
Parallel execution and scriptability in micromagnetic simulations

Thomas Fischbacher,1 Matteo Franchin,1,2 Giuliano Bordignon,1,2

Andreas Knittel,1 Hans Fangohr1

1School of Engineering Sciences, 2School of Physics and Astronomy,

University of Southampton, SO17 1BJ Southampton, United Kingdom

We demonstrate the feasibility of an ‘encapsulated parallelism’ approach towards micromagnetic
simulations that combines offering a high degree of flexibility to the user with the efficient utilization
of parallel computing resources.

While parallelization is obviously desirable to address the high numerical effort required for re-
alistic micromagnetic simulations through utilizing now widely available multiprocessor systems
(including desktop multicore CPUs and computing clusters), conventional approaches towards par-
allelization impose strong restrictions on the structure of programs: numerical operations have to be
executed across all processors in a synchronized fashion. This means that, from the user’s perspec-
tive, either the structure of the entire simulation is rigidly defined from the beginning and cannot be
adjusted easily, or making modifications to the computation sequence requires advanced knowledge
in parallel programming.

We explain how this dilemma is resolved in the Nmag simulation package in such a way that the user
can utilize without any additional effort on his side both the computational power of multiple CPUs
and the flexibility to tailor execution sequences for specific problems: simulation scripts written for
single processor machines can just as well be executed on parallel machines and behave in precisely
the same way, up to increased speed. We provide a simple instructive magnetic resonance simulation
example that demonstrates utilizing both custom execution sequences and parallelism at the same
time. Furthermore, we show that this strategy of encapsulating parallelism even allows to benefit
from speed gains through parallel execution in simulations controlled by interactive commands given
at a command line interface.

INTRODUCTION

The recent computer architecture design strategy to im-
prove CPU power by including multiple computational
cores within one processor has strongly enhanced the
relevance of program parallelization, which hitherto was
largely confined to supercomputing centers and expert
groups. Utilizing both cores in a dual-core processor
(now even available in many notebook PCs) should –
in principle – allow one to roughly halve the computing
time needed for a lengthy numerical simulation.

While most scientists and engineers have some degree
of experience with writing sequential programs, writing
– and especially debugging – parallel programs generally
is a very different endeavour, as a number of conventions
as well as restrictions on the sequence of commands have
to be obeyed in a parallel program.

Therefore, it is desirable to have a generic frame-
work for micromagnetic simulations which is both simple
enough to be usable by engineers and scientists without
special training in parallel programming, yet at the same
time utilizes parallel resources when available – which
may be a multi-node computational cluster, a supercom-
puter, or simply a multi-core desktop machine.

The Nmag micromagnetic simulation environment has
this degree of flexibility and allows the user to set up all
simulation scripts as if for sequential computing only. If
executed on a multi-processor hardware, the computa-
tionally demanding parts of the simulation will automat-
ically be executed in parallel to improve speed.

PARALLELISM UNDERNEATH SEQUENTIAL

PROGRAMS

Parallel continuum physics simulations (such as Mag-
par [1] and Nmag [2] for micromagnetism) usually par-
tition the physical region into districts which are then
distributed over a number of computing nodes. The un-
derlying rationale is that for large systems, the propor-
tion of surface nodes to volume nodes becomes small,
hence even slow communication paths (i.e. a network)
can be utilized without serious efficiency penalties to ex-
change data associated to district interface nodes across
computational units. Numerical applications of this
type usually employ the Message Passing Interface [3]
(MPI) to provide basic parallel communication facilities
as well as some parallel linear algebra package such as
e.g. PETSc [4] for distributed matrix/vector operations.

The fundamental problem with such data-parallel sim-
ulations is that most types of computational steps that
involve distributed matrices or vectors have to be exe-
cuted across all computing nodes synchronously in a fixed
order. Usually, this is achieved by running on all com-
puting nodes a single given program in which execution
order is completely determined right from the start (cf.
figure 1(a)).

Generally, whenever the situation occurs that the type
and sequence of parallel operations depends on data not
known when the program starts (i.e. external inputs
or earlier simulation results), the communication scheme
has to be extended to transport not only numerical data,

2

but also control statements which ensure that all nodes
agree on the type and order of future computational com-
mand sequences to be executed.

From the perspective of the user, it would be highly
desirable to be able to set up simulations in such a way
that they can involve (i) arbitrarily complex operations
(including using third party software libraries, reading
and writing data files, etc.) yet at the same time (ii) em-
ploy parallelism in order to improve performance, ideally
without having to change simulation scripts for parallel
execution. This requires operations not related to the
simulation (such as writing results to a file) to be associ-
ated to a single computing node – the machine on which
the simulation was started, while the role of the other
machines ‘only’ is to provide extra computing power for
operations on large distributed data.

This approach has been realised in the Nmag micromag-
netism package:

(i) Nmag (presently) is an extension to the general pur-
pose programming language Python [5], giving the
user the freedom to write micromagnetic simulation
scripts as simple or as complex as needed.

(ii) The underlying continuum physics simulation core
Nsim [6] has been extended with capabilities to set
up and manage parallel computations in a way that
completely hides the technical complexity of paral-
lel execution from the user.

Therefore, the user perceives the package to behave
like an ordinary single-processor program which can ei-
ther be started like any other nonparallel program, or al-
ternatively also in parallel execution mode. The numer-
ical computations required to do simulations are auto-
matically parallelized internally as the system distributes
command sequences and data from the master node to
the ‘slave’ nodes as needed, while the behaviour for essen-
tially sequential operations such as writing data remains
unchanged, cf. figure 1(b).

Internally, this involves a number of somewhat tricky
software engineering issues concerning e.g. synchronizing
de-allocation of parallel resources (such as matrices) that
ultimately has to be driven by cleanup mechanisms at a
higher level which (unfortunately) are intrinsically non-
deterministic, or transporting callable functions over the
network for matrix setup. These technical implementa-
tion aspects are explained in detail in [6].

AN EXAMPLE

The flexibility and utility of this approach is demon-
strated by the simulation script shown in figure 2 that
integrates parallelizable micromagnetism with optimiza-
tion routines from the independent software library
SciPy [7] which was not written for parallel execution

Listen Listen Listen

(a)

(b)

Data

Data
Control

Slave 1 Slave 2 Slave 3Master

Control
Extra

Setup and Control

FIG. 1: Design of the control structure of most parallel pro-
grams (a) and Nsim (b).

(and hence does not care about satisfying the require-
ments of parallelizable programs). This example deter-
mines a resonance frequency of a cylindrical Permalloy
nanopillar of dimensions r = 3nm, h = 10nm subjected
to an electromagnetic wave polarized linearly with ~B

perpendicular to the pillar’s axis. The EM wave is as-
sumed to interact with the ferromagnet via its ~B com-
ponent only. In this script, the amplitude-computing
function (lines 31ff) is passed on as an objective func-
tion to the optimizer (line 39) and internally uses (line
32) another function (defined in lines 15ff) that performs
a micromagnetic simulation (line 26) with periodically
changing external applied field (line 25). This example
can either be started in single-processor mode via nsim

resonance.py, or alternatively in parallel mode under
MPI (here mpich v1) control via: mpirun -np N nsim

resonance.py, where N is the number of CPUs to be
used.

There are many other situations beyond optimization
problems (as shown in this toy example) where such com-
putational steering of simulations by other code is useful.
Indeed, this encapsulation of parallelism even allows to
start up the Nsim core in interactive mode, set up a simu-
lation, then manually change parameters (such as magne-
tization) interactively from a command line prompt, and
interactively extract results on how magnetic fields and
energies change. During this interactive session, compu-
tations utilize parallelism, but the only way this is no-
ticed by the user is through improved speed (see also the
example “Example: IPython” in the Nmag manual [8]).

RESULTS AND DISCUSSION

Using a tetrahedral mesh with 214 points and an aver-
age node distance of 1.6 nm, we find that this nano-pillar
has a resonance frequency around 6 GHz whose exact lo-
cation is determined (by the script shown in figure 2) to
lie at 6.55GHz. Re-doing the computation with another
mesh containing only 138 nodes validates this result.

3

1 import nmag, math, scipy.optimize
2 from nmag import SI
3

4 Py = nmag.MagMaterial(name = ’ Py’,
5 Ms = SI(1e6, ’ A/m’),
6 llg_damping=0.02,
7 exchange_coupling =
8 SI(13.0e−12, ’ J/m’))
9

10 A_mag = SI(0.001e6, " A/m") # amplitude
11 sim = nmag.Simulation()
12 sim.load_mesh(’ rod.nmesh.h5’,[(’ rod’, Py)],
13 unit_length=SI(1e−9,’ m’))
14

15 def simulate_resonance(freq,
16 amplitude=A_mag,
17 dt=SI(0.5e−12," s"),
18 time_steps=3000):
19 sim.set_m([0,0,1])
20 angle_step=(2*math.pi*freq*dt).value
21 result=[]
22 for i in range(time_steps):
23 h_ext=[amplitude.value*
24 math.sin(i*angle_step),0,0]
25 sim.set_H_ext(h_ext,SI(1," A/m"))
26 sim.advance_time(i*dt)
27 avg=sim.get_subfield_average_siv(" M"," Py")
28 result.append((i*dt,h_ext,avg))
29 return result
30
31 def amplitude(freq_GHz):
32 res=simulate_resonance(SI(freq_GHz*1e9," 1/s"))
33 osc=[[r[0].value,r[2][0],r[2][1],r[2][2]]
34 for r in res]
35 (f,params)=nmag.fit_oscillation(osc[2000:])
36 a=math.sqrt(sum([p[1]*p[1] for p in params]))
37 return −a # we minimize −(amplitude)!
38

39 freq=scipy.optimize.fmin(amplitude,
40 [6.0], # start: 6 GHz
41 xtol=0.05,
42 ftol=0.05)
43 print " Resonance frequency: %.2f GHz" % freq

5.8 6.0 6.2 6.4 6.6 6.8

Frequency in GHz

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

A
m

p
li

tu
d

e
 i

n
 A

/m

x1e+5

Frequencies the optimizer decided to investigate
and their amplitudes

214 Vertex Mesh
138 Vertex Mesh

FIG. 2: Above: Script that combines parallel micromagnetic
simulation with a nonparallel optimization library to find a
resonance. Below: frequencies and corresponding amplitudes
for which the optimizer invoked micromagnetic simulations.

While for specific tasks – such as determining reso-
nance frequencies in the linear regime – there sometimes
are potent tools available tailored to the problem (such
as rkmag [9] for the example chosen here), the point to
emphasize is that there are many involved problems for
which specialized tools do not exist. In such situations,
having access to micromagnetic simulation capabilities
which support both parallel computing as well as full in-
tegrability with other readily existing sophisticated soft-
ware components (such as optimization or statistics li-
braries, or databases) can be a substantial advantage.

While the meshes used above for the sake of convenient
fast reproducibility of our results are too small to ben-
efit from parallelization, parallel simulations involving a
larger system that are documented in the Nmag manual [8]

show a 193% speedup of the numerical part of the sim-
ulation when run on two processors (i.e. excluding non-
parallelizable steps such as writing data), demonstrating
the general viability of the approach presented here.

CONCLUSION

The Nmag micromagnetic simulation framework has
been designed as an extension to a well-established gen-
eral purpose programming language in order to avoid the
otherwise ubiquituous trap of ‘growing’ an application
specific language. The immediate benefit of this design
decision is free interoperability with other software com-
ponents.

This approach allows the user to set up scripts for mi-
cromagnetic simulations, which tend to be very simple if
common problems are addressed (such as the computa-
tion of a hysteresis loop). When investigating less com-
mon problems, the user has full freedom to employ as
much complexity as needed (which may be partially pro-
vided by 3rd party software libraries). Furthermore, any
(apparently sequential) script can utilize parallel com-
puting resources in a way that hides all the parallelism-
related technological complexity from the user.

[1] W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich,
H. Forster, V. Tsiantos, Scalable Parallel Micromagnetic

Solvers for Magnetic Nanostructures, Comp. Mat. Sci. 28
(2003) 366-383.

[2] T. Fischbacher, M. Franchin, G. Bordignon, H. Fangohr,
A Systematic Approach to Multiphysics Extensions of

Finite-Element-Based Micromagnetic Simulations: Nmag,
in IEEE Transactions on Magnetics, 43, 6, 2896-2898
(2007)

[3] D. W. Walker, The design of a standard message passing

interface for distributed memory concurrent computers, in
Parallel Computing, 20, 4, 657–673 (1994).

[4] S. Balay, K. Buschelman, L. Dalcin, V. Eijkhout, W.
Gropp, D. Karpeev, D. Kaushik, M. Knepley, L. Curfman
McInnes, B. Smith, H. Zhang, PETSc home page, Version

2.3, http://www-unix.mcs.anl.gov/petsc/petsc-2/

(2007).
[5] G. van Rossum, Python Website, http://www.python.org

(2008).
[6] T. Fischbacher, H. Fangohr, On the automatic translation

of classical field theory to parallelized computer simula-

tions and the Nsim prototype compiler, in preparation.
[7] E. Jones, T Oliphant, P. Peterson and others,

SciPy: Open Source Scientific tools for Python 2001
http://www.scipy.org

[8] Nmag, manual and code available at
http://nmag.soton.ac.uk

[9] K. Rivkin, J. B. Ketterson, Micromagnetic simulations of

absorption spectra, Journal of Magnetism and Magnetic
Materials, 306, 204 (2006).

