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Abstract— Micromagnetic simulations of spin wave (SW) propagation in a permalloy film are
used to extract the SW dispersion relation. The SWs are excited using the Oersted fields around
a current carrying microstrip. Strong exchange interactions yield forward volume dispersion,
despite using a backward volume configuration. Edge effects cause the formation of standing lon-
gitudinal waves, which manifest themselves as resonance peaks in the SW transmission spectrum.
By studying the frequency separation between adjacent resonance peaks, we extract an effective
exchange length for the SW excitations in the nano-stripe geometry. The interaction length is in
good agreement with the values used in the simulation, thus validating the underlying theoretical
approximations. The radiation resistance for the structure is also obtained from the dispersion
curve. It shows a minimum at 217 GHz.

1. INTRODUCTION

The dispersion relation of SWs, in magnetic structures, has been a matter of investigation for
quite some time [1, 2]. The dispersion relation, ω(k), is a valuable source of information for struc-
tures of various geometries and various materials [3, 4]. Traditionally, these relations have been
obtained by experimental means, which often have to be run multiple times. Recent advancements
in computational methods have enabled us to obtain these dispersion relations numerically [5–7].

The Landau-Lifshitz-Gilbert (LLG) equation [8] is the governing differential equation that de-
scribes the dynamics of the magnetization in a magnonic waveguide. There are various packages
which can be used for this. We rely on the finite element method based package NMAG [9]. We
compare simulation against analytically obtained results. We are also interested in a study of SW
excitation due to a microstrip. This has important ramifications for actual device fabrication, and
we model a current pulse, applied to a microstrip transducer above the permalloy stripe, to excite
SWs. The chosen geometry allows us to demonstrate the use of micromagnetic simulations to ex-
tract the frequency dependence of the radiation resistance, paving the path for studies that involve
the interaction of magnetic nano-structures coupled to external circuitry [10].

2. PROBLEM SPECIFICATIONS

The problem, which was considered, is a modification of the one which has been proposed as a
standard problem for micromagnetic simulations [11]. The geometry of the problem (shown in
Fig. 1(a)), was a permalloy stripe of dimension (1000× 50 × 1) nm3. Further specifications of the
problem are given in Table 1.

(a) (b)

Figure 1: (a) The geometry of the nano stripe and (b) the applied excitation along with the DC bias field
and the direction of wave propagation. Figures are not to scale.
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The excitation, which was used for inducing spin waves, had the following features:

1. A cylindrical current carrying conductor, of radius 5 nm was assumed to be placed at (500, y, 6)
nm, in the x-z plane (shown in Fig. 1(b)).

2. A sinc excitation pulse was applied to the current conductor. The maximum amplitude of the
excitation pulse (I = 160µA) was chosen so that a field of about 5 kOe was obtained at the
circumference of the wire.

3. The Oersted fields were calculated for each finite element cell in the geometry based on its
distance from the axis of the wire.

Thus the excitation, hexc(r, t), at a point can be expressed as:

hexc(r, t) =
µ0I

2πr

sin (2πft)
2πft

, (1)

where r is the radial distance of the point from the centre of the conductor, and f is the cutoff
frequency and was taken to be 500 GHz. The ω(k) curve is obtained by viewing a surface plot of
my(kx, ω), which is obtained by taking the two dimensional Fourier transform of my(x, t), after
allowing the simulation to run for 5 ns.

3. SIMULATION RESULTS

The spatial and temporal variation in the excitation field excites only the dominant lowest order
SW mode, which is easily visible in Fig. 2. To facilitate a comparison with analytic models, we fit
the points on the dispersion curve to a polynomial (in rad/s)

ω(kx) = (−1.76×10−24)k4
x + (5.54×106)k2

x + 2.36×1011. (2)

Table 1: Fields and constants used in the simulation.

Sr. No. Parameter Value

1 Saturation Magnetization (Ms) 8.6×105 A/m
2 Exchange Coupling Constant (A) 1.3×10−11 J/m
3 Anisotropy Constant (K) 0
4 Gyromagnetic ratio (γ) 1.7×109 m/A-s
5 Damping coefficient (α) 0
6 DC bias field (HDC) 10.1 kOe

Figure 2: Dispersion curve for a BVSW configuration in a permalloy nano-stripe excited by Oersted fields
from a current carrying filament along with the polynomial fit (2) (dotted line). The vertical dashed line
corresponds to k = 0.55 rad/nm.
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Figure 2 shows (2) superimposed, as black dots, on a surface color plot of my(kx, ω). A number
of horizontal lines are also seen in Fig. 2. These are a manifestation of the exchange splitting of the
dispersion relation due to interactions between the lowest and higher order longitudinal modes [12].
One such mode is shown schematically in Fig. 3.

The resonances due to standing wave modes will follow a relation of the form [13]

ωn = ω0 + ωMλex

(nπ

d

)2
, (3)

where d is the length along the dimension of interest. The exchange constant (λex) is given by

λex =
2A

µ0M2
s

. (4)

In our case, we are exciting longitudinal modes that have a maxima at the centre of the film and
a particular width mode. Hence, (3) gets modified to

ωn = ω0 + ωMλex

(
(2n + 1)π

a

)2

, (5)

or ∆f =
1
2π

(ωn+1 − ωn) =
4ωMλexπ

a2
(n + 1) . (6)

Resonance peaks in the power spectrum, for kx = 0.55 rad/nm (which corresponds to the dashed
vertical line in Fig. 2), are shown in Fig. 4(a). We fit the data to a line, shown in Fig. 4(b). The
slope is found to be 57.53±0.76 MHz, from which, using (6), we extract λex = 2.59×10−17 m2. This
is in reasonable agreement with the values given in Table 1 that yield λex = 3.23×10−17 m2.

Figure 3: Standing spin wave resonance in a magnetic thin film. The precession cone angle of the magne-
tization has been exaggerated for clarity. N is the demagnetizing tensor. It was assumed that the applied
field, HDC, is strong enough to saturate the stripe so that Ms is parallel to HDC, everywhere.

(a) (b)

Figure 4: (a) The power spectrum at k = 0.55 rad/nm and (b) frequency separation (∆f) dependence on
mode order (nx) with a linear fit to the equation ∆f = 57.53n + 523.88MHz, with R2 = 0.98.
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4. RADIATION RESISTANCE

Radiation resistance determines the amount of power transferred between the current in a microstrip
transducer and the excited SWs. For the lowest order BVSW mode [13],

rrad(ω) =
ωµ0

kxc
sin2

[
kxc

2
√
−(1 + χ)

] ∣∣∣∣
F

I

∣∣∣∣
2

. (7)

The array factor

F = Ie−kxsJ0

(
kxw′

2

)
, (8)

where J0 is the zeroth Bessel function, s = 6 nm is the spacing of the of the current filament from
the film, I is the current carried by the conductor, w′ = 10 nm is the width of the current filament
and the susceptibility χ is given by

χ =
ωexωM

ω2
ex − ω2

. (9)

To calculate rrad(ω), we must first estimate ω0 and λex.
The dispersion curve for the lowest order BVSW, in an infinite film, is approximated as [14]

ω =

√
ωex.

(
ωex + ωM

1− e−kxc

kxc

)
, (10)

where
ωex = γµ0HDC +

2γA

Ms
k2

x = ω0 + λexωMk2. (11)

When can fit the (ω, kx) dispersion curve in Fig. 2, to (10), we obtain the values ω0 = 2.21×1011 rad/s
and λex = 2.61×10−17 m2.

Figure 5 shows a minima in rrad(f) at 217GHz. This corresponds to the zero of the Bessel
function in (8). The position of this zero can be shifted by considering current filaments of different
widths.

The return loss, for a microstrip transducer (in our case the current carrying conductor), is
defined as [13]

RL = −10 log

[
(Rc + Rrad −Rg)

2 + (Xl + Xrad)
2

(Rc + Rrad + Rg)
2 + (Xl + Xrad)

2

]
, (12)

Figure 5: Frequency dependence of radiation resistance per unit length for exchange dominated BVSWs.
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where Rc is the resistance from the finite conductivity of the transducer, Rrad and Xrad are the
radiation resistance and reactance resulting from coupling to spin waves, Xl is the inductive reac-
tance of the microstrip transducer in the absence of dipolar spin wave coupling and Rg is the input
impedance if the transducer is modelled as a transmission line. Here Rrad = rrad × Lfil where Lfil

is the length of the microstrip transducer. With Lfil = b = 50 nm, Rrad ¿ {Rc, Rg}. Therefore,
RL shows no significant frequency dependence and the return loss will be largely determined by
the impedance characteristics of the external circuitry connected to the microstrip transducer.

5. CONCLUSION

We have shown how micromagnetic simulations can be used to obtain valuable information about
the exchange splitting of the dispersion curve and the radiation resistance of the structure. The
effects of exchange can be extracted by looking at SW resonances in the transmission characteristics,
and the value of λex thus extracted seems to agree with the values used as input to the simulation.
This provides a validation of the method used to obtain the SW dispersion relation.

Excitation of SWs using an Oersted field would be a possible experimental geometry. The radi-
ation resistance of SWs helps design transducers with proper impedance matching characteristics.
rrad was estimated from ω(k), and was found to have a minimum at 217 GHz. However, we would
need to know the impedance characteristics of the microstrip transducer fairly accurately before
we can estimate return and insertion losses in an experiment.
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