
Report from ICSE 2016

Hans Fangohr
2017-05-24



Outline

ICSE 2016
SE4Science
Continuous Deployment (CD)

CD: Deployment Process

CD: Results
CD: Other observations
Chaos Engineering

The Evolution of C Programming Practices: A Study of the Unix
Operating System 1973–2015

Other comments
Summary

2



ICSE 2016



International Conference on Software Engineering (ICSE) 2016

• annual international 3-day meeting on Software
Engineering research

• many satellite workshops for several days before and after
the meeting

• registration fee relatively high
• 2016 meeting was in Austin, Texas (US) in May

4



Travel

5



Venue

6



Catering

7



Catering 2

8



SE4Science



SE4Science

10



SE4Science

Attached Workshop: Software Engineering for Science
(SE4Science)

http:
//se4science.org/workshops/se4science16/schedule.htm

Micromagnetic simulation tool – SE lessons learned:

• talk: http://www.southampton.ac.uk/~fangohr/
publications/talk/
2016-05-16-ICSE-SE4Science-Austin-Texas-US.pdf

• paper: http://doi.acm.org/10.1145/2897676.2897677

11

http://se4science.org/workshops/se4science16/schedule.htm
http://se4science.org/workshops/se4science16/schedule.htm
http://www.southampton.ac.uk/~fangohr/publications/talk/2016-05-16-ICSE-SE4Science-Austin-Texas-US.pdf
http://www.southampton.ac.uk/~fangohr/publications/talk/2016-05-16-ICSE-SE4Science-Austin-Texas-US.pdf
http://www.southampton.ac.uk/~fangohr/publications/talk/2016-05-16-ICSE-SE4Science-Austin-Texas-US.pdf
http://doi.acm.org/10.1145/2897676.2897677


Continuous Deployment (CD)



One step back: Continuous Integration (CI)

Continuous integration
Repeated integration of new code into main line, including

• automatic builds
• automatic unit, integration and system tests

Common implementation

• git for version control
• push changes to github (merge request)
• triggers running of test suite (Travis CI)

13



Paper: Continuous Deployment at Facebook and OANDA

Tony Savor et al:

Continuous Deployment at Facebook and OANDA

DOI: http://dx.doi.org/10.1145/2889160.2889223

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA

14

http://dx.doi.org/10.1145/2889160.2889223


What is Continuous Deployment (CD)

1. software updates are kept as small and isolated as
reasonably feasible

2. they are released for deployment immediately after de-
velopment and testing completes

3. the decision to deploy is largely left up to the developers
(without the use of separate testing teams), and

4. deployment is fully automated.

15



Uptake of CD

Continuous deployment has been embraced by a number of
high-profile Internet firms:

• Facebook was utilizing continuous deployment in 2005.
• Flickr reported 10 software deployments a day in 2009
• over 11,000 software deployments in 2011 at Etsy
• newly hired software developers at Etsy are assigned a
simple bug to find and fix on their first day of work, and
are expected to deploy their fix to production servers
within a day or two – without supervision and without a
separate testing team.

16



Values of CD

• small updates reduce risk
• engineers are given autonomy and end-to-end
responsibility

• significant investment in tools
• encourage risk taking with a no blame culture

17



This paper

Quantitative and qualitative analyses of the continuous
deployment practices at two very different firms:

• Facebook has thousands of engineers and a set of
products that are used by well over a billion users; its
backend servers can process billions of queries per
second.

• OANDA, the second firm, has only roughly 100 engineers; it
operates a currency trading system that processes many
billion dollars worth of trades per day and is thus
considered mission critical.

The continuous deployment processes at both firms are
strikingly similar even though they were developed
independently.

18



CD: Deployment Process



CD Principles

1. software is updated in small increments that are
independently deployable

2. updates are the responsibility of the developers who
created them

• including being on call for failures

Broad responsibility results in short turn around time in the
event of failures. Useful because

• developer still remembers what they have done
• there is a single point of contact

20



CD key practice 1: testing

1. Developer creates and runs automated
• unit and
• subsystem tests

2. Developer runs integration testing of the whole system on
virtual machines

3. Automated system tests simulate production workloads
4. The performance tests are executed by the developers in
non-virtual environments for reproducibility.

21



CD key practice 2: code review

• plays important role
• is accepted and taken seriously by developers because
they are responsible for the full lifecycle of the software

22



CD key practice 3: deployment in stages

• Initially software updates are deployed onto a beta or a
demo system.

• Beta/demo sites have real users and are considered
production sites.

• Where possible, organizations use a practice commonly
referred to as “dog fooding” whereby a portion of the
development organization uses the most updated
software before the changes are pushed to external users.

• Generally, the release of deployed software occurs in
stages to contain any issues before general availability to
the entire customer code base.

23



Staged deployment strategies 1/2

• dark launches: A deployment strategy where changes are
released during off peak hours

• staging/baking: A stage in the deployment pipeline where
a new version of software is tested in conditions similar to
a production environment.
An example of this is called shadow testing where
production traffic is cloned and sent to a set of shadow
machines that execute newer code than production.
Results between production and shadow environments
can be automatically compared and discrepancies
reported as failures.

24



Staged deployment strategies 2/2

• blue-green deployments: A deployment strategy where a
defective change to a production environment (blue) can
be quickly switched to the latest stable production build
(green).
The change may initially be made available to, for
example, 1% of the client base in a specific geographical
location, thus limiting exposure (and with it, reputational
risk), and only when confidence increases that the
software is running properly is the fraction gradually
increased, until it ultimately reaches 100%. When
problems are detected, the fraction is quickly reduced to
0%.

25



CD: Results



Productivity

• Each Facebook developer releases an average of 3.5
software updates into production per week

• Each update involves an average of 92 lines of code
(median of 33) that were added or modified.

• Use Lines Of Code (LOC) as proxy for productivity as the
data is easily defined and was available

• Facebook team grew by factor 20 from 2008 to 2014
• Codebase grew by factor of 50 from 2008 to 2014

27



Productivity: LOC per developer constant

28



Quality

• Continuous Deployment process at Facebook has no
testing team

• Qaulity relies on developers who are responsible for their
code throughout the life cycle:

• idea generation
• architecture
• design
• implementation
• testing
• support in production

• Developers decide when to deploy their code and are also
on-call

Does the quality of released code reduce as the team size
grows?

29



Observation: number of critical issues was almost constant,
regardless of number of deployments

30



Do developers prefer quick deployment into production?

• At Facebook by default code is released with next weekly
release

• Developers can choose to put their code into daily release

31



Do developers prefer quick deployment into production?

32



Human factors: leadership

Change in management:

• Management A: Nov 2010, engineering background and
supporting continuous deployment.

• Management B: In mid 2012, management was replaced
with executives having a business background. Their
inclinations were more towards more traditional software
engineering processes.

• Management C: At the end of 2013, executive management
was replaced again. This team had a Silicon Valley
background and was well versed with and supportive of
continuous deployment.

One measure for efficiency is number of lines of code commit
per week.

33



Human factors: management affects productivity

34



CD: Other observations



Management approaches

Facebook: deal with large number of hotfixes

• weekly meeting
• no blame culture

• not: what was the problem, but how could we do better?

36



Continous investment in tools

• automate and make repetitive work repeatable
• tools evolve
• off-the shelve often not good enough

37



Resource and performance creep is a problem

• aka death by thousand cuts
• small releases have an unnoticebale increase in resources
(CPU, network, memory, storage)

• these add up
• difficult to monitor
• performance testing attempts to address this

38



Main results

1. continuous deployment does not inhibit productivity or
quality even when the size of the engineering team
increases by a factor of 20 and the code size grows by a
factor of 50

2. management support of continuous deployment is vital
3. developers prefer faster deployment of the code they
develop

39



Technical management essential

As with other agile methodologies, strong bottom-up culture
with developers making many key decisions.

A different type of manager is needed because they play a
different role: they influence rather than operate within a
chain of command.

We find that in this environment, it is critical that managers be
respected by the developers. Being technologically excellent
makes this easier.

Filling management roles with suitable candidates has been a
key challenge in both organizations. As CD is not widespread
yet, management roles are often filled by promoting from
within.

40



Chaos Engineering



Chaos Engineering Panel

Session on <2016-05-18 Wed 16:05>

http://2016.icse.cs.txstate.edu/program/w4-5-seip

Heather Nakama, Microsoft, United States Kyle Parrish, Fidelity
Investments, United States Ian Van Hoven, Yahoo, United
States Chris Adams, Uber, United States

and somebody from Netflix?

42

http://2016.icse.cs.txstate.edu/program/w4-5-seip


What is chaos engineering 1

• is another step in the testing timeline
• things go wrong in the real world
• how do you know how your system behaves when things
go wrong?

• introduce those irregularities more regularly

Anecdote
CEO visits the data centre, and always pulled the first cable
he could see. He wanted us to survive him.

Approach to deal with fear
If it is scary, do it so often until it is not scary anymore.

43



What is chaos engineering 2

Experimentation in the production system:

• fault injection
• network overload
• injecting latency (TCP latency)
• disconnecting two machines (TCP disconnects)
• poking at it, messing with it, see what happens
• see how the service behaves under really bad situations,
under failures, while it falls apart

• see how (if) it comes up again
• do it in a safe environment

• at Azure: not in systems used by customers

44



The Evolution of C Programming
Practices: A Study of the Unix Oper-
ating System 1973–2015



The Evolution of C Programming Practices:
A Study of the Unix Operating System 1973–2015

Diomidis Spinellis, Panos Louridas, Maria Kechagia

The Evolution of C Programming Practices: A Study of the Unix
Operating System 1973–2015

DOI: http://dx.doi.org/10.1145/2884781.2884799

Unix source codes:
https://github.com/dspinellis/unix-history-repo

46

http://dx.doi.org/10.1145/2884781.2884799
https://github.com/dspinellis/unix-history-repo


Overview of UNIX versions

47



Example ed.c

Copy of Unix source file from 1988:

68 global variabels, and one comment:

/*
* Editor
*/

48



Kludge words

• sloppiness metric
(dkludge): number of
“kludge” words that may
indicate problems in the
code, including:

• fixme
• xxx
• todo
• bugbug, and
• ”swearwords that
cannot be reproduced
in this paper”

49



Other comments



Assess the quality of a test suite through mutation analysis

Mutation analysis:

• change source code:
• change operator
• change order of operations
• …

• keep running test suite to see how many mutations are
picked up

51



Test prioritisation

• developers like quick feedback
• throw all the resources you have at running the tests
quickly (Microsoft)

• run tests that tend to fail first
• run new tests first

52



Summary



Summary

• interesting conference
• mixture of very fundamental research
• and reports and analysis of current and emerging
practices

Full Programme available online:
http://2016.icse.cs.txstate.edu

• open community
• good catering
• joint lunch
• many volunteers helping

54

http://2016.icse.cs.txstate.edu

	ICSE 2016
	SE4Science
	Continuous Deployment (CD)
	CD: Deployment Process
	CD: Results
	CD: Other observations
	Chaos Engineering
	The Evolution of C Programming Practices: A Study of the Unix Operating System 1973–2015
	Other comments
	Summary

