
Micromagnetic studies of three-dimensional

pyramidal shell structures

A Knittel1, M Franchin1, T Fischbacher1, F Nasirpouri3, S J

Bending2 and H Fangohr1

1 School of Engineering Sciences, University of Southampton, Southampton SO17

1BJ, UK
2 Department of Physics and Astronomy, University of Bath, BA2 7AY, UK
3 Department of Materials Engineering, Sahand University of Technology, Tabriz

51335-1996, Iran

E-mail: fangohr@soton.ac.uk

Abstract. We present a systematic numerical analysis of the magnetic properties

of pyramidal-shaped core-shell structures in a size range below 400 nm. These

are three-dimensional structures consisting of a ferromagnetic shell which is grown

on top of a non-magnetic core. The standard micromagnetic model without the

magnetocrystalline anisotropy term is used to describe the properties of the shell.

We vary the thickness of the shell between the limiting cases of an ultra-thin shell and

a conventional pyramid and delineate different stable magnetic configurations. We find

different kinds of single-domain states, which predominantly occur at smaller system

sizes. In analogy to equivalent states in thin square films we term these onion, flower,

C and S states. At larger system sizes, we also observe two types of vortex states,

which we refer to as symmetric and asymmetric vortex states. For a classification of

the observed states, we derive a phase diagram that specifies the magnetic ground

state as a function of structure size and shell thickness. The transitions between

different ground states can be understood qualitatively. We address the issue of

metastability by investigating the stability of all occurring configurations for different

shell thicknesses. For selected geometries and directions hysteresis measurements are

analysed and discussed. We observe that the magnetic behaviour changes distinctively

in the limit of ultra-thin shells. The study has been motivated by the recent progress

made in the growth of faceted core-shell structures.

PACS numbers: 75.75.Fk, 75.60.Jk, 75.78.Cd

This article has been published in A Knittel et al 2010 New J. Phys 12 113048

.

http://iopscience.iop.org/1367-2630/12/11/113048


Micromagnetic studies of three-dimensional pyramidal shell structures 2

1. Introduction

The magnetocrystalline anisotropy of a bulk magnetic material governs its magnetic

behaviour and is therefore key to its technological applicability. However, it is an

intrinsic property of the material and cannot readily be tailored [1]. In contrast, the

magnetic behaviour of a nanomagnet is also largely influenced by the interaction of the

magnetization with its shape. This dependency provides the possibility of fine-tuning

magnetic properties through shape-manipulation, which in turn requires very precise

growth techniques.

Lithographic methods have been widely used to produce ordered arrays of

nanoelements [2]. The basic idea is to deposit a thin resist layer onto a substrate,

parts of which are then chemically altered by exposing them to radiation. Finally,

different techniques are used in order to transfer the generated pattern into an array

of nanoelements. However, these nanoelements are not very well defined along the

direction perpendicular to the original resist layer. In contrast, chemical methods are

based on what is often referred to as the ’bottom up’ approach, i.e. the nanoparticles

develop from smaller units. The challenge of fabricating nanoparticles of non-spherical

geometry is, therefore, to obtain a suitably anisotropic growth. Corresponding research

on magnetic nanoparticles has led to the growth of a wide variety of shapes for hard

magnetic iron compounds [3, 4].

In this paper, we use the micromagnetic model in the limit of soft magnetic

materials (thus neglecting the magnetocrystalline anisotropy of nickel), which allows

us to accurately analyse the competition between the exchange and the magnetostatic

contributions of the model. Due to their nonlinearity, analytical approaches to solving

the micromagnetic equations are feasible only for highly symmetric geometries and, even

in these cases, cannot address certain phenomena such as metastability. Therefore,

one usually employs numerical methods such as the finite difference (FD) method

or the finite element (FE) method. The disadvantage of numerical results is that

they generally give less physical insight than a corresponding analytical solution.

However, micromagnetic simulations do not only yield the magnetization but also other

important scalar and vector fields such as energy densities and effective magnetic fields

corresponding to the different energetic contributions. A careful examination of these

fields can reveal much about the underlying physical mechanisms.

Micromagnetic studies of fundamental geometries have been mostly carried out for

platelets, either of square [5, 6, 7, 8] or circular [9, 10, 8] shape, and ferromagnetic

cubes [11, 12]. Due to the above-mentioned limitations of standard growth techniques,

more complex, three-dimensional (3D) nanoelements have been subject to far less

research. Corresponding micromagnetic studies are also more involved as a standard

FD discretization is only accurate for structures of rectangular symmetry [13]. In the

literature, one can find micromagnetic investigations of cones [14, 15], pyramids [14],

partially spherical structures [16, 17], tetrahedra and octahedra [18] and hexagonally

shaped islands [19]. Energetic ground states of spherical core-shell structures have been
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studied analytically by deriving expressions for the micromagnetic energy contributions

[20].

This paper on the study of the magnetic behaviour of soft-magnetic core-shell

pyramids is structured as follows. In section 2, we briefly discuss the research on core-

shell structures and give a summary of corresponding experimental work on the growth

of pyramidal core-shell structures. In section 3, we define the geometry (3.1), introduce

the model and details of how it is implemented (3.2) and explain how the micromagnetic

configurations have been computed over the parameter space of this study (3.3). The

numerical results are presented in section 4. It contains an analysis of the magnetic

behaviour of the core-shell structures in the absence of an external magnetic field (4.1).

Characterizations of all the found remanent configurations (4.1.1 and 4.1.2) are given.

A phase diagram, which delineates the energetic ground states as a function of the

geometry-defining parameters, is presented and discussed (4.1.3), and the occurrence of

an asymmetric vortex state is analysed (4.1.4). The second part of section 4 contains

an investigation of the reversal behaviour along selected directions of the applied fields

(4.2). Finally, we summarise our findings in section 5.

2. Motivation

As discussed in the introduction, most experimental and theoretical research has been

devoted to the study of simple geometries such as circular or square platelets. This is

mainly due to practical difficulties that arise in the growth of more complex geometries.

In the context of 3D objects, core-shell structures are advantageous for the following

reasons: they reduce the amount of magnetic material used compared to filled 3D

objects, which, in the case of expensive components, may lead to significant cost

reductions. In addition, the interaction between the core and shell regions may lead

to interesting physical phenomena. For example, the core region could consist of a

material that is superconducting below a certain critical field, HC. In this case, the core

can exhibit re-entrant superconductivity when the applied magnetic field compensates

for the stray fields due to the ferromagnetic shell. Furthermore, superconductivity can

exist up to applied fields well above the bulk critical field of the core due to these effects.

On the other hand, if the core material is non-magnetic (e.g. the magnetic field in the

core region lies above HC), then the magnetic behaviour of the core-shell structure will

be solely governed by the ferromagnetic shell (the situation assumed in this paper). The

transition between the two magnetic states of the core-shell structure depends on the

properties of both core and shell materials, and on the geometry of the structure.

The work presented here only considers the properties of the ferromagnetic shell. It

has been motivated by corresponding experimental work on the electrochemical growth

of pyramidal core-shell structures with a silver (Ag) core and a nickel (Ni) shell ([21],

figure 1), which we will briefly describe in the following: for this a two-step dual bath

method is used. First, single crystalline, pyramidal-shaped silver mesostructures are

deposited on a highly ordered pyrolytic graphite (HOPG) working electrode from an
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Figure 1: Left: atomic force microscope (AFM) image of a pyramidal core-shell structure

with a silver core and a nickel shell. Surface roughening indicates the polycrystalline

character of the nickel shell [21]. The scale bar length is 1µm. Right: hysteresis

measurement on a pyramidal Ag/Ni core-shell structure. These measurements have been

carried out at 5K using a linear array of 2µm x 2µm GaAs/AlGaAs heterostructure

Hall probes. An individual structure has been taken from the electrode and then placed

onto an active Hall probe element with its basal plane facing down. The homogeneous

magnetic field has been applied perpendicular to the Hall element, a direction that

we identify with the z-direction. The x-axis shows the strength of the applied magnetic

field, while the y-axis depicts the magnetic field detected by the Hall element 〈Bz〉 minus

the applied field Hz. The latter quantity corresponds to the stray field generated by the

pyramidal shell, which is spatially averaged over the active area of the Hall element.

aqueous solution of 100mM AgNO3 at a pH value between 2 and 2.5. In the process

the potential of the HOPG working electrode is first set to 1V for 60 s, then to 0V

for 10 s and finally to −10mV for 30 s. The silver deposition occurs during the last

stage via the so-called Volmer-Weber mechanism, in which 3D nuclei are promptly

formed. In the second step the electrolyte is replaced by an aqueous solution containing

2.3M NiSO4, 0.6M NiCl2 and 0.5M boric acid. The nickel is then electrodeposited at a

potential of −800mV versus an Ag/AgCl reference electrode and a pH value of 2. Cyclic

voltammograms suggest that at this potential nickel is only deposited on the metallic

silver islands and not elsewhere on the HOPG electrode. A direct deposition of nickel

onto HOPG turns out to be impracticable as it tends to plate rather than to exhibit a

3D growth mode. The pyramidal core-shell structures grown with this method (figure

1) have typically a base side length of 10µm, a height of 5µm and a shell thickness of

about 100 nm.
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Figure 2: Sketch of a pyramidal shell structure. The left part of the figure shows a

three dimensional visualization. On the right, parameters defining the shell geometry

are introduced on the basis of a cross-section through the shell structure’s centre. The

parameter h is the height of the pyramid, a denotes its edge length and t is the thickness

of the shell. t′ defines the distance between each outer side face and the centre of the

basal plane. Throughout the paper, we define the z-direction as the direction that is

represented by the tip, while x and y are aligned parallel to the edges of the basal plane.

3. Methodology

3.1. The investigated system

We focus our micromagnetic studies on pyramidal shells with a square base. The base

of the pyramid is not covered with a ferromagnetic layer as it is sitting face down on the

growth substrate (i.e. the HOPG) during electrodeposition. Figure 2 shows how such a

structure can be defined in terms of three parameters. The pyramidal shape is defined

by the edge length a and the height h, while the parameter t is the shell thickness.

In order to limit the number of simulations for this study to a reasonable extent, we

have restricted our parameter space by setting h = a/2, which also appears to concur

with the shape of the experimentally grown structures (see section 2). Furthermore, we

replace the shell thickness t in absolute units by trel, which is defined as

trel = 100.0 · t
t′
.

Here, t′ = a/(2 ·
√
2) is the distance of one of the triangular faces of the shell’s outside

to the centre of the base. trel ranges between 0.0 and 100.0, with 0.0 being the limit of

an infinitely thin shell, and 100.0 representing a completely filled pyramid. Two shells

with the same value for trel, say (a1, trel) and (a2, trel), are mathematically similar, i.e.

the former can be obtained from the latter by rescaling it by a factor a1/a2. Thus, a

may be regarded as a size parameter and trel as a shape parameter.

3.2. The micromagnetic method

The micromagnetic model, as introduced by Brown, approaches ferromagnetism on a

mesoscopic scale, i.e. it only indirectly accounts for the underlying atomic structure
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of the material and assumes a continuous magnetization ~M(~r), which determines the

state of the ferromagnetic structure. At each point ~r , usually four different torques

are considered to act upon ~M(~r). These torques are due to local magnetocrystalline

anisotropy, short-range exchange interaction, long-range magnetostatic interaction and

an externally applied magnetic field. The former three contributions are material

dependent, so that the model requires the input of corresponding parameters. These

parameters are the exchange constant A, anisotropy constants of different order (K1,

K2, ...), and the saturation magnetization MS. Since nickel is a very promising

ferromagnetic material for the growth by electrodeposition, we use the corresponding

values A = 7.2× 10−12 Jm−1 and MS = 493380Amathrmm−1 [22], while we neglect its

highly temperature-dependent cubic anisotropy. At room temperature the anisotropy

constants are K1 = −4500 Jm−3 and K2 = −2500 Jm−3, which are small compared

to the typical magnitude of the magnetostatic self-energy Kd = µ0

2
· M2

S = 152948 J
m3 .

Earlier studies suggest that the omission of the anisotropy term does not qualitatively

alter the results within the regime investigated here (i.e. dimensions of about 60 · lexch
and below, where lexch is the exchange length defined by lexch =

√

A/KD) [12].

Furthermore, due to the polycrystalline structure of the electrodeposited nickel shell, an

inclusion of magnetocrystalline anisotropy is not straightforward. We do not consider

surface anisotropy, which becomes especially important for very thin shells [6], and

additional energy contributions that, for example, may arise from magnetoelastic effects

such as magnetostriction. The total energy Etot of our system can be written as

Etot = Eexch + Edemag + Eext. (1)

In order to find a configuration ~M(~r) that minimizes Etot, we use the Landau-Lifshitz-

Gilbert (LLG) equation

∂ ~M

∂t
= − γ

1 + α2
~M × ~Heff +

αγ

(1 + α2)MS

~M ×
(

~M × ~Heff

)

, (2)

where the effective magnetic field ~Heff is the variational derivative of Etot with respect to

the magnetization ~M(~r) and accordingly has contributions stemming from the exchange

and magnetostatic interactions and the external field ~Hext, i.e.

~Heff = ~Hexch + ~Hdemag + ~Hext = − 1

µB

δEtot

δ ~M
. (3)

The constant γ = 2.214 · 105 m(As)−1 is the gyromagnetic ratio of an electron,

and α the dimensionless Gilbert damping constant. Since we are only interested in

finding energy-minimizing configurations of the system, and not in the dynamics of
~M(~r), we choose α = 1 in order to achieve a maximal damping [22]. Equation

(2) implies that the magnitude of the magnetization does not change over time,

i.e. | ~M(~r, t)| = | ~M(~r)| = MS. Therefore, we introduce a reduced vector field

~m(~r, t) = ~M(~r, t)/MS whose magnitude is 1, and use ~m(~r) for illustrations of the

magnetization in this paper. For the numerical solution of the LLG equation, we employ

the micromagnetic FE simulation package Nmag [23], which discretizes the relevant fields
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on a tetrahedral (i.e. unstructured) mesh and thus allows for modelling arbitrarily

shaped, ferromagnetic structures. While the contributions of the exchange and the

external field are obtained by a direct FE discretization of the corresponding energy

terms, the hybrid FE method/boundary element method (hybrid FEM/BEM) is used

to calculate the numerically expensive, magnetostatic contribution [24]. Like a direct

discretization of the magnetostatic energy the latter method only requires the meshing

of the ferromagnetic region Rm, while the scaling behaviour improves from O(N2) to

O(N2
S), whereN andNS denote the total numbers of nodes withinRm and on the surface

of Rm, respectively. We use hierarchical matrices [25] in order to approximate a dense

boundary element matrix which occurs within the scheme of the hybrid FEM/BEM.

This further improves the computational complexity of the method to O(N). The

hierarchical matrix approximations are assembled using the HCA II algorithm [26] with

a set of parameters as given in [27]. We find that the use of hierarchical matrices works

well for the studied pyramidal geometries, as the error introduced by this approximation

is small compared to other numerical errors in the computation of ~Hdemag, which are

driven by the discretization (see discussion of tetrahedra edge length below). Each

tetrahedral mesh has been created with the commercial software tool Fluent Gambit

2.4.6. When creating the unstructured mesh its resolution has to be such that the

computation of the model’s exchange and magnetostatic fields is reasonably accurate.

For a sufficient accuracy in the exchange field computation the edge lengths of all

tetrahedrons should typically lie below the exchange length lexch [18, 28], which in

the case of nickel is equal to 6.86 nm. Since Gambit does not provide a parameter

for specifying a maximal edge length, we use an h-type refinement [29], i.e. add a

nodal point to the centre of tetrahedron edges a with |a| > lexch and rearrange adjacent

tetrahedra accordingly, in order to ensure a resolution below lexch. For each simulation

we have checked whether the maximal angle between the magnetic moments of adjacent

mesh nodes (the so-called spin angle) of the relaxed configuration is about 30◦ or below.

Spin angles, which dramatically exceed this limit, underestimate the contribution of

the local exchange field and may lead to incorrect results [30]. In order to estimate

the error in the computation of the magnetostatic field ~Hdemag, we have systematically

varied the mesh resolution to compute ~Hdemag, and repeated this procedure for different

edge lengths a, shell thicknesses trel and magnetization configurations. As an estimate

for the error we have used the average of ~Hdemagover all mesh nodes (in a more rigorous

analysis one should use a norm as defined in [31]), and demand that its variation as a

function of the mesh resolution should lie well below 1% (in line with [31]). Our findings

are that the edge lengths of the tetrahedra should be below the values 0.035 a or 0.5 t,

where a and t are the base length of the pyramidal structure and the shell thickness,

respectively (see geometry figure 2 for a and t). In summary, depending on the size and

shape of the pyramidal shell geometry we have chosen the smallest of three threshold

values (exchange length, 0.5 t, 0.035 a), to obtain satisfactory accuracy. For the time

integration of (2), Nmag uses an implicit time integration scheme as reported in [32]

and made available in the Sundials software library [33]. The system is integrated until
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the angular rate of change of the magnetization is below 1◦ mathrmns−1 at every mesh

node.

3.3. Exploring the parameter space

The parameters a and trel, as introduced in section 3.1, define a 2D phase space.

One goal of this paper is to examine this phase space for micromagnetic ground state

configurations in the absence of an externally applied magnetic field. Ground state

configurations minimize the micromagnetic energy of (1). We start these investigations

by relaxing the magnetization for different parameter sets (a, trel) and initial

configurations. The edge length a is set to values at 20, 50, 100, 150, 200, 250, 300, 350

and 400 nm (i.e varied between amin ≈ 3 · lexch and amax ≈ 60 · lexch), while thicknesses

of trel = 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90 and 100% are used. As initial

configurations we choose different homogeneously aligned magnetizations pointing in

directions such as (1, 0, 0), (0, 0, 1), (1, 1, 0) and (1, 1, 0.5) (with respect to the coordinate

system defined in figure 2). Obtaining a set of stable configurations for each investigated

point (a, trel) we assume the configuration with the lowest micromagnetic energy to be

the ground state. The corresponding results are then most conveniently summarized in

a phase diagram which states the micromagnetic ground state as a function of a and

trel.

In order to add phase boundaries to the phase diagram, we use a technique similar

to the one described in [34]. We start from the relaxed micromagnetic configuration

and rescale the mesh such that the edge length a increases or decreases by ∆a, i.e.

the rescale factor is (a + ∆a)/a or (a −∆a)/a, respectively. One should note that the

described procedure does not work with a variation of the shape parameter trel. We

extrapolate the rescaled micromagnetic configuration to a new mesh that discretizes the

geometry of the new size (otherwise the rescaling procedure would change the resolution

of the mesh) and relax the system to a new stable state. Usually the system will

relax quickly, since we already start from a very good approximation of the domain

structure. However, if the domain structure becomes unstable at the new system size,

it will collapse to a qualitatively different micromagnetic configuration. We use this

procedure iteratively, when the ground state configuration between adjacent points of

the same thickness trel changes. Starting from a configuration corresponding to a small

value of a and gradually increasing a, we get a curve for the total energy as a function

of a. Starting from a (different) configuration corresponding to a large a and then

decreasing a, we obtain another data set of the total energy as a function of the edge

length a. Subsequently, we determine by a low-order polynomial interpolation the point

atrans at which the energies of both configurations cross over. When both states decay

spontaneously into each other we choose atrans as the arithmetic mean value of the two

edge lengths between which the transition occurs. Repeating this procedure for different

thicknesses trel one can draw phase boundaries between areas of different micromagnetic

ground states. Depending on the magnitude of a, we use different values for ∆a. We
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choose ∆a = 2nm for 10 nm < a < 20 nm, ∆a = 5nm for 20 nm < a < 50 nm and

∆a = 10 nm for 50 nm < a < 400 nm.

A problem in our approach may arise because the primary data points of the phase

diagram have been obtained from a finite set of initial states. Thus, it could happen

that at a certain parameter point (a, trel) a magnetization configuration may not have

been found although it may be stable or even the ground state.

4. Numerical results

4.1. Energetic ground states at Hext = 0

In this section, we present results on the micromagnetic states of pyramidal shells

(see section 3.1) in the absence of an external magnetic field. In accordance with

previous work on soft magnetic structures [12, 18], we find that in the investigated

regime two types of ferromagnetic domains occur: the so-called single domain (or quasi-

homogeneous) states and vortex states.

4.1.1. Single-domain states Single-domain states are quasi-homogeneous and have a

well-defined mean magnetization direction. They usually occur in the limit of very

small structures (at dimensions of just a few exchange lengths). While the exchange

interaction leads to the quasi-homogeneity, magnetostatic effects govern the direction

of the mean magnetization. In the literature, one distinguishes between two types of

anisotropies arising from the magnetostatic contribution to the micromagnetic energy

functional (1). Shape anisotropy describes the anisotropy of a completely aligned

magnetization due to the shape of the ferromagnet. However, the deviations from

homogeneous alignment may lead to a change in the character of the anisotropy, i.e. the

assumption of homogeneous magnetization becomes invalid. This interaction between

an inhomogeneous magnetization and the shape is called configurational anisotropy.

The name derives from the fact that an inhomogeneous state generally changes with

the direction in space, and the anisotropy follows from the different energies of those

configurations. Configurational anisotropy is usually studied for quasi-homogeneous

states [5, 18], while an analysis for more complex states (e.g. vortex states) turns out

to be problematic [18]. We have investigated the shape anisotropy of our structures

by systematically varying the spatial orientation of the homogeneous magnetization

and computing the corresponding mean magnetostatic energy density. As a result, we

have found that the shape anisotropy has a uniaxial symmetry with the structure’s basal

plane being the easy plane. However, it turns out that due to configurational anisotropy

quasi-homogeneous states, whose mean magnetization aligns either along the x (or y)

direction (as defined in figure 2) or the diagonal of the basal plane, are energetically

favoured. Figure 3 shows the observed single-domain states. Every state (apart from

the state of figure 3c) corresponds to a state observed in square nanostructures [5, 6],

i.e. shows a similar symmetry. However, the states of the pyramidal system are more
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Figure 3: Top view (in negative z-direction) of stable single domain states. The observed

states are (a) an onion state, (b) a flower state, (c) a single-domain state aligned

along the z-direction, (d) a C state, and (e) an S state. The pyramidal geometries

correspond to the following parameter sets: a = 35 nm and trel = 20% for the onion

state, a = 120 nm and trel = 10% for the flower state, a = 60 nm and trel = 10% for the

single-domain state in figure (c), and a = 300 nm, and trel = 10% for the C and the S

state. For illustration purposes a semi-transparent depiction of the pyramidal shells has

been overlaid onto each picture.

inhomogeneous in the sense that there is a significant variation of the magnetization’s z-

component. This is due to the fact that the magnetization tries to avoid surface charges

on the inner and outer side faces of the shell by aligning parallel to those faces.

We refer to the single-domain state, whose mean magnetization is aligned along

the diagonal of the basal plane as an onion state (sometimes also called the leaf state).

Figure 3a shows the magnetization of the onion state on the outer surface of a pyramidal

shell with (a = 35 nm, trel = 20%). Moving from the lower left to the upper right corner

the magnetization tries to follow the surface geometry by pointing upwards on the lower

left and pointing downwards on the upper right half. Due to the symmetry of this

state the z-component of the magnetization is zero across the crest, around which the
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Figure 4: Top view (in negative z-direction) of stable vortex states. We observe a

symmetric vortex state (a) and an asymmetric vortex state (b). The pyramidal structure

has an edge length of a = 300 nm and a thickness of trel = 10%.

proximity of negative and positive surface charges leads to a high magnetostatic energy

density. The latter effect is inherent to the onion state.

The state of figure 3b is called a flower state. It features the typical tilting in the

vicinity of corners, which gives a flower-like impression. We observe that the spatially

averaged magnetization, which is aligned with either the x- or y-axis, increases with

growing shell thickness. This is due to surface charges that can be created on the basal

plane of the pyramidal shell. The area of the latter grows with increasing shell thickness.

Thus, the higher impact of the basal plane leads to generally better alignment of the

magnetization along the x (or y) axis for thick shells.

Figure 3d shows a so-called buckle or C state. The latter name derives from the

shape of the flux lines, which, in the perspective of figure 3d, resembles the letter C

rotated 90◦ in the clockwise direction. Compared to a flower state, a C state reduces

the magnetostatic energy by a higher degree of flux closure. This happens at the expense

of a higher exchange energy.

The so-called S state is shown in figure 3e. Analogous to the C state, it gets its

name from the shape of the flux lines that follow the shape of the letter S. Compared

to the flower and the C state the mean magnetization of the S state is shifted towards

a diagonal of the basal plane, i.e. from (1, 0, 0) to typically about (0.75, 0.25, 0).

Figure 3c shows a quasi-homogeneous metastable state found for very thin pyramid

shells with a mean magnetization pointing in the z-direction. As this state is only

metastable for very thin and small structures (a & 100 nm, trel & 10%) but unstable

otherwise, we will not discuss it in what follows.
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Figure 5: (a) Cross-sectional display of the symmetric vortex state. The pyramid in

this example has an edge length of a = 150 nm and a thickness of trel = 50%. (b-d)

Cross-section through an asymmetric vortex state for an edge length of a = 300 nm

and three different thicknesses trel: 20% (b), 50% (c) and 80% (d). The cross-sectional

plane centrally cuts the pyramidal structure in all depicted images.

4.1.2. Vortex states There is no mathematically rigorous definition of a vortex state in

micromagnetics [35]. For thin films a vortex state consists of a small, out-of-plane vortex

core and an in-plane magnetization curling around the core. The in-plane magnetization

helps form closed flux lines, i.e. reduces surface charges, at the expense of a higher

exchange energy in the region around the vortex core. However, the magnetostatic

energy of the vortex core cannot be neglected [6, 7]. For our geometries we observe two

different vortex states (figure 4).

Figure 4a shows a vortex state with a core aligned along the direction of the

pyramid’s tip (i.e. in the z-direction). Due to the core position in the symmetry centre

of the geometry, we will refer to this state as the symmetric vortex state. We note two

features: firstly, the z-component of the curling magnetization fluctuates around the

edges between two adjacent side faces. This effect is just visible in the form of colour

variations in figure 4a but more pronounced in the warp plane representation of figure

9 (top image). Secondly, the vortex core broadens towards the top of the pyramid (see

figure 5a). A consequence of this broadening is a decrease in the exchange energy density

within the vortex core towards the top of the pyramid.

Figure 4b shows the asymmetric vortex state whose core is sitting on one of the

four (outer) side faces of the shell. A characteristic of the asymmetric vortex state is
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Figure 6: Equipotential surfaces of the exchange energy density displaying a vortex

state with a bent vortex core. The geometry is a full pyramid with a basal plane edge

length of 300 nm and a height of 150 nm. The exchange energy density is defined as

uexch = ~M · ~Hexch = 2A ~m·∇2 ~m. Artifacts from the numerical calculation of the exchange

energy appear to lead to non-smooth surfaces.

that its remanent magnetization is not only carried by the vortex core but also has

a component parallel to the basal plane. This can be seen in figure 4b where more

“magnetic moments” point to the right than to the left. We discuss in section 4.2

that this leads to an interesting magnetic reversal behaviour. Figure 5 shows that

the character of the state changes with varying shell thickness. While for thin shells

(trel . 50%) the vortex core runs from the outer face straight to the corresponding inner

face (see figures 5b and c), it tends to bend towards the tip of the structure’s core for

larger values of trel (figure 5d). This vortex core bending is also illustrated in figure 6

for a conventional pyramid, i.e. trel equals 100%. The position of the vortex on the

outer side face lies in the vicinity of the pyramid tip for most values of trel, but is shifted

towards the centre of the triangular face for very thin shells below 10%.

4.1.3. Phase diagram and metastability The phase diagram of figure 7 summarizes

which state minimizes the total micromagnetic energy, i.e. is the ground state, for

which geometry (defined by the parameter set (a,trel)). Physically the ground state can

be interpreted as the state which should be formed when a ferromagnetic structure is

slowly cooled below its Curie temperature to 0K [36]. According to [36], in the limit of

large thermal activation, the ground state tends to be the same as the remanence state

after saturation by an applied field. However, due to the complicated energy landscape

of ferromagnetic systems it is difficult to make a general remark on the tendency of

systems to adopt the micromagnetic ground state. In particular, for soft magnetic
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Figure 7: Phase diagram showing the ground states for different pyramidal structures.

The two parameters are the edge length of the outer pyramid and the thickness of the

pyramid shell. For better readability we have added schematic plots to the legend, which

highlight the main features of each ground state from a top-down perspective.

structures, metastable states may occur. Therefore, we will later discuss in figure 8

the stability regimes of all domain structures, which have been observed at the shell

thicknesses trel = 10 , 50 and 100%. One should note that our model does not consider

the effects of thermal activation on the stability of different configurations.

For small structure sizes (i.e. a < 100 nm ) only the flower and the onion state are

energetic ground states. As can be seen from figure 7 the onion state minimizes the

energy roughly for edge lengths a below 25 nm and shell thicknesses trel smaller than

55%. The simulation results do not give obvious reasons why the onion state becomes

metastable at trel . 55%. However, corresponding investigations on square platelets

have shown that the onion state becomes energetically favourable with respect to the

flower state for larger values of the ratio between size and thickness [5, 36], which is

qualitatively in agreement with our findings. These investigations have also shown that

for small platelet thicknesses the onion state is the micromagnetic ground state in a

wide size range. Thus, we observe a suppression of the onion state for the pyramidal

structures. The reason seems to be the high magnetostatic energy density in the vicinity

of the crest, which is inherent to the onion state.

At larger edge lengths a the micromagnetic ground state crucially depends on the

shell thickness trel. For thicknesses trel above 30% the symmetric vortex state becomes

the ground state in a range between 120 and 180 nm, above which the asymmetric vortex

state minimizes the micromagnetic energy. Here, the edge length atrans at which these
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Figure 8: Dependency of the energy density of different micromagnetic configurations

on the size of the shell structure. Three different thicknesses trel are considered: (a)

10%, (b) 50%, and (c) 100%. The dashed lines denote transitions between different

states, i.e. the state with the higher total energy becomes unstable and the lower-

energy state develops. For a better readability we added schematic plots to the legend,

which highlight the main feature of each ground state from a top-down perspective.

transitions occur depends weakly on the shell thickness. Below trel = 20% the situation

is different: with increasing edge length a the lowest energy state changes from the flower

state to the C state and from the C state to the asymmetric vortex state. However,

in this region of the phase diagram atrans strongly depends on the shell thickness trel
itself. The occurrence of the C state at low values of trel can be readily understood: the

penalty in the magnetostatic energy for the C state decreases with decreasing trel, as

fewer surface charges on the basal plane are created.

Another feature of very thin shells is a growth in the number of metastable states

(figure 8). The number of stable configurations (i.e. curves in figure 8) is 7 for trel = 10%,

5 for trel = 50% and 4 for trel = 100%. Furthermore, the stability range of the

quasi-homogeneous states (C and S states) and the symmetric vortex state extends

to amax = 400 nm for trel = 10%, while for trel = 50% and trel = 100%, only the

asymmetric vortex state is stable at large a. Thus the energy landscape becomes more

complex, i.e. it contains more local minima, for very thin shells.

Figure 8 shows that the S state only occurs as a metastable state. We find that
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its total micromagnetic energy is always higher than the energy of the C state, a result

that also has been found for square films [6, 8]. A possible explanation is the larger

distance between positive and negative surface charges for the S state [6].

4.1.4. Why does the asymmetric vortex state occur? The phase transitions from a

flower state to a C state, and from a flower or C state to a vortex state (both symmetric

and asymmetric), can be qualitatively explained in terms of (partial) flux closure and a

corresponding reduction of the magnetostatic energy. In contrast, the physics driving the

transition between the symmetric and the asymmetric vortex state is less evident and one

has to take a closer look at the interplay between the geometry and the magnetization.

In this section, we will qualitatively explain this transition, and thus the occurrence of

the asymmetric vortex state. The fact that the asymmetric vortex state is the ground

state at large sizes a suggests that it reduces the magnetostatic energy with respect to

the symmetric vortex state. A key role in this reduction is played by the edges separating

adjacent side faces on the outside of the shell. Figure 9 compares the magnetization,

the demagnetization field, and the magnetostatic energy density of the symmetric and

the asymmetric vortex states for a cross-section, which lies perpendicular to the z axis.

The magnetostatic energy density is defined as

udemag = −1

2
~M · ~Hdemag, (4)

so that a parallel alignment of magnetization ~M(~r) and demagnetization field ~Hdemag is

favoured. Let us first discuss the symmetric vortex state: Surface charges close to the

edges of the outer surface, i.e. the corners of the cross-section in figure 9, create a local

demagnetization field, which approximately aligns anti-parallel to the magnetization

(see top left and middle left image of figure 9), corresponding to a local increase in the

magnetostatic energy density. Therefore, the observed fluctuations of the magnetization

around the edges of the outer side faces (see figure 9 (top)) can be understood in terms

of a reduction of surface charges and a resulting lower demagnetization field. Towards

the tip of the pyramid the area of the cross-section decreases and the impact of the edges

becomes more significant. As a consequence the magnetization is increasingly driven

out of the xy-plane so that this effect qualitatively explains the broadening of the vortex

core as observed in figure 5a. Effects at the edges between the inner side faces of the

shell are far weaker. This is mainly because the large demagnetization fields, which are

created between the areas of positive and negative surface charges, lie in the vacuum

region, and therefore do not contribute to the micromagnetic energy functional. This is

illustrated in the sketch of figure 10.

When comparing the micromagnetic energy densities of an asymmetric and a

symmetric vortex state (figure 9 (bottom)), a reduction of magnetostatic energy density

at the edges of the outer surface can be observed for the asymmetric vortex state. It can

be attributed to the significant z-component of the magnetization in the vicinity of the

edges (figure 9 (top)). Firstly, this reduces surface charges and thus the magnitude of

the local demagnetising field as shown by figure 9 (middle). Secondly, figure 9 (middle)
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Figure 9: Different fields in a cross-sectional plane are shown for the symmetric (left)

and the asymmetric (right) vortex state. The cross-section is perpendicular to the z-axis

and intersects it at z = 50 nm (z = 0nm corresponds to the basal plane). Within all

images of the asymmetric vortex state the bent vortex core points towards the right.

The geometry parameters are a = 240 nm and trel = 30%. Top: the arrows in the

plane represent the magnetization. Supplementary information is given by the warp

plane, which bends out of the cross-plane. The displacement is proportional to mz.

Quantitative values of mz can be taken from the colouration of the warp plane and the

colour bar on the left. The exchange energy density of both configurations is represented

in the form of contour surfaces. These reveal the location of the vortex core. Middle:

demagnetization field. The arrows are scaled according to the strength of the local

demagnetization field. Bottom: magnetostatic energy density.
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~m (~r)

~n (~r)

~HDemag (~r)

σ (~r) = ~M · ~n

Figure 10: Cross-section of a pyramidal shell illustrating the creation of surface charges

near corners on the shell’s inner and outer surfaces. The symbols defined in the plot

correspond to the magnetization ~m(~r), the surface normals ~n (~r), magnetic surface

charges σ (~r), and the demagnetization field ~Hdemag. The resulting demagnetization

fields and their orientation with respect to the magnetization govern the magnetostatic

energy density. The plot gives a qualitative idea of the physical behaviour, but the

lengths of vectors and the number of each symbol do not rigorously mirror corresponding

physical quantities.

also shows that the symmetry (i.e. the direction) of the demagnetizing field remains

basically unaltered, so that magnetization and demagnetizing field subtend a smaller

angle, i.e. are not anti-parallel any more. According to (4), this leads to a reduction of

the magnetostatic energy density udemag.

In section 4.1.2, we have discussed that the core of the symmetric vortex state

broadens towards the tip of the pyramidal structure. Accordingly, figure 9 (top) shows

a very low exchange energy density at the top of the pyramidal structure for the

symmetric vortex state, compared to the values shown for the core of the asymmetric

vortex state. The much higher exchange energy density at the tip of the inner side faces

is not shown in this figure. Generally we find that the exchange and magnetostatic

energy densities are higher within the displaced core. As other energetic differences

(e.g. at the edges of the inner surface) are relatively small, the transition between the

symmetric and the asymmetric vortex state seems to be governed by the competition

between the magnetostatic energy density at the edges of the outer surface and the total

micromagnetic energy density within the vortex core. More generally, we can conclude

that a vortex configuration, whose core ends at a corner with converging edges, leads to

high magnetostatic energy densities around the edges. This also may be an important

factor in octahedra and cubes, where, for large enough structures, a vortex core aligned

along a diagonal (i.e. the core ends in corners) switches to a vortex configuration with
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its core aligned along face normals [18]. Also the twisted vortex state observed for cubes

[12] could be driven by similar edge effects as it becomes prominent in the limit of soft

materials.

4.2. Hysteresis

Although a direct observation of ferromagnetic states by a direct measurement of the

magnetization is possible (for example by using magnetic force (MFM) or spin-polarized

scanning tunnelling microscopy (SP-STM) [37]), hysteresis measurements are often more

pertinent for a characterization of the ferromagnetic properties of a structure. This is

especially true for 3D structures like the pyramidal shells studied in this paper, as the

above-mentioned methods are surface techniques and only relatively straightforward to

use on planar, 2D structures. From a hysteresis measurement one can obtain parameters

such as the coercivity, susceptibility and the hysteresis [1], which quantify the magnetic

properties. Furthermore, the knowledge of which state develops from a configuration,

where the magnetization is homogeneously aligned along a certain direction in space, is

essential to the research on ferromagnetic structures as it provides the opportunity to

establish desired magnetic states. In the following section, we focus on the qualitative

behaviour of the magnetic reversal and investigate intermediate magnetic configurations

occurring between the saturated states and their effect on the hysteresis curve.

We apply and change the external magnetic field ~Hext along one of the edges of the

structure’s basal plane (i.e. the x- or the y-direction in figure 2) and along the direction

of the pyramid tip (z-direction). We choose the former direction since it corresponds to

the system’s easy axis (for reasonable large system sizes where configurational anisotropy

becomes important). The latter one is a suggested direction because it is perpendicular

to the bottom layer. Therefore, the external magnetic field can be aligned accordingly

and corresponding hysteresis measurements are easily realizable in experiments. The

reversal simulations are performed by systematically changing the external field in small

steps, and relaxing the magnetization to a stable configuration after each step. For every

simulation, the external field is initially set to 3.0T. From there the field is first reduced

in steps of 0.2 to 1.0T, then in finer intervals of 0.05 to 0.2T, and finally to zero in

0.01T steps. Afterwards the external field is changed equivalently from zero to −3.0T.

We have performed hysteresis simulations at system sizes a = 100 nm, a = 150 nm

and a = 250 nm for a thin shell (trel = 10%), a shell (trel = 50%) and a conventional

pyramid (trel = 100%). Those parameter sets (a, trel) correspond to regimes where either

the flower state, the C state or symmetric vortex state, or the asymmetric vortex state

are the ground state.

Hysteresis simulations along the z-direction, which corresponds to the hard axis

direction for quasi-homogeneous states, reveal two types of reversal mechanisms: Figure

11 displays the reversal for (a = 100 nm, trel = 10%) and exemplifies the first type,

which occurs via an onion-like configuration. The remanent state is a symmetric

vortex state (figure 11b). At a magnetic field of about −20000Am−1 the vortex state
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Figure 11: Hysteresis of a pyramid shell with an edge length of 100 nm and trel = 10%.

The external field ~Hext is applied along the z-direction, i.e. along the direction of

the pyramid’s tip. For selected points (a)-(f) magnetization patterns are shown from

a top-down perspective: (a) at higher external field the magnetization subsequently

aligns along side faces. (b) At zero field a symmetric vortex configuration develops. (c)

Magnetization partially reverses within vortex state. (d) Switch to a quasi-homogeneous

state with the mean magnetization mainly aligned along a diagonal of the structure’s

basal plane (onion state). (e) Reversal continues within onion state. (f) Switch to state

where the magnetization is aligned along side faces again.
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Figure 12: Hysteresis curve of a full pyramid with an edge length of 250 nm. The external

field ~Hext is applied along the z-direction, i.e. along the direction of the pyramid’s tip.

At selected points (a)-(f) magnetization patterns for cross-sections of the pyramid are

presented. The cross-section lies in the xz-plane and intersects the pyramid centrally.

(a) With decreasing external field a symmetric vortex state subsequently develops. (b)

System switches to an asymmetric vortex state at remanence. (c) The asymmetric

vortex state remains stable at low external fields. (d) Nucleation of what will become

the core of a reversed symmetric vortex state. (e) The displaced vortex core is gradually

pushed out by the developing core of the reversed symmetric vortex state. (f) Reversed

symmetric vortex configuration after the displaced vortex core has been annihilated.
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Figure 13: Hysteresis of a pyramid shell with an edge length of 250 nm and trel = 50%.

The external field ~Hext is applied along the x-direction. For selected points (a)-(f)

magnetization patterns are shown from an on-top perspective: (a) as the external field

is reduced a flower state develops. (b) Switch to a C state at very low fields. (c) An

asymmetric vortex configuration is formed at remanence. (d) At a low negative field

the vortex core moves to the opposite side. (e) Vortex core subsequently moves down

the side. (f) After the annihilation of the vortex core a reversed flower state becomes

stable.
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becomes unstable and switches to the onion-like configuration (see figures 11c and

d). This transition leads to a distinctive kink in the hysteresis curve and therefore

may well be identifiable in an experiment. For larger structures the reversal along

the z-direction happens via the asymmetric vortex configuration. Figure 12 gives

a corresponding example for a full pyramid (trel=100%). The hysteresis curve only

contains subtle indications of changes in the micromagnetic configuration. Due to the

discrepancy between the structure sizes accessible by experiment (∼ µm) and simulation

(∼ 100 nm), a comparison with the experimentally measured hysteresis curve of figure

1 is currently not feasible [21]. Interestingly the experimental curve exhibits a more

square-like shape. This could be due to a pinning of the magnetization, which may arise

from the polycrystalline structure of the shell and additional anisotropies ( enhanced

magnetocrystalline anisotropy of nickel at low temperatures, strain-induced anisotropy)

not included in the used model. Another possible explanation is that the reversal

involves the nucleation and propagation of domain walls, which may get pinned at

imperfections of the sample, such as grain boundaries [21].

Varying the external magnetic field along the x-direction, we again find two reversal

mechanisms. For smaller (i.e. a = 100 and 150 nm) or thin structures (trel=10%),

we find a direct transition between quasi-homogeneous states (i.e. flower, C and S

states). This results in rectangular-shaped hysteresis curves similar to those of Stoner-

Wohlfarth particles. Geometries with an edge length of a = 250 nm and thicknesses of

trel = 50and100% exhibit a reversal mechanism that comprises a transition between two

asymmetric vortex states whose cores end on opposing side faces (see figures 13c and d).

The switching between the asymmetric vortex states can easily be understood, as both

states have a relatively large magnetization component either parallel or anti-parallel

to the external field. Generally, the reversal mechanism resembles the one observed for

circular nanodots [9]. The main difference, however, is that for the pyramidal shells the

hysteresis curve passes through two different remanent states, which correspond to the

asymmetric states on opposite side faces. According to figure 13, this transition occurs

at relatively low fields, i.e. at fields below our step width of 7958Am−1. Due to the

fourfold symmetry of the pyramidal shell, one cannot only switch between two but four

equivalent asymmetric vortex states.

5. Conclusions

We have used micromagnetic simulations to conduct an in-depth analysis on the

micromagnetic behaviour of pyramidal core-shell structures in the limit of soft magnetic

materials. We have identified and characterized several stable and metastable states in

a regime of sizes below 60 · lexch. A phase diagram, which presents the energetic ground

states at different structure sizes and shell thicknesses, with accurately computed phase

boundaries has been created. By carefully examining the results of our micromagnetic

simulations we have been able to qualitatively understand the phase transitions between

different ground states. Additionally, we have investigated the stability regimes of all
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occurring states at different thicknesses. From our findings we conclude that the physics

changes crucially in the limit of very thin shells. This implies a higher number of

metastable states, generally extended stability regimes of quasi-homogeneous and vortex

states (especially towards larger sizes) and differences in the ground state configurations.

In particular, the reduction of metastable states with increasing thickness may be

technologically relevant as the occurrence of metastable states can lead to problems.

Analysing the magnetic reversal with respect to selected directions, we have found a

switching mechanism between two equivalent vortex states that can be induced with

low magnetic fields.
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cubic particles and thin films. Physica B: Condensed Matter, 343(1-4):229 – 235, 2004.

[8] Mei-Feng Lai and Chun-Neng Liao. Size dependence of c and s states in circular and square

permalloy dots. Journal of Applied Physics, 103(7):07E737, 2008.

[9] R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker. Single-domain

circular nanomagnets. Phys. Rev. Lett., 83(5):1042–1045, August 1999.

[10] Jonathan Kin Ha, Riccardo Hertel, and J. Kirschner. Micromagnetic study of magnetic

configurations in submicron permalloy disks. Phys. Rev. B, 67(22):224432, June 2003.

[11] M. E. Schabes and H. N. Bertram. Magnetization processes in ferromagnetic cubes. Journal of

Applied Physics, 64(3):1347–1357, 1988.

[12] W. Rave, K. Fabian, and A. Hubert. Magnetic states of small cubic particles with uniaxial

anisotropy. Journal of Magnetism and Magnetic Materials, 190:332 – 348, 1998.

[13] Carlos J. Garca-Cervera, Zydrunas Gimbutas, and Weinan E. Accurate numerical methods



Micromagnetic studies of three-dimensional pyramidal shell structures 25

for micromagnetics simulations with general geometries. Journal of Computational Physics,

184(1):37 – 52, 2003.

[14] C. A. Ross, M. Farhoud, M. Hwang, Henry I. Smith, M. Redjdal, and F. B. Humphrey.

Micromagnetic behavior of conical ferromagnetic particles. Journal of Applied Physics,

89(2):1310–1319, 2001.

[15] R. P. Boardman, H. Fangohr, M. J. Fairman, J. Zimmermann, S. J. Cox, A. A. Zhukov, and

P. A.J. de Groot. Micromagnetic modelling of ferromagnetic cones. Journal of Magnetism and

Magnetic Materials, 312(1):234 – 238, 2007.

[16] Richard P. Boardman, Hans Fangohr, Simon J. Cox, Alexander V. Goncharov, Alexander A.

Zhukov, and Peter A. J. de Groot. Micromagnetic simulation of ferromagnetic part-spherical

particles. Journal of Applied Physics, 95(11):7037–7039, 2004.

[17] Richard P. Boardman, Jürgen Zimmermann, Hans Fangohr, Alexander A. Zhukov, and Peter A. J.

de Groot. Micromagnetic simulation studies of ferromagnetic part spheres. Journal of Applied

Physics, 97(10):10E305, 2005.

[18] W. Williams, A. R. Muxworthy, and G. A. Paterson. Configurational anisotropy in single-domain

and pseudosingle-domain grains of magnetite. J. Geophys. Res., 111(B12S13), 2006.

[19] R. Hertel, O. Fruchart, S. Cherifi, P.-O. Jubert, S. Heun, A. Locatelli, and J. Kirschner.

Three-dimensional magnetic-flux-closure patterns in mesoscopic fe islands. Phys. Rev. B,

72(21):214409, December 2005.

[20] D. Goll, A. E. Berkowitz, and H. N. Bertram. Critical sizes for ferromagnetic spherical hollow

nanoparticles. Phys. Rev. B, 70(18):184432, November 2004.

[21] F. Nasirpouri, M. Engbarth, S. J. Bending, L. M. Peter, A. Knittel, and H. Fangohr. Growth and

magnetisation of highly-faceted three-dimensional ferromagnetic/non-ferromagnetic core/shell

structures. submitted.
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