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Critical Transverse Forces in Weakly Pinned Driven Vortex Systems
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We present simulation results of the moving Bragg glass régime of a driven two-dimensional vortex
system in the presence of a smoothly varying weak pinning potential. We study the critical transverse
force and (i) demonstrate that it can be an order of magnitude larger than previous estimates (ii)
show that it is still observable when the system is driven along low higher-order lattice vectors.
We confirm theoretical predictions that the critical transverse force is the order parameter of the
so-called moving glass phase, and provide data to support experimentalists verifying the existence
of a critical transverse force.

I. INTRODUCTION

The vortex state is dominated by the competition of
ordering and disordering interactions. Vortex-vortex re-
pulsion tends to order the system whereas thermal fluctu-
ations and pinning from material imperfections introduce
disorder into the vortex lattice. Recently, interest has de-
veloped in the nature of the non-equilibrium states and
dynamical phases in the presence of a Lorentz force driv-
ing the system. There is evidence from experiments,1

simulations2–6 and theory2,7–9 that for small driving
forces the vortex system is disordered and shows tur-
bulent plastic flow, and that for larger driving forces
the system orders and shows elastic flow. For the or-
dered system Koshelev and Vinokur2 proposed that the
vortices may form a moving hexagonal crystal. Sub-
sequently, Giamarchi and Le Doussal7,8 predicted that
this highly driven phase may be a topologically ordered
moving glass (the moving Bragg glass) in which vortices
move in elastically coupled static channels like beads on a
string. It was also suggested8–10 that the motion of vor-
tices in different channels may be decoupled (the moving
transverse glass) and thus shows smectic order. In com-
puter simulations4–6 and in experiments11 both the mov-
ing transverse glass (MTG) with decoupled channels and
the moving Bragg glass (MBG) with coupled channels
have been observed.

A remarkable property of the moving glass (with ei-
ther coupled or de-coupled channels) is that, in the pres-
ence of random pinning and once the static channels are
established, the application of a small force transverse
to the direction of motion does not result in transverse
motion.7,8 Only if a critical transverse force has been ex-
ceeded, is the system transversely de-pinned. Computer
simulations have demonstrated the existence of such a
critical transverse force for random pinning,4,5,12,13 and
for periodic pinning.14

In this work we use a more realistic representation of
high purity single crystals used in fundamental studies
of vortex dynamics; we investigate régimes with a high
density of vortices with long-range logarithmic vortex-

vortex interaction potentials (as in Ref. 12) and we em-
ploy a weak smoothly varying pinning potential rather
than many strong point-like pins.4,5,12,13 We find and ex-
plain a magnitude of the critical transverse force of the
order of 10% of the static de-pinning force in the régime
investigated in contrast to previous works4,5,13 which re-
port it to be ≈ 1%. We report on novel results for the
critical transverse force in the presence of weak pinning
which (i) verify the theory of Giamarchi and Le Doussal7

and (ii) provide the first numerical data which may be
compared directly with current experimental efforts to
demonstrate the existence of the critical transverse force.

II. THE SIMULATION

We model the vortex motion of a two-dimensional sys-
tem with over-damped Langevin dynamics. The total
force acting on vortex i is given by Fi = −ηvi + F

L +
F

vv
i +F

vp
i +F

therm
i = 0 where η is the viscosity coefficient,

vi the velocity, F
L the Lorentz force, F

vv
i the vortex-

vortex interaction, F
vp
i the vortex-pinning interaction,

and F
therm
i a stochastic noise term to model temperature.

The vortex-vortex interaction force appropriate for rigid
vortices in thin films and pancakes in decoupled layers of
layered materials is15 F

vv
i = (Φ2

0s)(2πµ0λ
2)−1

∑
j 6=i(ri −

rj)(|ri − rj |)
−2. Φ0 is the magnetic flux quantum, µ0

the vacuum permeability and s the length of the vor-
tex. We employ periodic boundary conditions and cut off
the logarithmic vortex-vortex repulsion potential at half
the system size. It is important to reduce the vortex-
vortex interaction near the cut-off distance smoothly to
zero.16 We investigate systems with a magnetic induction
of B = 1 T and a penetration depth of λ = 1400Å which
yields a vortex density of ≈ 10/λ2. The random pinning
potential as shown in Fig. 1 varies smoothly on a length
scale of λ/25 which is of the order of magnitude of the
coherence length ξ. The root mean square value of the
corresponding pinning forces is denoted by F vp

rms. System
sizes from 100 to 3000 vortices have been investigated.
Forces are expressed in units of the force, f0, that two
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vortices separated by λ experience.

FIG. 1. A sample pinning potential. Distances in x- and
y-directions are given in multiples of the vortex lattice spac-
ing, a0. The seven black cylinders indicate vortex lines sepa-
rated by a0 to demonstrate the length scale.

Initially, we anneal the vortex system in the presence
of random pinning from a molten state to zero tempera-
ture. Then a driving force is applied which is increased
every 4 ·104 time steps. With increasing driving force we
find a pinned system, turbulent plastic flow and finally
the MBG. For sufficiently strong pinning there is an in-
termediate régime between turbulent plastic flow and the
MBG in which the vortex motion in different channels is
decoupled.17 We find a critical transverse force for both
the MBG and the MTG, and here we report on the small
pinning strengths which do not allow smectic states with
decoupled motion of channels of vortices. To find the
critical transverse force we start with a MBG driven by
a constant force FL

x in the x-direction and slowly increase
the transverse force FL

y in the y-direction, until the sys-
tem starts moving transversely. The lower ends of the
bars shown in Fig. 2 to 5 represent the largest probed
transverse force which did not yield any transverse mo-
tion, and the upper ends of the bars show the smallest
transverse force that could de-pin the system transver-
sally.
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FIG. 2. The ratio of the critical transverse force F c

y to the
static de-pinning force F c

x for various numbers of vortices, N .
The lower curve is for strong pinning with F vp

rms/f0 = 1.0 and
the upper curve is for weak pinning with F vp

rms/f0 = 0.12.

III. RESULTS

Fig. 2 shows that there is a decrease in the ratio of the
critical transverse force F c

y to the static de-pinning force
F c

x for system sizes below 1000 vortices. However, for
larger systems this ratio remains constant, showing that
the observed F c

y is not a finite-size effect. We have in-
creased the cut-off with the system size to ensure that ef-
fects due to the long-range interactions between the addi-
tional particles in the simulation are taken into account,
which contrasts to a similar finite-size study13 where the
cut-off for the vortex-vortex interaction was kept con-
stant and the results were reported to be independent of
the system size.

Previous estimates4,5,13 for the ratio F c
y /F c

x give a
value ≈ 0.01. We find F c

y /F c
x ≈ 0.1 and identify two

reasons for this order of magnitude discrepancy. Firstly,
we study the weak pinning régime in which the hexag-
onal structure of the static vortex system (i.e. without
an applied driving force) is not completely destroyed due
to the vortex pinning, whereas previous studies focused
on the strongly pinned régime in which the static sys-
tem is strongly disordered. Both systems — with weak
and strong pinning — move elastically and show topo-
logical order under the influence of the driving force in
the x−direction. The critical force required to de-pin the
static system, F c

x , is greater for the strongly pinned sys-
tem which shows disorder, because a disordered system
can adopt better to the pinning potential. However, the
force required to de-pin the moving system transversely,
the critical transverse force F c

y , depends less strongly on
the pinning strength because the elastically moving sys-
tem is topologically ordered for either pinning strength.
Thus, the ratio F c

y /F c
x is higher for weak pinning. We

demonstrate this in Fig. 2 where we show that the change
from strong to weak pinning increases the ratio F c

y /F c
x

by a factor 2 to 3. Secondly, the pinning potentials em-
ployed in Refs. 4,5 and 13 consist of (strong) point-like
randomly distributed pins, which we find increase the
static de-pinning force F c

x by another factor 2 to 3 com-
pared with using a smoothly varying pinning potential
(Fig. 1). We would thus get to the same order of magni-
tude for the ratio F c

y /F c
x as Refs. 4,5 and 13 if we used

the simulation scenario they employed. We find that for
different random pinning configurations the F c

y can vary
up to a factor 2 in the weak pinning limit.

Fig. 3 shows the variation of F c
y as a function of the

pinning strength for systems driven with a constant driv-
ing force FL

x = 0.3f0 in the x-direction. The absence of
transverse barriers for zero pinning strength shows that
it is not the periodic boundary conditions which result
in a critical transverse force. With increasing pinning
strength F c

y increases linearly until it starts to decay for
pinning strengths of F vp

rms ≈ 0.25f0 and reaches zero at
F vp

rms ≈ 0.35f0. The decay of the F c
y is caused by the

strength of the pinning producing turbulent plastic flow
of the vortices: in this region the MBG breaks down.
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This is demonstrated by the second curve in Fig. 3 which
shows that the fraction of vortices that are topological de-
fects, ndef, increases rapidly for pinning strengths greater
than 0.325f0. We define a topological defect to be one
which does not have six nearest neighbors in the peri-
odic Delaunay triangulation of the vortex positions. The
slight increase of ndef for pinning strengths 0.3f0 and
0.325f0 is due to strong temporary deformations of the
MBG such that pairs of topological defects appear next
to each other and disappear after a few time steps. This
indicates the weakness of the MBG but not its breakdown
(because the system shows elastic motion). In contrast,
the transition to turbulent plastic flow is accompanied by
a proliferation of topological defects. This confirms the-
oretical expectations8 that the critical transverse force,
F c

y , is the order parameter for the moving glass, which,
in the weak pinning régime, is represented by the MBG.
The data shown in Fig. 3 are obtained for a system of
576 vortices. For larger systems we get qualitatively the
same curves, with a slightly reduced height of F c

y .
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FIG. 3. Critical transverse force and topological defect
fraction ndef as a function of pinning strength. The criti-
cal transverse force reduces to zero where the system changes
from elastic flow to turbulent plastic flow and the number of
topological defects increases rapidly.

Le Doussal and Giamarchi8 suggested a dependence of
the critical transverse F c

y as a function of the longitu-
dinal velocity, vx, which predicts a decay of the F c

y for
large vx and has not previously been investigated nu-
merically. For an isotropic system one expects that the
critical “transverse” force F c

y for a static system is the
same as the critical force (acting in any direction) that is
required to de-pin the system. Our computations confirm
that in particular F c

y = F c
x for a static system. However,

as soon as the system of vortices is de-pinned and moves
elastically in the x-direction, the transverse critical force
reduces to much smaller values because the system is not
sticking to the pinning potential, but de-pinned in the
x-direction. Fig. 4 shows results of our simulations using
a pinning strength of F vp

rms = 0.12f0 and a system size of
1200 vortices. We could not resolve the smallest veloc-
ities because these are computationally expensive, and

we have omitted the data point at vx = 0. The curve
starts for small vx with a F c

y of ≈ 10% of the static de-
pinning force F c

x . With increasing vx the F c
y decreases

quickly up to velocities of ≈ 2 simulation units and then
less strongly for larger velocities. Our findings are com-
patible with the prediction that the critical transverse
force decays for higher velocities as additional dynamic
disorder weakens the transverse barriers.8
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FIG. 4. Critical transverse force F c

y normalized by the
static de-pinning force F c

x for various longitudinal velocities
vx in the moving Bragg glass régime.

The velocities given here in simulation units are di-
rectly comparable to Ref. 17, where 0.1 represents a low
velocity for the system, and 10 is large. In these units
the transition from plastic to elastic flow happens around
a velocity of 7 simulation units with a pinning strength
of F vp

rms = 1.0f0. Our work suggests therefore that small
driving forces are most appropriate for experimental ver-
ification of the critical transverse force.

It is worth noting that using a system size of less than
1000 vortices (Fig. 2) gives qualitatively different results;
for such small systems the F c

y in Fig. 4 remains constant
above a small velocity of ≈ 0.3 simulation units, which
is a finite size effect.

We report on the existence of the critical transverse
force in higher commensuration directions. The data
shown in Fig. 2 to 6 are obtained with a driving force
acting in the [10] (or equivalent symmetry) directions of
the Bragg-Glass-lattice (see inset Fig. 5). The theory
of Giamarchi and Le Doussal7 predicts that the system
should see static disorder when moving in any commen-
surate direction. It is then expected that the channels
and transverse pinning should exist for low commensura-
tion vectors and become unstable at higher ones due to
the relatively increasing dynamic disorder.7 To test these
ideas, we have applied a driving force to a hexagonal lat-
tice in the [21]- and [31]-direction. For the [21]-direction
we observe that static channels characteristic of the MBG
establish and that there are transverse barriers to a trans-
verse force which is subsequently applied. In contrast, we
have found that for the [31]-directions static Bragg chan-
nels do not develop. We presume them to be unstable (at
these velocities), and consequently, no critical transverse
force has been found for the [31]-direction.
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FIG. 5. Apparent critical transverse force as a function of
reduced temperature T/Tm. Inset: Directions of the driving
force probed for the existence of static channels and critical
transverse forces. The lattice vectors used for labeling the
directions are shown as a and b.

For finite temperatures it is predicted that there is
no true critical transverse force but all transverse drives
result in a small response in the transverse motion of
the system.8 However, for an apparent critical transverse
force the system is expected to start moving transversely
much quicker. Data on the apparent critical transverse
force in Fig. 5 shows that it decays with increasing tem-
perature and vanishes at the melting temperature of the
system. The de-pinning force of the static system, F c

x ,
decays similarly with increasing temperature, such that
F c

x/F c
y ≈ const.

To assist in the experimental demonstration of the ex-
istence of the critical transverse force we provide in Fig.
6 data on the differential transverse resistance Rdiff

y =

dvy/dFL
y normalized by the longitudinal resistance Rx =

vx/FL
x , which can both be measured experimentally. We

use central differences to approximate the differential
transverse resistance

Rdiff
y =

dvy

dFL
y

≈
vy(FL

y + ∆) − vy(FL
y − ∆)

2∆

where ∆ is a small change in force. We compute
σ = Rdiff

y /Rx, which is a function of temperature, T ,

and both components, FL
x and FL

y , of the driving force:

σ = σ(T, FL
x , FL

y ). We choose a small transverse force,

FL
y , and keep it constant for each curve in Fig. 6. In

the left plot we show σ(T, FL
x =1f0, F

L
y =0.00225f0), i.e.

we vary the temperature T . And in the right plot we
show two curves with slightly different transverse forces
at zero temperature: σ(T = 0, FL

x , FL
y = 0.00225f0) and

σ(T=0, FL
x , FL

y =0.00275f0), i.e. we vary the longitudinal

driving force FL
x .

In the left plot in Fig. 6 the constant transverse force
FL

x = 1f0 results in a velocity of vx ≈ 1 simulation
units, and the transverse force FL

y =0.00225f0 is chosen
to be slightly smaller than the critical transverse force
at T = 0 for these simulations. The plot shows that
for very small temperatures σ ≈ 0. This means that
an increase in the transverse force does not result in an
increase in transverse motion. With increasing tempera-
ture σ shows a peak. Here, an increase in the transverse

force results in a strong increase in the transverse veloc-
ity, and this is where the system starts quickly moving
transversely. For a further increase in temperature, σ
comes down to σ ≈ 1.2, before it drops to 1.0 at the
melting temperature Tm. The reason that σ ≈ 1.2 for
intermediate temperatures is that even after transverse
de-pinning the moving system feels some transverse pin-
ning up to transverse forces many times larger than the
critical transverse force.13 The remaining transverse pin-
ning reduces with increasing transverse drive, FL

y , and
we find the transverse response, vy, to be non-linear in
this regime: vy increases stronger than linearly with FL

y .

Thus, σ = (dvy/dFL
y )/Rx > 1.
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FIG. 6. Differential resistance in transverse direction nor-
malized by resistance in longitudinal direction as a function of
reduced temperature (left) and of strength of the longitudinal
driving force (right). See text for details.

The right plot in Fig. 6 shows zero temperature data
for various longitudinal driving forces FL

x and two dif-
ferent constant transverse forces FL

y = 0.00225f0 and

FL
y =0.00275f0. For small FL

x the system does not move

transversely and σ = 0. When FL
x increases, it increases

the velocity vx of the system and thus reduces the critical
transverse force (as shown in Fig. 4). Therefore, for suf-
ficiently large FL

x the system starts moving transversely
and σ shows a peak which decays to 1.0 for larger FL

x .
The slow decay of σ is due to remaining transverse pin-
ning above the transverse de-pinning force.13 The mag-
nitude of the constant transverse driving force FL

y deter-
mines the position of the peak of σ, as the two curves
in the right plot in Fig. 6 demonstrate. In experimen-
tal work the presence of a critical transverse force should
manifest itself in σ changing as shown in Fig. 6.

IV. SUMMARY

We have investigated numerically the critical trans-
verse force of two-dimensional vortex systems in the pres-
ence of a random pinning potential. We find a critical
transverse force for both the MBG and the MTG, but not
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for turbulent plastic flow. The ratio of the critical trans-
verse force to the static de-pinning force is of the order
of 10%. For the MBG we find that the critical transverse
force increases with increasing pinning strength up to a
value at which the elastic motion changes to turbulent
plastic flow and the critical transverse force goes rapidly
to zero. The critical transverse force is inversely propor-
tional to the longitudinal velocity and is compatible with
theoretical predictions.8

We have performed simulations in which a hexagonal
lattice is driven in low higher-order lattice directions.
These simulations revealed for the first time that a MBG
and a critical transverse force exist for the driving force in
the [21]-direction, but not for the [31]- and higher-order
directions, thus supporting the theory of Giamarchi and
Le Doussal.7 Our results suggest that in an experimental
search for the critical transverse current low tempera-
tures and small longitudinal driving forces (which how-
ever will have to be large enough to cause elastic motion)
are most promising. We provide data that can be com-
pared directly with experimental efforts to demonstrate
a critical transverse force.
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