite tem-
perature were averaged over 24 samples with di�erent
realization of the disorder.
Figures 3 (a) and (b) show the e�ect of a positive gra-

dient on the modes with ` = 0 and ` = +1 correspond-
ingly. When the gradient is positive, only the symmetric
modes s`,n are excited. They grow in height starting from
+10−2 K/m, and eventually dominate the spectrum. Be-
tween 0.5 and 1 K/nm, those modes shift towards higher
frequencies. This e�ect is typical of nonlinear oscillators,
where the frequency depends on the oscillation amplitude
[12]. Notice that the anti-symmetric modes a`,n do not
modify their frequency, while their amplitude remains
constant until 1 K/nm and then decreases.
Figures 3 (c) and (d) show the e�ect obtained revers-

ing the gradient, where only the anti-symmetric modes
grow and shift towards higher frequency. Notice that in
Fig.3(c) the modes a01 and s01 are very close in frequency
and merge in a single mode at high gradient.
The frequencies of the excited SW modes increases

roughly linearly as a function of the gradient, see Figs.4
(a) and (b).
We discuss now the main result of the paper, that is,

Figure 4: (Color online). Frequency of the SW modes as a
function of a positive (a) and a negative (b) gradient. The
lines are guide to the eye.

the capability of the system to operate as a diode. We
start by introducing the Hamiltonian of the problem

H = ω1(p1)p1 + ω2(p2)p2 + h(c1c
∗
2 + c∗1c2), (3)

where for simplicity we have taken a symmetric coupling
h12 = h21 = h. Equation (3) leads to the conserva-
tive part of Eqs.(2) through ċj = iδH/δc∗j [8, 12, 23].
Notice that Eq.(3) is the Hamiltonian of a nonlinear
Schroedinger dimer (SD), the simplest possible real-
ization of the discrete non-linear Schroedinger (DNLS)
chain. The DNLS, which has many applications in other
branches of physics [18�20], it is also used to model the
small amplitude dynamics of a spin chain and, in its con-
tinuum version, the SW propagation in ferromagnets [21].
It is known that the SD (and in general the DNLS)

have two conserved quantities, to which correspond two
conserved currents [21�23]: the total "number of parti-
cle" (in our case, the SW power p1 +p2) and the total en-
ergy H. Multiplying Eqs.(2) by their complex conjugate
and summing them, as in Ref.[12], gives the conservation
equation for the SW power

ṗ1 = −2Γ1(p1)p1 + jM , (4)

and a similar equation for p2. This leads to the de�nition
of the magnetization current jM = 2hIm(c1c

∗
2) between

the two oscillators
The energy current jE is implicitly de�ned by the con-

servation equation for the local energy [21�24]:

Ḣ2 = jE , (5)

where H2 = p2 + h(c1c
∗
2 + c∗1c2) is the energy of os-

cillator 2. An explicit calculation using Eqs.(2) gives
jE = 2hRe(ċ1c

∗
2). Notice that those currents are ob-

tained in the same way as the currents for the DNLS
chain [22�24], and they represent the special case where
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Figure 5: (Color online). (a) Recti�cation e�ect for magne-
tization and energy currents. The panels (b) and (c) show
the powers spectra computed for di�erent gradients and il-
lustrate the recti�cation e�ect. (b) For negative gradients,
the modes a01 and s01 overlap, giving a partial phase-locking
and a conductive state. (c) For positive gradients, there is no
overlapping and the conduction is reduced.

the DNLS has only two elements. In particular, Eq.4)
constitutes the continuity equations for the z component
of the magnetization in each disk, and in a continuum
ferromagnet leads to the usual de�nition of SW current
[21].

Notice that, if h12 6= h21, the Hamiltonian is not real
and the total SW power is not conserved. This issue is re-
solved simply by rescaling the SW amplitudes in Eqs.(2)
as c1 →

√
h12c1 and c2 →

√
h21c2 and leads to the change

h→
√
h12h21 in the currents.

Let us now consider the numerical simulations. The
currents where computed from the time evolution for the
` = 0 modes, in the gradient interval between ±3 K/nm,
near the linear regime. The currents displayed in our
�gures are the correlation functions jM = Im 〈c1c∗2〉 and
jE = Re 〈ċ2c∗1〉, where 〈·〉 stands for both the ensemble
and the time average. The latter is performed in the
interval between 20 and 50 ns. Fig.5(a) shows the two
currents as a function of the thermal gradient. One can
see that the system displays a recti�cation e�ect, with
the conducting state at negative gradients.

This e�ect can be explained in a way similar to the
conventional thermal diode [5]. For an oscillator with
only one SW mode, the SW amplitude can be written in
the phase-amplitude representation as cj =

√
pje

iφj , for
j = 1, 2. The currents then read jM = 2h

√
p1p2sin(∆φ)

and jE = 2h
√
p1p2ω1sin(∆φ), with ∆φ = φ1 − φ2 and

φ̇j = ωj . At zero gradient, the two oscillators precess
with di�erent frequencies, so that the two phases φ1 and
φ2 increase with di�erent rates. Thus the currents oscil-
late in time with zero average value. In this free-running
phase con�guration the system is in the insulating state.
The crucial point is that, since the system is nonlinear,

Figure 6: (Color online). (a) Phase di�erence ∆φ between
the oscillators vs time, computed for di�erent thermal gra-
dients. ∆φ increases faster in the insulating region than in
the conducting one, where the frequencies of the two oscilla-
tors become closer. (b) Corresponding power spectrum of the
magnetization currents. In the conductive state, the spectrum
is dominated by the zero frequency mode, which is barely visi-
ble in the insulating state. In the insulating state, the spectra
are reduced by a factor 3 for better visibility.

the frequencies are temperature dependent. Thus, in the
presence of a gradient the spectra may overlap, so that
∆φ becomes constant. In this phase-locked con�gura-
tion the currents are constant and the system behaves as
a conductor.
The phase locking can be clearly seen in Fig.5(b). In

the presence of a negative gradient, all the a modes shift
towards higher frequencies and approach the s modes. In
particular a01 and s00 merge into a single mode. On the
contrary, with a positive gradient the s modes are the
ones that shift towards higher frequencies, so that the
frequency gap between the two oscillators increases.
In the multi-mode system considered

here, the magnetization current reads

jM = 2hIm(
∑
`,m,`′,m′

〈
a`,ms

∗
`′,m′

〉
), and a simi-

lar expression holds for the energy current. In the
conducting state, jM consists of a sum of oscillating and
constant signals, the latter corresponding to the modes
that overlap. Thus, its power spectrum is a sequence
of lorentzian peaks, wich include a zero frequency
mode that accounts for the constant components of the
current.
This physical picture is supported by Fig.6. Panel (a)

shows ∆φ as a function of time for di�erent thermal gra-
dient. One can see that ∆φ increases much faster in the
insulating region than in the conductive one, indicating
that in the latter case the frequencies of the two oscil-
lators become closer. Notice that, if the overlap of the
modes were complete, ∆φ would simply �uctuate around
zero because of thermal noise. Panel (b) shows the power
spectrum of jM as a function of frequency, computed for
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di�erent gradients. One can clearly see the di�erence be-
tween the conducting and the insulating state: In the �rst
case, the spectrum is dominated by the zero frequency,
while in the latter the zero mode is not visible and the
spectrum is dominated by the �nite frequency modes.
To conclude, we have performed a numerical study that

describes a novel phenomenon: the recti�cation e�ect
of both energy and magnetization currents in a realistic
spin-valve system with several SW modes. The descrip-
tion is based on the natural extension of the concept of
SW-spin current to a discrete system coupled by dipolar
interaction. The de�nition of magnetization currents as
correlation functions between SW amplitudes suggests a
new way to measure spin currents in spin-Seebeck de-
vices. We gratefully acknowledge �nancial support from
Carl Tryggers Stiftelse (CTS), Goran Gustafssons stif-
telse, Vetenskapradet (VR), the Royal Swedish Academy
of Sciences (KVA), the Knut and Alice Wal lenberg
foundation (KAW), the European Commission (NexTec
project), and the Swedish Foundation for Strategic Re-
search (NanoTEG project). The computer simulations
were performed on resources provided by the Swedish Na-
tional Infrastructure for Computing (SNIC) at National
Supercomputer Centre (NSC). We thank S. Lepri, S. Iu-
bini and M. Molinari for useful discussions.
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