Current-driven dynamics of domain walls constrained in ferromagnetic nanopillars
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We investigate the effects of an electric current on the domain wall formed inside a cylindrical
ferromagnetic nanopillar as a consequence of the pinning of the magnetization at its ends. We first
present the results of three-dimensional and one-dimensional micromagnetic simulations and show
that the system approaches a stationary equilibrium, where the domain wall is compressed in the
direction of the electron flow and rotates around the nanopillar axis with constant frequency in
the microwave frequency range. We obtain the dependence of the rotation frequency on the length
of the nanopillar and on the magnitude of the applied current density. We then introduce a one
dimensional analytical model and find a formula for the rotation frequency in two current regimes:
a low current regime, where the frequency is linearly proportional to the current density and a
high current regime, where the frequency is quadratically proportional to the current density. Good
agreement is found with the results of the simulations. The system may have possible applications as
a nano-sized microwave generator, which could operate without external magnetic fields and whose

emission frequency could be controlled by a DC current.

I. INTRODUCTION

The interaction between electric currents and domain
walls in ferromagnetic nanowires has been the subject
of intensive study in recent years. Experiments have
shown that a spin polarized current can produce a do-
main wall movement in the direction of the electron
flow! ™. This effect has been investigated analytically
and numerically® 7. In a recent work® we studied the
case where a domain wall occurs inside a ferromagnetic
nanopillar as a consequence of the pinning of the magne-
tization at the nanopillar ends. The situation is similar
to the one which occurs for a domain wall in a nanowire,
with an important difference: the domain wall is pinned
and cannot translate freely along the nanopillar. For such
a system one may expect a compression of the domain
wall, rather than a translation. Micromagnetic simula-
tions confirm this expectation, showing that the applied
current produces a compression of the domain wall in
the direction of the electron flow. More surprisingly the
system reaches a stationary equilibrium characterized by
a rotation of the compressed domain wall around the
nanopillar axis with frequency which is constant in time
and lies within the microwave frequency range. This be-
havior is not found for domain walls in nanowires and
suggests novel technological applications: such a system
may be used to obtain microwaves emission from a DC
electric current without the need of an external magnetic
field.

In this paper, we study how the rotation frequency de-
pends on the applied current density and on the nanopil-
lar length. We first present the results of three di-
mensional and one dimensional micromagnetic simula-
tions. We then introduce an analytical model and find
two current regimes: the low current regime, where the
frequency depends linearly on the current density, and
the high current regime, where the dependence becomes
quadratic. We derive approximate formulae for the fre-
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FIG. 1: (Color online) A sketch of the system. The arrows
on the cylinder axis represent the magnetization, pinned in
opposite directions at the nanopillar ends.

quency in these two regimes and find good agreement
with the results from the simulations. The analytical
model supports the numerical results and gives more in-
sight on the physics of the system.

II. THE SYSTEM

The system under investigation is a ferromagnetic
nanopillar in the shape of a cylinder, as shown in Fig. 1.
The magnetic moments at the right and left faces of the
cylinder are assumed to be pinned, pointing to the right
at the right face and to the left at the left face. As a con-
sequence, a domain wall is developed. The system may
thus approximate the situation we considered in a pre-
vious work®, where a nanopillar made of a magnetically
soft material was sandwiched between two magnetically
hard layers and the pinning was provided by the exchange
coupling at the soft-hard interfaces. In this paper how-
ever we do not make any assumptions on the origin of the
pinning, which can be achieved in other ways. One exam-
ple could be a ferromagnetic body, made by two regions
connected through a small constriction: a domain wall is
developed in the constriction, when the wider regions are
magnetized in opposite directions® 0.

In this work we study how the constrained domain wall



reacts to a uniform and constant electric current flowing
along the axis of the nanopillar. Both the simulations and
the analytical investigations we present are based on a
micromagnetic model, where the interaction between the
spins of the conduction electrons and the magnetization
is taken into account using the Zhang and Li correction
to the Landau-Lifshitz-Gilbert equation®:
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In this equation M is the magnetization, My = [|[M]| is
the saturation magnetization, H is the effective magnetic
field, v is the gyromagnetic ratio, « is the damping pa-
rameter and we use the notation 9; = %, Oy = a%' The
current density j is applied in the positive  direction and

enters the model through the parameter v = %,

where P is the degree of polarization of the spin current,
g is the Bohr magneton, e the absolute value of the elec-
tron charge, £ = Tex/7st is the ratio between the exchange
relaxation time and the spin-flip relaxation time. In our
model My is uniform in space and constant in time. We
can then obtain an explicit form for equation (1):

Om = —yYmxH-—+am x (m x H)

—av'm x (m x 9;m) —av'm x d,m (2)

where m = M/M; and v' = v/(1+a?), v' = v/(1+ a?).
The two dimensionless coefficients a and @ are a = 1+
and a =¢& — a.

The effective field H receives two main contributions:
one from the exchange interaction, the other from the
magnetostatic interaction. The exchange interaction
tries to keep neighboring moments aligned. The exchange

field is Hexen = C 92m, where C' = uiI\A/Is’ A is the e2X-
_ 9

change coupling constant of the material and 92 = 5z
The magnetostatic interaction mainly tries to align M
with the axis of the nanopillar (when its length is much
greater than its radius) thus reducing the magnetic sur-
face charges.

The model does neither include the effects of Joule
heating nor the effects of the Oersted field. We discuss

these assumptions in section VI.

III. THREE DIMENSIONAL
MICROMAGNETIC SIMULATIONS

For the micromagnetic simulations we use Nmag!!,
a finite element method (FEM) micromagnetic simula-
tion package. The cylindrical nanopillar is modelled by
a three dimensional unstructured mesh and first order
FEM is used to discretize the space. The time evolution
of the magnetization is calculated using equation (2), ex-
cept for the sites which lie on the left and right faces
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FIG. 2: (Color online) The evolution of the components of
the average normalized magnetization (m) = (M) /M; as a
function of time. The nanopillar length is L = 40 nm.

of the nanopillar. For these sites we assume d;m = 0,
which corresponds to infinitely strong pinning on the
magnetization. The magnetostatic field is calculated us-
ing the hybrid FEM/BEM method!%. We use ma-
terial parameters of permalloy: M = 0.8 x 105 A/m,
A =13x10""A/m and ¢ = 0.01. The damping con-
stant is chosen to be o = 0.02. This value was estimated
for permalloy in a previous work!'*. The applied mag-
netic field is zero, for all the simulations presented in
this paper.

We first consider a nanopillar with length L = 40nm
and diameter d = 20nm. The simulation starts from
an initial magnetization configuration, which is obtained
by preliminarily relaxing the system with jp = 0 and is
shown in Fig. 3-(a). A polarized current with density
jp = Pj = 10' A/m” is then applied at time ¢ = 0 along
the positive = direction, meaning that the conduction
electrons flow in the opposite direction.

The simulation shows that the domain wall compresses
along the direction of the electron flow. In Fig. 2 the
components of the normalized spatially averaged mag-
netization (m) = (M) /M are plotted as functions of
time up to 6.6 ns. The x component of (m) is initially
zero, reflecting the symmetry of the initial configuration
(Fig. 3-(a)) for inversions # — —x. The current grad-
ually pumps energy into the system and compresses the
domain wall against the left face of the nanopillar (Fig.
3-(b)). In the opposite side of the nanopillar the mag-
netization aligns along the positive x axis, resulting in
an increase of (m,). The compression is accompanied by
a rotation of the whole domain wall around the axis of
the nanopillar, as can be seen clearly by looking at be-
havior of the y and z components of (m) in Fig. 2. To
obtain the rotation frequency we express (m) in spheri-
cal coordinates where x is chosen as the polar axis. The
frequency is then calculated numerically as v = |0;¢| /2,
where ¢ is the azimuth angle. In the case we are consid-
ering here, where the current points in the direction of
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FIG. 3: (Color online) The magnetization configuration for
the simulation of Fig. 2 is shown at ¢t = Ons (a) and ¢ = 6.6 ns

(b).
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FIG. 4: The time dependence of the frequency for the rotation
of the domain wall around the x axis for a three dimensional
micromagnetic simulation of a nanopillar with L = 40 nm.

the positive z axis, the sign of di¢ is negative and in-
dicates a left-handed rotation around the same axis (or
equivalently a right-handed rotation around the negative
x axis, which is actually the compression direction). The
rotation frequency is initially zero and increases mono-
tonically towards a maximum asymptotical value v¢, as
shown in Fig. 4.

To determine vy we let the simulation proceed up to
the point where the variation in time of the frequency
becomes lower than a given threshold. In particular we
stop the simulation when Av/At becomes lower than
0.01 GHz/ns. The variation Av/At is calculated with
At = 100ps. The simulation then proceeds up to
tr = 6.6ns and the asymptotical frequency is found to
be vr = v(t = t¢) = 11.3 GHz (at 11ns the frequency is
only 0.004 GHz higher, which corresponds to an increase
of 0.04%).
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FIG. 5: (Color online) The frequency as a function of jp for
different nanopillar lengths L, as obtained from three dimen-
sional micromagnetic simulations.

The asymptotical dynamics is characterized by a rota-
tion around the x axis, without deformation of the do-
main wall. In such a state, the total energy of the system
is constant in time and hence the energy dissipated by
the damping term must be exactly balanced by the en-
ergy pumped in by the applied current.

Further simulations are performed to find the exact de-
pendence of the frequency on the polarized current den-
sity jp and on the length of the nanopillar L. A different
mesh is considered for each different value of L. All the
meshes are obtained meshing a cylinder with diameter
d = 20nm and are generated such that their simplices
have edge length lower than 2.6 nm (on average their
edges are around 1.2 nm long).

The graph in Fig. 5 shows the asymptotic
frequency v¢ obtained repeating the simulation for
jp o= 1,2,4,...,18,20 x 101°A/m® and for L =
20, 25, ..., 45nm. The figure shows that while the fre-
quency changes considerably with the current density jp,
there are small differences between the curves obtained
for different nanopillar lengths L. In particular the curves
for different values of L overlap, showing that this pa-
rameter has different effects for different current regimes:
for currents around 109 A/m?®, the highest rotation fre-
quency is reached by the shortest nanopillar, while for
currents around 2 x 10 A/m2 the highest frequency is
reached by the longest nanopillar.

IV. ONE DIMENSIONAL
MICROMAGNETIC SIMULATIONS

We repeat the simulations discussed in section III for a
simplified model, where the nanopillar is represented by
a one dimensional magnetic string. Such a study has a
two-fold purpose: on the one hand, it provides data for
a comparison with the three-dimensional model, which
allows to better understand the effects of the nanopillar
shape and size. On the other hand, it gives insight on
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FIG. 6: (Color online) The frequency as a function of jp for
different nanopillar lengths L, as obtained from one dimen-
sional micromagnetic simulations. The dotted and dashed
curves show the results obtained for the three dimensional
system (Fig. 5) in the case L = 20 and L = 45, respectively.

the limitations of one dimensional models, such as the
one presented in section V.

For the one dimensional simulations we use the same
material parameters and the same procedure as in section
III. The three dimensional meshes are, however, replaced
by one dimensional meshes with 0.5 nm spacing between
neighboring nodes. This one dimensional model neglects
the inhomogeneities of the magnetization in the plane or-
thogonal to the nanopillar axis and — more importantly
— it neglects the contribution of the magnetostatic field.

The results of the simulations are shown in Fig. 6.
We study the system for L = 20, 25 ..., 60nm and for
the same values of jp as in section III. The curves for
different nanopillar lengths are more clearly spaced with
respect to the three dimensional case and show that to a
longer nanopillar corresponds a lower rotation frequency.
This result is reasonable for such a one dimensional sys-
tem, where the width of the domain wall is just L: to
a smoother change of the magnetization corresponds a
reduced spin transfer torque effect. In the three di-
mensional system, things are different. The magneto-
static field pulls the magnetization along the axis of the
nanopillar to reduce the magnetic charges at the surface.
This is an additional pinning effect which keeps the width
of the domain wall from growing for larger values of L. In
other words, in the three dimensional system the domain
wall width does not depend on L, if L is large enough.
Then the frequency does not depend on L either.

In fig. 6 we see that the frequencies for L = 20nm
obtained in the one dimensional model are close to the
ones obtained in the full three dimensional model. This
seems to suggest that the magnetostatic effects become
less important in shorter nanopillars.

V. THE ANALYTICAL MODEL

We investigate the system with a one-dimensional an-
alytical micromagnetic model. The purpose of such a
study is to support the micromagnetic simulations and
to give a better understanding of the physics of the sys-
tem. The model does not include the magnetostatic field
and assumes it does not qualitatively affect the physics of
the system. We begin by writing equation (2) in spherical
coordinates:

0710 = 2080 0,0 Dy + sin 0 02 +
+a [020 —sinfcos 0 (0,9)°] +  (3a)
+Vad,0+ Vasinh d,¢
dr¢ sin = o [2cos6 8,0 0y + sin 6 9, 9]
— 020 +sinf cos 0 (0, 0)* — (3b)
—Vao,0+Vasinfd,¢
Only dimensionless quantities appear in this equations:
u=%,7 = 'YLl—ZC t, V= % v. We want the magnetization

to point to the left at the left boundary and to the right
at the right boundary:

O(u=0)=m, flu=1)=0 (4)

which are boundary conditions for our system of differ-
ential equations. When the current is zero, V = 0, the
equilibrium (such that 0 = 0,0 = 0,/ ¢) is obtained for:

O(u) = (1l —u), ¢(u) = const, (5)

as can be seen with a substitution in (3). For V' > 0,
computer simulations show that the system approaches
a stationary equilibrium where the whole magnetization
rotates with constant frequency around the axis of the
nanopillar. We then investigate the case where there is
no further compression of the domain wall, while it could
still rotate with constant angular velocity around the x-
axis:

00 =0, 0-/¢ = Q' = const (6)

The rotation frequency can be obtained from Q' through
the relation vy = % |€Y].

As a first try to find such a solution we assume 0,¢ =
0 and find the corresponding compression profile from
equation (3a):

ad?0+Vad,0=0

Solving this equation we get:
au¢ =0,

where A = 2 However this is not a solution of (3), as
can be easily verified with a substitution in the second
equation of this system:

~020 —Va@o,0 # Q' sind



We conclude that 0,¢ cannot be neglected. It is then
important to understand the role of 9,¢, the torsion of
the domain wall produced as an effect of the flow of the
electric current.

We point out that the rotation is a consequence of the
compression of the domain wall and — in this sense —
can be thought to be an indirect effect of the spin transfer
torque. This can be seen clearly by considering the zero-
current equilibrium configuration (5) and looking at the
derivatives of 6 and ¢ with respect to the reduced time
7/, when a current density is immediately applied (this is
the situation which occurs at t = 0 in the simulations).
Equation (3a) becomes 9,0 = —Vamr, which suggests
that a compression of the domain wall is going to take
place. Equation (3b) becomes sinfd,.¢ = —Var. We
have found a direct contribution to the rotation of the
domain wall. This contribution however is suppressed by
the factor V@ ~ —5 x 10~%, which is rather small for the
materials and the range of current densities we are inter-
ested in (j = 1011 A/m?, V ~ 5 x 1072). We conclude
that the domain wall initially compresses without sig-
nificant rotation and torsion. The compression however
leads to non vanishing values for the term 9260 and this in
turn requires non vanishing values for sin 6 d,/¢, as can
be seen by looking at (3b). In summary, the compression
of the domain wall (i.e. 926 # 0) produces a torsion and
rotation of the domain wall (i.e. sinf 9, ¢ # 0).

We now proceed by rearranging (3) and imposing (6):

—Q sinf = 920 — sinf cos 0 (0, 9)?
+VEDH —Vsindd,d

af) sinf = 2cos 0 0,0 0, ¢ + sin 0 92 ¢
+V 0,0 +VEsinh 0,0

(7a)
(7b)

We have here introduced Q = Q'/(1 + a?). We note that
at the boundaries of the nanopillar (u = 0, 1) equation
(7b) gives:

0=m,0— 0,0 <8u¢$‘;)20

0,0 cannot be zero at the boundaries, at least for small
currents, for which we expect the solution to be close to
the zero current solution (5). We then conclude:

v Vv
8u(z)|u=0 = +5a au(b‘u:l = _5
This result suggests that d,¢ should be of the same order
of V. This is an assumption we make, which enables
us to proceed with important approximations. Indeed,
for the material and the geometry we are dealing with,
and a current density around j ~ 10! A/mQ, we have
V ~ 0.05. Therefore the assumption 0,¢ ~ V implies
that the typical torsion of the domain wall is, in general,
rather small A¢ ~ V = 3°. It implies also that the
second and fourth terms on the right hand side of (7a) are
of order V2 ~ 2.5 x 1073, On the other hand (5) suggests

that 9,0 ~ —m and we expect 926 to be of the same
order of magnitude, when the domain wall is compressed.
We may then neglect terms of order V? and terms of
order £V, since typically € ~ 1072, Then the system (7)
reduces to:

—Q sinf = 920 (8a)
aQ sinf = 2cos0 9,0 0y +sinhd2p+V 3,0 (8b)

We immediately note that all the terms containing ¢ have
disappeared from the system: we are neglecting the non
adiabatic effects of the spin transfer torque interaction.

Equation (8a) is the pendulum equation. It could be
used together with the boundary conditions (4) to obtain
0(u), once Q is known. However determining  is not
easy. We can find a constraint on 2 and 6 from the
second equation (8b), by multiplying both of its sides by
sin 6,

aQ sin? § = 9,[sin? 0 9, ] — V 0, cos f ©))
This equation can be integrated:

1
2V
in2 g du = — 1
/0 sin” 0 du o0 (10)

6(u) can now be found by searching for the solutions of
the pendulum equation (8a) which also satisfy (4) and
(10). Our main goal, however, is to find Q(V'), rather
than finding 0(u) and ¢(u). To do this, we multiply both
sides of (8a) by 0,0:

1
Q9,cosl = iau (5719)2
which can be integrated, obtaining;:
1
Qcos+1 =3 (8.6)*

where [ is a positive (take § = 7/2) integration constant.
This equation gives an expression for 9,0:

0.0 = —\/2(I + 2 cos9) (11)

The sign in front of the square root was chosen in order to
satisfy the boundary conditions (4). We can now change
variable of integration in (10), obtaining:

T sin’fdd 2V
0 /2(I+Q cosb) afl

A second integral equation can be derived integrating the
identity d6/0,0 = du and using the boundary conditions

(4):

(12)

(13)

/“ de _
0 2(I+ 9 cosb)

I and  can then be found by solving the following system

of equations:
{fl( -0 (14)



where the two functions f; and f, are defined in the
following way:

g sin? 6 d6

N 0 v/2(1+z cosh)
fa( )—/WL
2= 0 V2(1+x cosb)

and z has to be such that |z| < 1 in order for f to exist.
The system (14) is difficult to solve in general. Here we
consider two limiting cases:

fi(z)

o |71 2 0. Since f1(0) = ;75 and f>(0) = T,

get I = ”—22 and Q ~ —4. The condition || 2 0,
becomes then |£| < %2;

we

o || < 1. Since fi(1) = %,
ering that |I| ~ ||, we finally get Q ~ — (3%
Moreover when z — 1, fa(x) — +o0o. We then

conclude that |I| ~ |Q > 1 and hence |¥| > 1.

O~ —g%\ﬁ Consid-
3V)2

These results are summarized below:

_4v
*~{ iy
2 «

The frequency can be deduced easily from the formula

for |%} <1

for || >1 (15)

vt = 5z | = 525 |9):
2 v for |-Lu| <« 1
ve = 7|'041L ayC (16)

3v)2 L
2w ~C (5%) for a'yUC >1

Let’s now define jy such that V/a = jp/jo. Then the
low current condition |¥| < 1 becomes |jp| < jo and
similarly the high current condition becomes |jp| > jo
and

7

. 2ev a(l+€2)A
70 Mol B L (17

Which shows, in particular, that the critical current
which distinguishes between the low current regime and
the high current regime depends on the nanopillar length
L.

We note that in the low current regime the frequency
does not depend on the strength of the exchange inter-
action C = 2A4/ugMs. Tt depends on the length of the
domain wall L and on the magnitude of the applied cur-
rent v. On the other hand, in the high current regime,
the frequency does not depend on L anymore. It depends
however on the strength of the exchange coupling C' and
depends quadratically on v.

Fig. 7 shows the validation of the analytic expressions
for (V) against the results of the one dimensional mi-
cromagnetic simulations of Fig. 6. The graph contains all
the data shown in Fig. 6 plotted in terms of the reduced
quantities V and 2. Consequently all the points obtained
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FIG. 7: (Color online) Comparison between the numerical
values for |Q2(V)| obtained from the one dimensional micro-
magnetic simulations (crosses) and the low current (dotted
line) and high current (solid line) analytical solutions.

for different values of L and jp lie in a single curve. The
graph shows good agreement between theory and simu-
lations, thus supporting the approximations which were
made to get to the final formulas.

We make a final remark on the different dependence of
the frequency on the applied current in the two regimes.
There are two reasons why an increase of the current
may lead to an increased asymptotic frequency. Firstly,
the two terms through which the spin-transfer torque
enters equation (1) share the prefactor v « j: dou-
ble the current, double the spin-transfer torque terms
and double the effect. The second way the current may
increase the frequency is by reducing the domain wall
width. A reduced domain wall width corresponds to
an increased value of 0,M, which appears in both the
spin-transfer torque terms. In the linear regime, only
the first effect occurs. Indeed, from (11) we see that

940 = —V2I /1 + 2 cosf, where ¢ ~ 0 and I = %2
We then get, 0,60 ~ —m, which means that, in the low cur-
rent regime, the domain wall shape does not change too
much with respect to the zero current configuration (5).
On the other hand, in the high current regime, % ~ —1
and 0,0 = f% Sing. 0,0 depends on j, through V.
This analysis suggests that the low/high current regimes
correspond respectively to low/high domain wall defor-
mation.

VI. DISCUSSION AND CONCLUSION

We discussed the role of the nanopillar shape in a pre-
vious work®: due to the cylindrical shape of the nanopil-
lar, a rotation of the whole magnetization around the
nanopillar axis does not require to overcome any energy
barriers. This feature is extremely important for the dy-
namic process we have studied in this paper, because it



allows the current to gradually transfer energy to the
system and store it by compressing the domain wall. An
important question to answer is then: how much does the
shape of the nanopillar affect the dynamics of such sys-
tems? We have cross performed simulations for nanopil-
lars with a square section and found very similar results:
for a nanopillar with length L = 40nm and square sec-
tion 20 x 20nm we chose j = 109 A/m? and found a
frequency v =~ 0.61 GHz, while for the corresponding
cylindrical nanopillar vy = 0.64 GHz.

Equations (15) and (16) show that the rotation fre-
quency can be expressed as a function of V/a and ulti-
mately as a function of jp/a. This means that for a value
of a larger by a factor two, a current density larger by
a factor two is required in order to obtain the same fre-
quency. This consideration indicates that low damping
constant is a desirable feature, when choosing a mate-
rial for a concrete realization of the system proposed in
this paper. We have chosen permalloy, because, besides
being a particularly soft magnetic material, it has been
intensively studied in spin transport experiments in re-
cent years and values between 0.01 and 0.02 have been
estimated!4 16 for its damping constant a. We point out
that our choice, a = 0.02, is conservative: the value
«a = 0.01 would lead to considerably enhanced current
effects and — in the quadratic regime — would lead to
quadrupled frequency.

The electric currents required in spin transfer torque
experimental studies are often high enough to produce
considerable Joule heating and Oersted field. These ef-
fects should however be expected to become less and less
important as the system is scaled down. Indeed, smaller
systems are able to dissipate heat more efficiently than
big systems, since reduced size corresponds to increased
surface/volume ratio. Similarly, the Oersted field is re-
duced in smaller nanowires, being proportional to the to-
tal current flowing throughout the sample. On the other
hand, the spin transfer torque does not depend on the
system size, provided the current density remains con-
stant. These considerations suggest that the nanopillar
we presented in this paper should be even less affected
than the larger nanowires studied in other works?%16,
where Oersted field and Joule heating were found to be

negligible or unable to limit the effects of spin transfer
torque. Besides these empirical arguments, we can obtain
an estimate of the Oersted field, using a simple model,
where the nanowire is approximated with an infinitely
long cylinder with radius R and is traversed by a uni-
form current density j. In this simple picture, the Oer-
sted field circulates around the nanopillar axis and has
maximum intensity Bpax = poRj/2, which is reached
on the surface of the nanopillar. Considering the ex-
treme case jp = 2 x 1011 A/m? and P = 0.4, we get
j =5x10" A/m? and Bpax = 0.00314 T. This field does
not act against the rotation of the whole magnetization
around the nanopillar axis, since it is invariant for such
transformations. Moreover its intensity is so small that
we cannot really expect any relevant deformations of the
artificial domain wall created by the pinning (the demag-
netizing field is two orders of magnitude bigger and still
produces only moderate profile adjustments). We con-
clude that neglecting the Oersted field is an appropriate
approximation.

In summary, we used micromagnetic simulations to
study the spin transfer torque effects that occur in a
nanopillar when the magnetization is pinned at its ends.
We showed that the dynamics of such a system is charac-
terized by a stationary precession of the whole magneti-
zation of the system around its axis. We presented both
three dimensional and one dimensional computations,
and studied the asymptotical precession frequency vt as
a function of the polarized current and of the nanopillar
length. We derived an analytical model which provides
further insight into the physics of the system and shows
that there are two current regimes, where the system ex-
hibits different dependencies on the applied current. We
found good agreement between the results of the simula-
tions and the theory.
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