
A Comparison of C, MATLAB and Python as
Teaching Languages in Engineering

Hans Fangohr

University of Southampton, Southampton SO17 1BJ, UK, fangohr@soton.ac.uk

Abstract. We describe and compare the programming languages C,
MATLAB and Python as teaching languages for engineering students.
We distinguish between two distinct phases in the process of converting
a given problem into a computer program that can provide a solution:
(i) finding an algorithmic solution and (ii) implementing this in a partic-
ular programming language. It is argued that it is most important for the
understanding of the students to perform the first step whereas the actual
implementation in a programming language is of secondary importance
for the learning of problem-solving techniques. We therefore suggest to
chose a well-structured teaching language that provides a clear and intu-
itive syntax and allows students to quickly express their algorithms. In
our experience in engineering computing we find that MATLAB is much
better suited than C for this task but the best choice in terms of clarity
and functionality of the language is provided by Python.

1 Introduction

Computers are increasingly used for a variety of purposes in engineering and
science including control, data analysis, simulations and design optimisation. It
is therefore becoming more important for engineering students to have a robust
understanding of computing and to learn how to program.

In this paper, we outline the difficulties in learning and teaching program-
ming in an academic context including the choice of the programming language.
In section 2, we suggest a distinction between the algorithmic problem-solving
part of computer programming and the efforts to implement the algorithm using
a particular programming language. In section 3, we describe and compare MAT-
LAB, C and Python as potential teaching languages and report our experience
of them in an Engineering Department in section 4 before we conclude.

2 Teaching objectives

We understand the subject of “computing” to broadly represent the usage of
computers and numerical methods to solve scientific and engineering problems.
In the curriculum, we aim to go beyond the usage of dedicated software packages
and to enable students to write their own computer programs to provide insight
into the functionality of any software (at least in principle) that they may en-
counter. In this section, we derive our requirements for programming languages
to be used in education.

Universal programming building blocks: To analyse the programming pro-
cess, we list the main ingredients for any computer program (this can be done
more formally but is sufficient for our purposes here): (i) statements that do
something (for example adding two numbers, perform a Fourier transform, read
a sensor), (ii) blocks of statements, (iii) loops that repeat blocks (for-loops, for-
each-loops, while-loops, repeat until loops), (iv) conditional execution of blocks
(if-then statements, case, switch) and (v) grouping of blocks into modules (func-
tions, procedures, methods).

This lists a set of commands that is sufficient to describe sequential algo-
rithms, and by grouping statements into modules, moderately large and well-
structured programs can be written within this framework.1 Virtually all pro-
gramming languages provide constructs that correspond to the listed items.

Problem-solving process: Computer programs are generally used to solve a
given problem. We divide the process of writing a computer program into two
parts:

1. finding the algorithmic solution (we will call this the “algorithmic problem-
solving part”) and

2. implementing the algorithm in a particular language (the “implementation
part”).

For example, to compute an approximation A of the integral I =
∫ b

a
f(x)dx

using the composite trapezoidal rule with n subdivisions of the interval [a, b]:
A = h

2

(
f(a) + f(b) + 2

∑n−1
i=1 f(xi)

)
with h = b−a

n and xi = a + ih, the two
parts of the solution are:

1. the algorithmic solution which can be written in some form of pseudo-code:

user provides f, a, b, n
compute interval width h=(b-a)/n
set initial area=0.5*h*(f(a)+f(b))
for each point x=x_i with i increasing from 1 to n-1

compute area under f(x)
x = a + i*h (this is the current x)
dA = f(x)*h (this is the new contribution)

area = area + dA (update the total area)
return area to user

2. the implementation which expresses the algorithmic solution in some pro-
gramming language. For example figure 1 shows MATLAB code2 that per-
forms the calculation (for f(x) = exp(−x2) and a = 0 and b = 1).

While in this example the algorithmic problem-solving is relatively straight
forward (because the problem was posed in form of an equation), in general this

1 We recognise the importance of object orientation but have excluded such features
from the list above for clarity of argument.

2 There are more efficient, general and elegant ways to code this but these are unlikely
to be used by beginners and irrelevant to the situation described here.

% input from user
a = 0.0; b = 1.0; n = 100;

h = (b-a)/n;
area = 0.5*h*(exp(-a^2) + exp(-b^2));

for i=1:n-1
x = a+i*h;
area = area + h*exp(-x^2);

end

fprintf(’The value of the approximation is \%f\n’, area)

Fig. 1. A MATLAB program to approximate
∫ 1

0
exp(−x2)dx.

is the main challenge the students face: the conversion of a problem described
vaguely and informally in natural language into a sequence of instructions that
break the problem in many small parts that a computer can solve subsequently.
The implementation part can be complicated and time consuming but does not
(or at least should not) contain major intellectual challenges.

The boundary between the algorithmic problem-solving and the implemen-
tation is, of course, not clearly defined. However, it is clear that different imple-
mentations of a problem-solving algorithm in different languages share the same
underlying algorithm (which we use here as the definition for the algorithmic
problem solving part). In the teaching practice, the algorithmic problem-solving
and implementation tasks are often entangled simply because the students need
to test an algorithm they invented by implementing it.

Teaching objectives in computing: We argue that the primary target in
teaching computing is to enable the students to convert engineering problems
into pseudo-code. This is a challenging task that requires analytical thinking
and creativity. The conversion of this pseudo-code into a program written in one
programming language is of secondary importance because it is, in principle, an
algorithmic procedure and requires less intellectual effort.

Consequently, the choice of the teaching language should be governed by
which language provides the best support to the student in performing the im-
plementation part of the problem-solving task. (The remainder of this paper
addresses this question.) Once students are confident in the algorithmic problem-
solving part, they can learn new programming languages as required to port the
algorithmic solutions to their current working environment.

3 Overview of programming languages used
The C programming language: The C programming language [1] is a low-
level compiled language (sometimes classified as a 3rd generation language) that
is widely used in academia, industry and commerce. Fortran falls into the same
category but while Fortran is still commonly used in academia it appears to be
overtaken by C (and C++) in many industrial applications. C++ provides a
different programming paradigm than C but for the purpose of this work, C++

is more similar to C than it is to MATLAB or Python. The main advantage of
compiled low-level languages is their execution speed and efficiency (for example
in embedded systems).

MATLAB: The MATLAB programming language is part of the commercial
MATLAB software [2] that is often employed in research and industry and is an
example of a high-level “scripting” or “4th generation” language.

The most striking difference to C and other compiled languages is that the
code is interpreted when the program is executed (an interpreter program reads
the source code line by line and translates it into machine instructions on the
fly), i.e. no compilation is required. While this decreases the execution speed,
it frees the programmer from memory management, allows dynamic typing and
interactive sessions. It is worth mentioning that programs written in scripting
languages are usually significantly shorter [3] than equivalent programs written
in compiled languages and also take significantly less time to code and debug.
In short, there is a trade-off between the execution time (small for compiled
languages) and the development time (small for interpreted languages).

An important feature for teaching purposes is the ability of MATLAB (and
other interpreted languages) to have interactive sessions. The user can type one
or several commands at the command prompt and after pressing return, these
commands are executed immediately. This allows interactive testing of small
parts of the code (without any delay stemming from compilation) and encourages
experimentation. Using the interactive prompt, interpreted languages also tend
to be easier to debug than compiled executables.

The MATLAB package comes with sophisticated libraries for matrix opera-
tions, general numeric methods and plotting of data. Universities may have to
acquire licences and this may cost tens of thousands of pounds.

Python: Python [4] is another high-level language and at first sight very similar
to MATLAB: it is interpreted, has an interactive prompt, allows dynamic typing
and provides automatic memory management (and comes with in-built complex
numbers).

We have included Python in this work because it provides several advantages
over MATLAB in the context of teaching: (i) Python has a very clear, unam-
biguous and intuitive syntax and uses indentation to group blocks of statements.
(ii) Python has a small core of commands which provide nearly all the function-
ality beginners will require. (iii) Python can be used as a fully object-orientated
language and supports different styles of coding. (iv) The Python interpreter
is free software (i.e. readily available), and Python interpreters for virtually all
platforms exist (including Windows, Linux/Unix, Mac OS).

It is worth noting that although Python has been around for only approx-
imately 10 years, it is a relatively stable language and used increasingly in in-
dustry and academia (currently including organisations such as Philips, Google,
NASA, US Navy and Disney). It also provides the framework for creating and
managing large modularised codes. Commonly used extension modules provide
access to compiled libraries including high performance computation [5] and
visualisation tools.

#include<stdio.h>
#include<math.h>

int main(void) {
int n = 100; double a = 0.0; double b = 1.0;

int i;
double h = (b - a) / (double) n;
double area = h*0.5*(exp(-a*a) + exp(-b*b));
double x;

for (i=1; i<n; i++) {
x = a + i*h;
area = area + h*exp(-x*x);

}

printf("The value of the approximation is %f\n", area);

return 0;
}

Fig. 2. C program to approximate
∫ 1

0
exp(−x2)dx.

4 Teaching Experience

In this section, we present for each of the languages in question a short program
that performs the numerical integration as given in the equation in section 2.
The source codes shown are neither commented, optimised for speed and elegance
nor do they explore advanced features of the respective language. This is to save
space and to represent the coding style that students would initially use. We
then report and discuss experiences in teaching the three languages to first and
second year undergraduate engineering students and to postgraduate students
from different backgrounds.

Using C: Figure 2 shows one C program that performs the same computation
as the MATLAB program shown in figure 1. In comparison to the MATLAB
program, this code is longer and carries a substantial overhead (such as the
include statements, the wrapping of the main code into the main function and
the return of the exit status). It is necessary to declare variables and their types
before any statements are executed. Eventually, the student needs to compile
the code (and link to the mathematics library) before it can be executed.

Typical problems students experience while programming in C are: (i) In-
dentation of for-loop (and other blocks) and scope (as defined by curly braces)
do not agree, thus the for-loop executes incorrect commands. (ii) Missing semi-
colons, curly braces, parentheses around if-statement tests in combination with
moderately useful error messages from the compiler stop the compilation pro-
cess. (iii) Passing of values of wrong type in function calls or printing numbers
using the wrong format identifier token; both problems result in wrong numerical
results that students find difficult to interpret and rectify.

While these are not particularly challenging to the experienced programmer
it can be observed that beginners struggle when they come across this framework,

import math
n = 100; a = 0.0; b = 1.0

h = (b-a)/n
area = 0.5*h*(math.exp(-a**2) + math.exp(-b**2))

for i in range(1,n):
x = a+i*h
area = area + h*math.exp(-x**2)

print "The value of the approximation is", area

Fig. 3. Python program to approximate
∫ 1

0
exp(−x2)dx.

whereas there are significantly less difficulties when they start using MATLAB
or Python.

Using MATLAB: Figure 1 shows the example program. We generally find
that it is much easier for students to start programming using MATLAB than
it is using C because MATLAB addresses many of the issues raised above.

It is good practice to split code into small functional units where-ever possi-
ble to modularise programs and to be able to re-use the functions individually
for different projects. One of the recurring problems that students experience
in learning programming using MATLAB is the convention of storing only one
(globally visible) function in a file. This can result in a large number of files and
initially the usage of functions is experienced by students as being counterpro-
ductive: several files have to be displayed to see all the source code at the same
time (thus making it hard to follow the programme flow on the screen). A re-
lated issue is that in MATLAB the name of the function as specified within the
source file should be identical to the file name of the source file containing that
function. (The filename determines the globally visible name of the function.)
This is often overlooked (by the students) and a source for many errors.

Using Python: Figure 3 shows a Python implementation of the integration
problem. By importing the mathematics module in the first line, the use of name
spaces is nicely demonstrated.3

The range command in line 7 returns a list of integers (ranging from 1 up to
but not including n) which i refers to in subsequent iterations. The for-loop used
here is actually a for-each loop because for each element in the list of integers,
the body of the loop is executed. For-each-loops are in general more powerful
than the for-loop, although this is not exploited here. (Note that the for-loop in
MATLAB is also a for-each loop although the syntax makes this less obvious.)

It is of significant benefit in teaching programming that the block of state-
ments in the body of the for-each loop is limited solely by indentation because
much time is spent encouraging students to ensure that the actual block de-
limiters (curly braces {} in C, the for and end keywords in MATLAB) are in

3 This also addresses issues with unintented use of global variables in MATLAB which
can confuse beginners but which are outside the scope of this report.

import math

def integrate(f, a, b, n):
h = (b-a)/n
sum = (f(a) + f(b))*0.5

for i in range(1,n-1):
x = a+i*h
sum = sum + f(x)

return sum*h

def f1(x):
return math.exp(-x**2)

def f2(x):
return math.sin(-x**4)

main program starts here:
n = 100; a = 0.0; b = 1.0
print "The approximation of f1 is ", integrate(f1, a, b, n)
print "The approximation of f2 is ", integrate(f2, a, b, n)

Fig. 4. A Python program demonstrating how to pass functions as arguments.

agreement with the chosen indentation (because our perception of the program
structure is led by indentation). Any disagreement between the two is likely to
represent an error.

Python offers an environment which addresses most of the problems we ob-
serve in teaching C and MATLAB. Students experience comparatively few prob-
lems in starting to program in Python and develop to enjoy and experiment
within the intuitive environment.

Advanced example: It is outside the scope of this work to explain many of
the reasons why Python is generally appealing as a first programming language
(see for example [6]). Instead, we present the implementation of one logical
extension of the integration programmes in Python and compare this with C
and MATLAB.

Students should experience that it is advantageous to build a library of small
generic functions that can be used and re-used to solve bigger problems rather
than to write specific code to solve one, and only one, problem. As part of this, it
is sensible to code the integration routine in a function which takes the following
parameters: the function to integrate (f), the lower and upper integration limits
(a and b) and the number of subdivisions (n). A Python program that first defines
this function with the name integrate and then integrates two functions f1 and
f2 is shown in figure 4.

Note that the function to be integrated is passed to the integrate function
just like any other object, and that f is evaluated inside the integrate function
as if a function f would be defined (whereas in fact f refers to either f1 or f2).
This is in stark contrast to C where the passing of functions as arguments needs
the introduction of pointers (and where the type of theses pointers take the
argument list of the function they point to into account), and where the pointer

has to be de-referenced to call the function. In MATLAB, the situation is not
as complicated as in C but the function integrate would have to be rewritten
to use the feval command to evaluate the function rather than to evaluate it
intuitively.

The technical reason for the ease with which functions can intuitively be
passed and used in Python, is that everything in Python (including numbers,
functions and classes) are objects. Note that it would be easy to replace the
function calls to the integrate function in the last lines of figure 4 by this
for-each loop over the list of functions f1 and f2:

for f in [f1,f2]:

print "The approximation is", integrate(f, a, b, n)

Each object stores its name in an attribute __name__, so the above code can
be modified to print not only the value of the integral of f1 and f2 respectively,
but also the name f1 and f2:

for f in [f1,f2]:

print "The approximation of",f.__name__,"is",integrate(f, a, b, n)

A corresponding solution in MATLAB is far less elegant, and it requires
significant effort (which we believe is outside the scope of first year students) to
achieve this in C.

5 Conclusions

In comparing the three different languages (C, MATLAB and Python) as out-
lined in section 4, we find that the Python language appears most intuitive to the
students followed by MATLAB, and C. We believe that Python is an excellent
language to begin computer programming with and which allows the student
to focus on the problem-solving rather than on the syntax and structure of the
programming language.

The author thanks A. J. Chipperfield, R. P. Boardman, M. Molinari and J.
M. Generowicz for useful discussions.

References

1. Kernighan, B.W., Ritchie, D.M.: The C Programming Language. Prentice Hall
Software Series (1988)

2. The Mathworks: Matlab (2003) www.mathworks.com.
3. Prechelt, L.: An empirical comparison of seven programming languages. IEEE

Computer 33 (2000) 23–29
4. van Rossum, G.: Python tutorial. Centrum voor Wiskunde en Informatica (CWI),

Amsterdam. (1995) www.python.org.
5. NumPy Team: Numerical Python (2003) www.pfdubois.com/numpy.
6. Donaldson, T.: Python as a first programming language for every-

one. In: Western Canadian Conference on Computing Education. (2003)
www.cs.ubc.ca/wccce/Program03/papers/Toby.html.

