
Software Engineering for Computational
Science
Lessons learned from the Nmag project

Hans Fangohr, Maximilian Albert, Matteo Franchin
2016-05-16

University of Southampton, United Kingdom
SE4Science, ICSE2016, Austin, Texas (US)

Outline

Context: computational micromagnetics
Nmag project
Architecture and languages
Ocaml performance

User interface / configuration files
Automatic code generation
Parallel execution model
Version control, tests, continuous integration
Dissemination
Complexity
Conclusions and general recommendations

Hans Fangohr
SE4Science 2016 1

Context: computational
micromagnetics

The science

• research area computational micromagnetics
• physics: multiple time scales (10-12s to 10-8s)
• physics: multiple length scales (10nm to 10,000nm)
• model: magnetization is continuous 3d-magnetisation
vector field

• mathematics: time dependent integro partial differential
equation (PDE)

• numerical solution:
• semi-discretize time dependent PDE
• finite elements/finite difference for spatial operators
• stiff coupled system of ∼106 ordinary differential equations

• applications: magnetic data storage, sensors,
electromagnetic wave generation, spintronics

Hans Fangohr
SE4Science 2016 2

The community

• community of several thousand researchers, ∼500 papers
making use of computational micromagnetics every year

• from academia and industry
• mostly physicists, material scientists, engineers
• use simulation to interpret and design

• experiments
• devices

Equilibrium configuration of magnetisation vectorfield in disk geometry.

Hans Fangohr
SE4Science 2016 3

Simulation tool status 2003: OOMMF

• Only one simulation code (1st release Oct 1998):
• Object Oriented MicroMagnetic Framework (OOMMF)
http://math.nist.gov/oommf/

• finite difference space discretization
• C++ core routines, Tk/Tcl interface

Hans Fangohr
SE4Science 2016 4

http://math.nist.gov/oommf/

Nmag project

Nmag introduction

• need a finite element based alternative to the finite
difference based OOMMF code

• supporting multi-physics (magnetism + X) would be
desirable

• Software name turns out to be NMAG. Possible meanings:
• NanoMAGnetic …
• n-mag, where n symbolises multiple types of physics

• Homepage: http://nmag.soton.ac.uk

Hans Fangohr
SE4Science 2016 5

http://nmag.soton.ac.uk

Nmag Time line and Team

Time line

• 2003 initial plan
• 2005 funding secured (post-doc for 2 years)
• 2007 first release as open source
• 2012 actively maintenance stops

Team

• post-doc (theoretical physics)
• 2-3 PhD students (one of them [Matteo Franchin] carried
on as a post-doc maintaining Nmag ’ in his spare time’
until 2012)

• investigator

Hans Fangohr
SE4Science 2016 6

Uptake (as of Friday 13 May 2016)

• users in academia and industry, ∼150 known by name
• 113 citations on Web of Science, 194 on Google scholar,

Hans Fangohr
SE4Science 2016 7

Impact

1. Ongoing (increasing??) use in research and development
2. Design influenced other micromagnetic packages
3. Flexible Open Source FE micromagnetic tool provides
useful data point for ”micromagnetic standard problems”:

• Micromagnetic standard problems are essentially systems
tests with well defined input and simulation parameters

• Used to evaluate new tools
• Examples

• Journal of Applied Physics 105, 113914 (2009)
• IEEE Transactions on Magnetics 49, 524-529 (2013)
• http://arxiv.org/abs/1603.05419 (2016)

Hans Fangohr
SE4Science 2016 8

http://arxiv.org/abs/1603.05419

Architecture and languages

Outcome - overview

Nmag Simulation
script

Nmag Library
(Python library)

Other Python
libraries: scipy,
pylab, mayavi,..

Nsim multiphysics
library (Python)

Nsim Simulation
Compiler(Ocaml)

PETSC SUNDIALS

MPI Parmetis

Se
qu

en
tia

l e
xe

cu
tio

n
Pa

ra
lle

l e
xe

cu
tio

n
(a

ll
co

m
pi

le
d)

• nmag end-user interface is Python based
• nmag builds on generic multiphysics finite element library
nsim

Hans Fangohr
SE4Science 2016 9

Outcome - data output

"nsim x.py"

Spatially resolved data
-> x_dat.h5

(compressed binary
file)

Spatially averaged
data

 -> x_dat.ndt
(text file)

x-y plots

"ncol"

"nmagpp"

Dump data
(text)

VTK files
(3d plots)

custom
numerical

analysis results

custom
Python
script

gnuplot,
xmgrace,

etc

Custom data.
(Saving instructions
provided by user)

OVF/Data
(Dispersion

relation)

"nmagprobe"

Hans Fangohr
SE4Science 2016 10

Outcome - lines of code

Output from CLOC (Count Lines Of Code)

Language files comment lines code lines
OCaml 174 15111 53445
Python 588 17718 49286
C 49 2548 12375
Bourne Shell 47 1232 9184
make 138 391 2831
C/C++ Header 14 410 820
SUM: 1010 37410 127941

Hans Fangohr
SE4Science 2016 11

Architecture and language discussion

• Python (further discussion later)

✓

• user interface to please scientists
• interactive (interpreted)

• Objective Caml

?

• for complicated multi-physics finite
element code

• compiled with static types (→ fast)
• no pointers
• well defined C interface
• power of functional language (suits
symbolic operations)

• team member was familiar with it

• Computational library re-use

✓

Nmag Simulation
script

Nmag Library
(Python library)

Other Python
libraries: scipy,
pylab, mayavi,..

Nsim multiphysics
library (Python)

Nsim Simulation
Compiler(Ocaml)

PETSC SUNDIALS

MPI Parmetis

Se
qu

en
tia

l e
xe

cu
tio

n
Pa

ra
lle

l e
xe

cu
tio

n
(a

ll
co

m
pi

le
d)

Hans Fangohr
SE4Science 2016 12

Architecture and language discussion

• Python (further discussion later)✓
• user interface to please scientists
• interactive (interpreted)

• Objective Caml

?

• for complicated multi-physics finite
element code

• compiled with static types (→ fast)
• no pointers
• well defined C interface
• power of functional language (suits
symbolic operations)

• team member was familiar with it

• Computational library re-use

✓

Nmag Simulation
script

Nmag Library
(Python library)

Other Python
libraries: scipy,
pylab, mayavi,..

Nsim multiphysics
library (Python)

Nsim Simulation
Compiler(Ocaml)

PETSC SUNDIALS

MPI Parmetis

Se
qu

en
tia

l e
xe

cu
tio

n
Pa

ra
lle

l e
xe

cu
tio

n
(a

ll
co

m
pi

le
d)

Hans Fangohr
SE4Science 2016 12

Architecture and language discussion

• Python (further discussion later)✓
• user interface to please scientists
• interactive (interpreted)

• Objective Caml

?

• for complicated multi-physics finite
element code

• compiled with static types (→ fast)
• no pointers
• well defined C interface
• power of functional language (suits
symbolic operations)

• team member was familiar with it

• Computational library re-use✓

Nmag Simulation
script

Nmag Library
(Python library)

Other Python
libraries: scipy,
pylab, mayavi,..

Nsim multiphysics
library (Python)

Nsim Simulation
Compiler(Ocaml)

PETSC SUNDIALS

MPI Parmetis

Se
qu

en
tia

l e
xe

cu
tio

n
Pa

ra
lle

l e
xe

cu
tio

n
(a

ll
co

m
pi

le
d)

Hans Fangohr
SE4Science 2016 12

Architecture and language discussion

• Python (further discussion later)✓
• user interface to please scientists
• interactive (interpreted)

• Objective Caml ?
• for complicated multi-physics finite
element code

• compiled with static types (→ fast)
• no pointers
• well defined C interface
• power of functional language (suits
symbolic operations)

• team member was familiar with it

• Computational library re-use✓

Nmag Simulation
script

Nmag Library
(Python library)

Other Python
libraries: scipy,
pylab, mayavi,..

Nsim multiphysics
library (Python)

Nsim Simulation
Compiler(Ocaml)

PETSC SUNDIALS

MPI Parmetis

Se
qu

en
tia

l e
xe

cu
tio

n
Pa

ra
lle

l e
xe

cu
tio

n
(a

ll
co

m
pi

le
d)

Hans Fangohr
SE4Science 2016 12

Was Objective Caml (OCaml) the right choice?

• Objective Caml has no acceptance in user community
(user community are physicists, engineers, material
scientists):

• can easily learn Python
• can learn C if truly required
• tend not to touch Objective Caml:

• have never heard of it
• feels unusual if grown up with imperative or OO language

• Thus, no buy-in from community into this part of the code
• Not good for an open source project

Conclusion
Objective Caml was a unsuitable choice for social reasons.

Hans Fangohr
SE4Science 2016 13

Objective Caml (OCaml) example

From ”Learn OCaml”:

Polymorphism: sorting lists

Insertion sort is defined using two recursive functions.

let rec sort = function
| [] -> []
| x :: l -> insert x (sort l)

and insert elem = function
| [] -> [elem]
| x :: l -> if elem < x then elem :: x :: l

else x :: insert elem l;;

Hans Fangohr
SE4Science 2016 14

Ocaml performance

Language performance results and discussion

• Baseline given by C or Fortran
• Naive Python is about 100 times slower

• that’s why we use Python only for the
interface and coordination of
computing flows

• the computing intense operations are
all in compiled code

• C, C++, OCaml

• OCaml performance
• OCaml code is strongly typed
• compiler knows types at compile time,
and can produce fast code

• A priori not clear why this should be
slower than C-speed

Nmag Simulation
script

Nmag Library
(Python library)

Other Python
libraries: scipy,
pylab, mayavi,..

Nsim multiphysics
library (Python)

Nsim Simulation
Compiler(Ocaml)

PETSC SUNDIALS

MPI Parmetis

Se
qu

en
tia

l e
xe

cu
tio

n
Pa

ra
lle

l e
xe

cu
tio

n
(a

ll
co

m
pi

le
d)

Hans Fangohr
SE4Science 2016 15

OCaml performance results

Result:
OCaml code slower than C-code (factor 4 in recent tests1)

Two-reasons:

• multi-dimensional arrays are not well supported
• can have arrays of arrays to represent matrix, but allocated
memory is not contiguous

• subarrays are not guaranteed to have the same length,
making optimisation for the compiler difficult

• the Bigarray module addresses these shortcomings, but
Bigarray access is not inlined

• bounds-checking elimination, loop unrolling, and
vectorisation not supported by OCaml compiler

1https:
//github.com/fangohr/paper-supplement-ocaml-performanceHans Fangohr

SE4Science 2016 16

https://github.com/fangohr/paper-supplement-ocaml-performance
https://github.com/fangohr/paper-supplement-ocaml-performance

User interface / configuration files

Reminder

Nmag Simulation
script

Nmag Library
(Python library)

Other Python
libraries: scipy,
pylab, mayavi,..

Nsim multiphysics
library (Python)

Nsim Simulation
Compiler(Ocaml)

PETSC SUNDIALS

MPI Parmetis

Se
qu

en
tia

l e
xe

cu
tio

n
Pa

ra
lle

l e
xe

cu
tio

n
(a

ll
co

m
pi

le
d)

• nmag end-user interface is Python based
• nmag builds on generic multiphysics finite element library
nsim

Hans Fangohr
SE4Science 2016 17

Simulation configuration

Common requirement:

• re-use large code base with some run-specific variations:
(particular types of physics, force-field, equation-of-motion, dimensionality, discretisation, number of

particles, applied field, temperature, model assumption, …)

Common approaches to managing these ’configurations’:

1. recompile code for every run
2. Graphical User Interface to set parameters manually for
every run (OOMMF)

3. Main simulation tool reads configuration file (OOMMF)
4. Simulation configuration is executable script, that uses
simulation package as a library (Nmag)

Hans Fangohr
SE4Science 2016 18

Starting Point: OOMMF interface (GUI)

Hans Fangohr
SE4Science 2016 19

Starting Point: OOMMF interface, Tcl configuration file

MIF 2.1
Specify Oxs_BoxAtlas:atlas {
xrange {0 30e-9}
yrange {0 30e-9}
zrange {0 100e-9} }

Specify Oxs_RectangularMesh:mesh {
cellsize {2.5e-9 2.5e-9 2.5e-9}
atlas :atlas}

Specify Oxs_UniformExchange {A 13e-12}
Specify Oxs_Demag {}
Specify Oxs_UZeeman "Hrange { { 0.5e6 0 0 0.5e6 0 0 0 } }"
Specify Oxs_EulerEvolve {
alpha 0.5
start_dm 0.0001
gamma_G 0.2211e6
absolute_step_error 0.02
relative_step_error 0.02}

Specify Oxs_TimeDriver {
basename test
evolver Oxs_EulerEvolve
stopping_dm_dt 0.01
mesh :mesh
stage_count 1
stage_iteration_limit 550000
total_iteration_limit 1000
Ms { Oxs_UniformScalarField { value 0.86e6 } }
m0 { Oxs_UniformVectorField {
norm 1
vector {1 0 1}

} } }
Destination archive mmArchive
Schedule DataTable archive Step 1
Schedule Oxs_TimeDriver::Magnetization archive Stage 500

20

Outcome: make simulation tools a python package

import nmag
from nmag import SI

mat_Py = nmag.MagMaterial(
name="Py",
Ms=SI(0.86e6, "A/m"),
exchange_coupling=SI(13.0e-12, "J/m"),
llg_damping=0.5)

sim = nmag.Simulation()
sim.load_mesh("bar.nmesh.h5", [("Py", mat_Py)],

unit_length=SI(1e-9,"m"))

sim.set_m([1, 0, 1])
sim.save_data(fields='all')
target_time = sim.advance_time(SI(100e-12, "s"))
sim.save_data(fields='all')

bar.nmesh.h5

Hans Fangohr
SE4Science 2016 21

Why have nmag as a library?

1. most flexible model:
• user writes a generic Python program using commands
from the nmag library:

• can include for-loops, functions, reading/writing data, …
• designers don’t have to anticipate use cases

2. supports reproducibility: simulation setup is flexible but
fully contained in one file

3. saves work in comparison to config file approach:
• no need to invent a ’configuration file language’ and parser

Hans Fangohr
SE4Science 2016 22

Why use Python as the user interface language

• very high level language (fewer lines→ fewer bugs)
• large eco-system of scientific tools
• supports procedural, OO and functional programming
• socially acceptable and considered easy to learn by user
community 2

Could we do better?
No.

(Well, yes, could do a little better: Ocaml in Python, or
Python in Ocaml→ ask)

2H. Fangohr, ”A Comparison of C, MATLAB, and Python as Teaching
Languages in Engineering”, Lecture Notes in Computer Science Volume 3039,
pp 1210-1217 (2004)

Hans Fangohr
SE4Science 2016 23

Why use Python as the user interface language

• very high level language (fewer lines→ fewer bugs)
• large eco-system of scientific tools
• supports procedural, OO and functional programming
• socially acceptable and considered easy to learn by user
community 2

Could we do better?
No. (Well, yes, could do a little better: Ocaml in Python, or
Python in Ocaml→ ask)
2H. Fangohr, ”A Comparison of C, MATLAB, and Python as Teaching
Languages in Engineering”, Lecture Notes in Computer Science Volume 3039,
pp 1210-1217 (2004)

Hans Fangohr
SE4Science 2016 23

Automatic code generation

Automatic code generation Introduction

To achieve flexibility regards the used equations and high
performance:

• User provides equations symbolically
• package generates
• and compiles C code
• at run time

Hans Fangohr
SE4Science 2016 24

Automatic code generation Example

Equation of motion for magnetisation

• magnetization vector field m(r) defines a 3d vector at
every point r in 3d space

• solving PDEs in every time step results in field H(m)

• compute time derivative dm
dt that depends on m and H:

dm
dt = c1m× H+ c2m× (m× H) (1)

• We can rewrite (1) using index notation as:

dmi
dt =

∑
j,k

[
c1ϵijkmjHk +

∑
p,q

c2ϵijkmj(ϵkpqmpHq)
]

(2)

Hans Fangohr
SE4Science 2016 25

Automatic code generation Example (continued)

• Repeat of last equation (2):

dmi
dt =

∑
j,k

[
c1ϵijkmjHk +

∑
p,q

c2ϵijkmj(ϵkpqmpHq)
]

• Express this in small domain specific language (DSL) that
nsim provides:

dmdt = """%range i:3, j:3, k:3, p:3, q:3
dmdt(i) <- c1 * eps(i, j, k) * m(j) * H(k)

+ c2 * eps(i, j, k) * m(j)
* eps(k, p, q) * m(p) * H(q)"""

(actually a string in a Python program)

Hans Fangohr
SE4Science 2016 26

Automatic code generation - discussion

Benefits:

• high flexibility – addresses research environment
requirements

• high execution performance

Disadvantages:

• greater complexity of code & up-front investment
• dynamic linking not always available (for example CrayOS
on HECToR supercomputer in the UK a few years back)

• installation harder (need C-compiler at run time)

Was it worth the effort?
Yes(-ish). It was interesting.

Could we have done better?
A little: embed DSL in Python

Hans Fangohr
SE4Science 2016 27

Automatic code generation - discussion

Benefits:

• high flexibility – addresses research environment
requirements

• high execution performance

Disadvantages:

• greater complexity of code & up-front investment
• dynamic linking not always available (for example CrayOS
on HECToR supercomputer in the UK a few years back)

• installation harder (need C-compiler at run time)

Was it worth the effort?
Yes(-ish). It was interesting.

Could we have done better?
A little: embed DSL in Python

Hans Fangohr
SE4Science 2016 27

Automatic Code Generation: Related finite element packages

FEniCS 3 and Firedrake 4

• provide similar functionality as was required from nsim
• actively developed

Similar designs to nsim:

• compiled computational core (C++)
• Python high level interface
• compilation of specialised code at run-time

3http://fenicsproject.org
4http://firedrakeproject.org

Hans Fangohr
SE4Science 2016 28

http://fenicsproject.org
http://firedrakeproject.org

Parallel execution model

Conventional MPI execution model

MPI_Init

Main program
(rank 0:

determines data)

MPI_Finalise

MPI_Init

Main program
(rank 1:

determines data)

MPI_Finalise

MPI_Init

Main program
(rank 2:

determines data)

MPI_Finalise

Hans Fangohr
SE4Science 2016 29

Nmag MPI execution model (”Master-Slave”)

MPI_Init

Sequential
code

Parallel code
(rank 0)

MPI_Finalise

MPI_Init

waiting

Parallel code
(rank 1)

MPI_Init

waiting

Parallel code
(rank 2)

MPI_FinaliseMPI_Finalise

Sequential
code waiting waiting

Hans Fangohr
SE4Science 2016 30

Discussion Master Slave model

Benefits:

• End user runs truly sequential Python program
• user does not need to know about parallelism

Disadvantages:

• for master-slave communication, we need to invent
additional language, providing additional complexity

• doesn’t scale for very large number of parallel processes
• master process and user’s serial Python code can become
bottleneck

Lessons learned:

• avoid master-slave model for large process numbers & expert users

For Nmag, parallel execution model preference not clear: user community
generally runs simulations on desktop machines, or not highly parallel. 31

Version control, tests, continuous
integration

Version control

• CVS in 2005
• Soon(-ish) switch to SVN (SVN first release was in 2004)
• 2010 switch to Mercurial

Importance of version control?
Very high

Hans Fangohr
SE4Science 2016 32

Tests

There are some unit test and (mostly) system tests:

Makefile name Comment how many
check basic system tests 56
slowcheck slow runs 6
mpi MPI tests 8
hlib matrix compression tests 2
Total 72

What could we have done better?

• more unit tests
• systematic test coverage
• ideally test-driven-development

Hans Fangohr
SE4Science 2016 33

Continuous integration and release

• no continuous integration (i.e. no Jenkins / Travis CI /…)
• build process of release versions was only fully automized
by the end of the active project

Could we have done better?

• Yes - automate everything, release often.
• Without automation of release, every release seems to be
a major effort.

Hans Fangohr
SE4Science 2016 34

Dissemination

Documentation and Tutorial

• significant effort went into the documentation
http://nmag.soton.ac.uk/nmag/

• developed by experienced teacher
• created tutorial (”Guided Tour”), that introduces

• Nmag simulation software
http://nmag.soton.ac.uk/nmag/current/manual/html/guided_tour.html

• Mini tutorial micromagnetic modelling
http://nmag.soton.ac.uk/nmag/current/manual/html/tutorial/doc.html

New users of the software are often new to the field (PhD
students).

Hans Fangohr
SE4Science 2016 35

http://nmag.soton.ac.uk/nmag/
http://nmag.soton.ac.uk/nmag/current/manual/html/guided_tour.html
http://nmag.soton.ac.uk/nmag/current/manual/html/tutorial/doc.html

User support

• mailing list
• hosted by University of Southampton, use Google groups
for searchable archives
https://groups.google.com/forum/#!forum/nmag-users

• support email (nmag@soton.ac.uk)
• Wiki pages (hosted by Redmine instance on Southampton
server)
https://nmag.soton.ac.uk/community/wiki/nmag

Hans Fangohr
SE4Science 2016 36

https://groups.google.com/forum/#!forum/nmag-users
https://nmag.soton.ac.uk/community/wiki/nmag

Software installation

• Complicated software stack:
• Objective Caml, integrated Python interpreter
• compilation of C code at runtime
• use of libraries that can be challenging to install on their
own (PETSc, MPI, Metis, CVODE/Sundials)

• Solutions
• Debian packages
• live-CD (Knoppix)
• virtual machine images (vmware at the time)
• install from source

• ∼ 95MB tarball including all dependencies
• needs 1GB space to compile, 500MB after compile
• works on Linux (in the past also on OS X)
• Not pretty but very robust

Hans Fangohr
SE4Science 2016 37

Complexity

Supporting calculations in arbitrary numbers of dimensions

• Nsim finite element library works in arbitrary number d of
dimensions,

• including d = 1, d = 2, d = 3 which have immediate use
cases

• but also d = 11, d = 12, d = 42 or any other d ∈ IN

• pretty complex generic code
• was never needed beyond three spatial dimensions 3d

Could we have done better?
Yes - support only d = 1, 2 and d = 3.

Hans Fangohr
SE4Science 2016 38

Complexity discussion

• attempt to support computation in arbitrary number of
dimensions

• attempt to invent Python-independent domain-specific
framework to support arbitrary high level language
interfaces in the future

• other novel features used by very relatively few groups
(ask)

Lesson
Whenever the word arbitrary comes up, it is worth asking:

• do we really need this, and
• do we need it now?

Hans Fangohr
SE4Science 2016 39

Conclusions and general
recommendations

Recommendations primarily affecting end-users

Recommendations primarily affecting end-users

1. Embedding simulation into existing programming
language provides unrivaled flexibility

2. Python is a popular language that is perceived to be easy
to learn by (non-computer) scientists

3. Documentation and tutorials are important

Hans Fangohr
SE4Science 2016 40

Recommendations primarily affecting developers

Recommendations primarily affecting developers

1. Version control tool use is essential
2. System tests are essential, unit tests are very useful
3. Continuous integration is very useful
4. Limit the supported or anticipated functionality to
minimize complexity and enhance maintainability

5. Choice of unconventional programming language can limit
the number of scientists joining the project as developers

6. Code generation based on user provided equations is
up-front investment but widens applicability of tool

7. OCaml not quite as fast as C/C++/Fortran

Hans Fangohr
SE4Science 2016 41

Acknowledgements

• UK’s Engineering and Physical Sciences Research Council (EPSRC) from grants
EP/E040063/1, EP/E039944/1 and Doctoral Training Centre EP/G03690X/1)

• European Community’s FP7 Grant Agreement no. 233552 (DYNAMAG)
• European Community’s Horizon 2020 Research Infrastructures project #676541
(OpenDreamKit)

• the University of Southampton

Paper (in proceedings)
Hans Fangohr, Max Albert, Matteo Franchin, Nmag micromagnetic
simulation tool – software engineering lessons learned

1. pdf at http://arxiv.org/abs/1601.07392
2. code (ref [15] in paper) at https://github.com/fangohr/

paper-supplement-ocaml-performance

Hans Fangohr
SE4Science 2016 42

http://arxiv.org/abs/1601.07392
https://github.com/fangohr/paper-supplement-ocaml-performance
https://github.com/fangohr/paper-supplement-ocaml-performance

Appendix

Appendix: Python calls OCaml or Ocaml calls Python?

Nmag project combines Objective Caml (OCaml) with Python
code. Two options:

1. Start Python interpreter and call OCaml code from Python
2. Start OCaml programme and which starts embedded
Python interpreter session

Gone with 2, but was mistake: Python interpreter that is
embedded in OCaml executable is provided with Nmag source
code. Thus:

• Python libraries installed on ’system’ (or other) Python,
not available in OCaml-Python

• users call script x.py with name of OCaml executable
nsim, i.e. ”nsim x.py”, whereas ”python x.py” would
be more intuitive when x.py is a Python file

Appendix: Why express the equation in a string?

• rephrase: why not embed equation presentation in
Python as we use Python anyway (i.e. like sympy)

• Ambition was to support arbitrary high level language for
user interface

• be prepared for the day when Python becomes
unfashionable

Could we have done better?
Yes:

• Embed DSL (initially) in Python; worry about generality
later

• would allow interactive exploration of symbolic equations,
existing methods, documentation strings etc

Appendix: OCaml example

let rec sort = function
| [] -> []
| x :: l -> insert x (sort l)

and insert elem = function
| [] -> [elem]
| x :: l -> if elem < x then elem :: x :: l

else x :: insert elem l;;

(* Interpreter responds with:
val sort : 'a list -> 'a list = <fun>
val insert : 'a -> 'a list -> 'a list = <fun>
*)

sort [2; 1; 0];;
- : int list = [0; 1; 2]
sort ["yes"; "ok"; "sure"; "ya"; "yep"];;
- : string list = ["ok"; "sure"; "ya"; "yep"; "yes"]

	Context: computational micromagnetics
	Nmag project
	Architecture and languages
	Ocaml performance
	User interface / configuration files
	Automatic code generation
	Parallel execution model
	Version control, tests, continuous integration
	Dissemination
	Complexity
	Conclusions and general recommendations
	Appendix
	Appendix

