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Peak effect in vortex systems with strong pinning
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We have performed 2D-Langevin simulations studying the peak effect (PE) of the critical cur-
rent taking into account the temperature dependence of the competing forces. We observe and
report that the occurrence of the PE results from the competition of vortex-vortex interactions and
vortex-pin interactions and thermal fluctuations which have different temperature dependencies.
The simulations reveal that the PE can only take place for certain pinning strengths, densities of
pinning centers and driving forces, which is in good agreement with experiments. No apparent
vortex order-disorder transition is observed across the PE regime. Besides, the PE is a dynamical
phenomenon and thermal fluctuations can speed up the process for the formation of the PE.
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One pronounced phenomenon in type-II superconduc-
tors is the so called peak effect (PE), which is the ap-
pearance of a peak in the critical current density Jc

before decreasing to 0 with increasing temperature or
field[1]. The PE has widely been observed in a variety
of low and high temperature superconductors by differ-
ent experimental techniques[2], such as transport[3–5],
magnetization[6, 7], and ac-susceptibility[8–10]. It was
proposed long ago that the PE originated from softening
of the elastic moduli of vortex lattice[1], which caused
by the competitions between elastic energy Eel, pinning
energy Epin of vortex lattice and the energy of thermal
fluctuations Eth[11]. Considering the competition be-
tween the strength of vortex lattice and the pinning force
of isolated pinning center, Labusch showed that Jc > 0
only if the pinning force dominates over the strength of
vortex lattice, otherwise Jc = 0[12]. According to the
Labusch criterion the weak pinning centers in supercon-
ductors cannot pin the vortex lattice. Larkin and Ovchin-
nikov showed that weak pinning centers can act collec-
tively in the correlation volume Vc (=LcR

2
c , where Lc and

Rc are the longitudinal and transverse correlation lengths
respectively), where the vortices are of long-range order,
reducing much the Labusch criterion[13]. In the collec-
tive pinning theory the PE was interpreted as resulting
from the abrupt decrease of Vc due to the reduction in
elastic interaction[14]. The PE was recently shown to
appear naturally at the crossover from weak collective
to strong pinning [15]. Further calculations showed that
the ”Bragg glass” phases exist to be a quasi-long-range
ordered vortex lattice on a length scale r ≫ Rc[2]. Fur-
thermore, the occurrence of PE was explained as evi-
dence for a Bragg glass transition or an order-disorder
(OD) transition[2, 5, 9, 16]. The OD transition was sug-
gested to be a thermodynamic phase transition induced
by thermal fluctuations or pinning centers[2], which has

been confirmed experimentally by the direct structural
observation of the vortex lattice, such as small angle neu-
tron scattering (SANS)[9], and muon spin relaxation[17].
Also, the investigation of the reversibility of the OD tran-
sition provided strong support for its thermodynamical
nature[18].

However, the exact nature of the PE phenomenon re-
mains controversial[6, 7, 10, 19–21]. Recently, across
the PE regime no noticeable change in the order of the
vortex lattice was observed by SANS[19], and by Bitter
decoration[20]. It was also reported that the PE is situ-
ated on a boundary separating the strong pinning regime
from the thermal fluctuations dominated regime, while
the weak-strong pinning crossover is located far from the
PE regime[7]. On the other hand, for some supercon-
ductors with strong pinning centers, it has been found
that the occurrence of the PE depends strongly on the
strength and amount of the pinning centers[3, 6, 22, 23].
Especially, the PE can be adjusted by changing the pin-
ning strength of the twin boundaries (changing the angle
between field and twin boundaries), which is difficult to
explain through the OD mechanism[3].

In this work we investigated the PE of a vortex system
with strong pinning by using Langevin dynamics simu-
lations. The random pinning centers act independently.
The temperature dependence of pinning force fpv(T) is
different from that for the elastic forces between vortices
fvv(T). Thus, the competition between fpv(T) and fvv(T)
takes place as temperature changes. The PE was clearly
seen for certain pinning strengths and densities of pin-
ning. No marked change in the order of the vortices
was observed. In addition, the PE is a dynamical phe-
nomenon, and thermal fluctuations are not crucial for
the occurrence of the PE but can speed up its dynamical
process.

We use the overdamped Langevin equation of motion
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for a vortex at position ri is[24]

Fi =

Nv∑

j 6=i

F
vv(ri−rj)+

Np∑

k

F
vp(ri−r

p
k)+F

L+F
T
i = η

dri

dt

where Fi is the total force acting on vortex i, F
vv and

F
vp are the forces due to vortex-vortex and vortex-pin in-

teractions, respectively, FL is the driving force due to the
current J (FL ∝ J × ẑ) and F

T is the thermal stochas-
tic force, η is the Bardeen-Stephen friction coefficient:
η ∝ φ0Bc2/ρn, Nv the number of vortices, Np the number
of pinning centers and r

p
k the position of the kth pinning

center. We choose F
vv(ri − rj)=(φ2

0s)(2πµ0λ
2)−1(ri −

rj)(|ri − rj |)
−2 = fvv(ri − rj)(|ri − rj |)

−2, where φ0

is the flux quantum, s the length of the vortex, µ0

the vacuum permeability. We employ periodic bound-
ary conditions and cut off the logarithmic vortex-vortex
repulsion potential smoothly[25]. Pinning centers ex-
ert an attractive force on the vortices: F

vp(ri − r
p
k) =

−fpv(rik/rp) exp(−(rik/rp)2)r̂ik, where fpv tunes the
strength of this force and rp determines its range[26]. We
assume rp = 0.2λ and fpv ∝ B2

c2(1−B/Bc2)ξ
2/κ2 as core

pinning is considered[27], where κ = λ/ξ, Bc2 depends
on the temperature via Bc2 = Bc2(0)(1 − (T/Tc)

2) (The
form for Bc2(T ) (also for λ(T ) and ξ(T ) in the followed
context) is correct in the Ginzburg-Landau theory when
T approaches Tc, while providing a good fit to the BCS
form over the whole temperature range[28]). The thermal
force is taken as F

T
i = fth

∑
j δ(t−tj)Γ(tj)Θ(p−qj), where

fth represents the intensity of thermal force[29], Γ(tj) is a
random number chosen from a Gaussian distribution of
mean 0 and width 1, p represents the frequency of the
action to the vortex by thermal noise, and qj is a random
number uniformly distributed between 0 and 1. To rep-
resent the temperature dependence of F

vv, F
vp, κ and

F
T, we use λ(T )/λ(0) = (1−T/Tc)

−1/2 and ξ(T )/ξ(0) =
(1 − T/Tc)

−1/2 [28]. The average x component of the

velocities of the vortices is 〈Vx〉 = 1
Nv

∑Nv

i vxi which
is proportional to the resulting voltage. We normalize
lengths by λ0 = λ(0), forces by f0 = (φ2

0s)(2πµ0λ
3
0)

−1

and time by τ0 = λ0η(0)/f0. All quantities shown in the
following figures are expressed in simulation units.

For a fixed magnetic field, we perform simulations with
a Lorentz driving force along the x-axis while cooling
from 0.99Tc to 0.1Tc. The total number of vortices Nv =
676 is used in the calculations presented here. For larger
systems, similar results are observed. We employ B =
0.015Bc20, λ0 = 690Å, s = 12Å, and η0 = 1.4×10−17kg/s
and, unless specified otherwise, the pinning strength at
zero temperature is fpv0 = 9f0, the rate of change of
temperature is dT/dt = −0.02Tc/t0, the driving force
FL = 2f0, the number of pinning centers Np = 0.2Nv,
and fth = 1.

Fig. 1(a) shows a typical plot of the average veloc-
ity of the vortices in the x-direction, Vx, against the re-
duced temperature T/Tc (filled triangles). The figure
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FIG. 1: (a) The dip effect in the velocity Vx (filled triangles)
and number of pinned vortices Np

v /Nv (open circles) as a func-
tion of temperature. Inset: Schematic diagram of elastic force
fvv(T) and pinning force fpv(T) as a function of temperature.
From (b) to (e): Vortex (filled circles) distribution at tem-
peratures marked in Fig. 1(a). (b) T = T1, where almost
all vortices are unpinned. (c) T = Tps, where almost all the
vortices are pinned, and each pin (open circles) can trap sev-
eral vortices, shown in the enlarged graph in Fig. 1(c). (d)
Tpe > T ≥ T2, where part of the pinned vortices are unpinned
and the vortex channels are formed. (e) T = T3, where most
of vortices are unpinned and only a smaller number of vortices
are trapped, shown in the enlarged graph in Fig. 1(e).

also shows the number of pinned vortices Np
v normalized

by Nv as function of reduced temperature T/Tc (open
circles). A dip of Vx, which corresponds to a peak in Jc,
can be seen in the temperature regime from Tps to Tpe.
The simulated results show three distinct regimes. We
discuss the features going from high to low temperature.

At higher temperatures (Tps < T < Tc), the num-
ber of pinned vortices increases with decreasing temper-
ature, which results in the average velocity of vortices
decreasing accordingly. Close to Tc, as comparing with
the Lorentz force and thermal fluctuations, the pinning
force is too small for pinning centers to pin vortices. This
is supported by most of the vortices being unpinned and
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randomly distributed in the simulation cell at T1, as
shown in Fig. 1(b). When decreasing the temperature,
the pinning force becomes more important than both the
thermal fluctuations and the elastic force (fpv > fvv, see
also the inset in Fig. 1(a)). Thus, more and more vor-
tices are trapped by the random pinning centers. Close
to T =ps, almost all of vortices are pinned.

In the PE region (Tpe ≤ T ≤Tps), the vortices are
pinned and disordered. It is clear that the high Jc is
due to fpv(T ) dominating over either fvv(T ) or ther-
mal fluctuations. Besides, because the vortex pinning is
strong enough, several vortices are trapped by one pin-
ning site, see for example the insert of Fig. 1(c). This
is consistent with the recent experimental and numerical
observations[30].

At low temperatures (T < Tpe), fvv(T ) becomes more
important and thus more and more vortices are depinned,
see for example the insert of Fig. 1(e). The vortex paths
form channel flows as shown in Fig. 1(d). These chan-
nels will be destroyed by the quickly enhancing elastic
force at very low temperatures, shown in Fig. 1(e). Note
that no ordered vortex structure is observed even in low
temperature T ∼ 0.

Our calculations clearly show that there exists the PE
for such a 2D disordered vortex system, where pinning
is strong and the random pinning centers act indepen-
dently. Furthermore, the vortices are always in disor-
dered states across the PE regime. In other words, no ap-
parent change in the vortex order can be observed when
the PE takes place. The PE can be simply explained
by the competition between pinning and elastic forces of
the vortices, which results from their different tempera-
ture dependencies. It is evident that our interpretation
on the PE is different from that based on the OD transi-
tion or on the abrupt reduction in the correlation volume.
This is the central result of this work.

Fig. 2 demonstrates the Vx-T/Tc curves for different
pinning strengths fpv0 and densities np(= Np/Nv). It
can be seen that the PE appears only for certain fpv0 at
a given density np and Lorentz force. For small fpv0, the
vortices cannot be effectively pinned, resulting in a very
low Jc and no observable PE. While for very large fpv0,
the vortices are always pinned until to very low temper-
atures, see the data for fpv0 = 90f0 shown in Fig. 2.
Therefore, the PE can be numerically realized by chang-
ing pinning strength, which is in good agreement with
transport experiment by Kwok and co-workers who suc-
cessfully observed the PE by adjusted pinning strength
of two twin boundaries in YBCO[3].

The insert of Fig. 2 shows Vx-T/Tc curves at several
np at given fpv0. The PE is hardly seen if np is either
too large or too small. That is, the situation for low
density is similar to that for low pinning strength. For
the presence of the PE, therefore, these results imply
that the vortex-pin interactions depending on the prop-
erties of the defects in superconducting materials should
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FIG. 2: Effect of pinning strength f0 on the PE at a fixed
density of pinning centers. The Lorentz force fpv0 varies from
4.5 to 90 f0 (4.5, 6, 6.6, 7.5, 9, 10.5, 90) f0. Inset: Effect of
density of pinning center on the PE at fixed pinning strength
and Lorentz force.
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FIG. 3: Effect of temperature ramping rates dTc/dt0 on the
PE, dTc/dt0 ranging from -0.002 to 0.1 Tc/t0 (-0.002, -0.02,
-0.04, -0.06, -0.08, -0.1) Tc/t0. Inset: Effect of the driving
force on the PE.

be comparable with the vortex-vortex interactions being
an intrinsic property of vortex matter. Our simulated
results are supported by the experimental investigation
about the dependence of the PE on the pin density, which
was adjusted by radiation or annealing treatments[6, 31].

We now study the effects of the experimental speed on
the PE. Fig. 3 shows the Vx-T/Tc curves for several tem-
perature ramping rates dT/dt at fixed pinning and driv-
ing forces. For high dT/dt, the moving vortices cannot
be pinned due to the (relatively slow) vortex relaxation.
Thus the PE will progressively disappear with increasing
dT/dt. At low temperature ramping rates, the PE is pro-
gressively visible because the vortices have enough time
to move into the pinning wells. These simulated results
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FIG. 4: Vx-T/Tc characteristics for various thermal fluctua-
tion forces. Inset: Vx-T/Tc characteristics without the ther-
mal fluctuations for different temperature ramping rates.

indicate that the PE is a metastable phenomenon.
It is expected that an increment of pinning force at

fixed driving current is equivalent to a decrement of ap-
plied current at fixed pinning force. We therefore studied
the effect of external current on the PE. In the insert of
Fig. 3 we show the Vx-T/Tc curves for various driving
forces at fixed pinning force. For large FL (= 3f0), no
PE could be observed, just as the case for small pinning
force. Decreasing the driving force FL (= 2.5f0) a dip in
Vx-T/Tc curve is progressively more pronounced, just as
seen here, see Fig. 3 in Ref.[32]. As the driving force is
further decreased (FL = 2f0), the pinning force becomes
dominant, leading to a broadening of the PE[4].

Finally, in order to clarify the role of thermal
fluctuations[7], we studied the effects of thermal fluctu-
ations on the PE. Shown in Fig. 4 are Vx-T/Tc charac-
teristics for various fth. It can be seen that the PE is
growing with enhanced thermal fluctuations. The reason
is that the ”shaking” effect of thermal fluctuation can
effectively reduce the relaxation time within which the
vortices diffuse into the potential wells. To further con-
firm this we study the effects of the dT/dt on the PE
under fth = 0, which is shown in the inset of Fig. 4. It is
found that the PE occurs for low dT/dt (= −0.002Tc/t0)
but disappears for large dT/dt (= −0.02Tc/t0). This is a
strong evidence that thermal fluctuations are not crucial
for the occurrence of the PE in our 2D vortex system,
contrasting with the reported result[7].

In summary, we performed 2D-Langevin simulations
studying the PE for a vortex system with random strong
pinning at various temperatures. The pinning centers
act independently when they pin the disordered vortices.
Due to different temperature dependencies the forces of
vortex-vortex, vortex-pin and thermal fluctuations com-
pete with each other as temperature changes. The PE

is ubiquitously observed for certain strengths and den-
sities of pinning sites and the Lorentz force, which is in
good agreement with the experiments. No vortex order-
disorder transition or collective-individual vortex pinning
cross is observed. The PE can be simply explained by
the competition between pinning and elastic forces due to
their different temperature dependencies. The relaxation
relating to the PE is observed by changing the temper-
ature ramping rate or thermal fluctuation force, demon-
strating its dynamical characteristics. In addition, ther-
mal fluctuations are not crucial to the PE in the strongly
pinned system but it can speed up the process for the
formation of the PE.
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