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Introduction
Scientific computing has developed alongside Fortran, one of the very first high
level computer languages. The Fortran language was designed to be portable and
relatively simple for the programmer, yet still produce code that was as fast as
lower level and much harder to use languages such as assembly. This combination
was a great success, leading to Fortran’s ubiquitous use in many computing
applications. In the last two decades, other languages such as C and C++ have
come to dominate new software development, especially in performance critical
applications. Only in a few fields, including scientific computing, is Fortran
still in widespread use for new software development today, fifty years after its
invention. The persistence of Fortran is motivated by factors including reuse
of legacy codes, familiarity through “on the job training” for computational
scientists, and a mix of real and perceived speed advantages.

1Present address: Department of Engineering, University of Cambridge, Trumpington
Street, Cambridge, CB2 1PZ, United Kingdom
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However, this legacy has also deprived computational scientists of many mod-
ern advances in computer science and programming language development. The
biggest such advance in the last two decades is object oriented (OO) design, a
trend that is reflected in the widespread use of C++ for software development.
The OO approach, where the programmer defines conceptual entities and then
implements them in the form of an object that lumps together several associated
variables and procedures that operate on the object, might seem to be naturally
suited to scientific computing: the main tasks of the computational scientist are
to define the essential entities (e.g. an atom), and to implement them in software
by defining the variables that describe them (e.g. positions, momenta) and how
they can be manipulated (e.g. compute trajectories by propagating positions and
momenta forward in time). While the full power and concomitant complexity
of OO programming languages may be unnecessary for scientific programming,
some aspects of this methodology can be used with great benefit by computa-
tional scientists. However, until recently the use of Fortran has prevented the OO
approach from being used for scientific software development. The three most
recent Fortran standards, Fortran 90, Fortran 95 and especially Fortran 2003,
have begun to make some fundamental OO features available within Fortran’s
historical context of legacy applications and an emphasis on computationally
efficient numerical computing.

The structure of large datatypes in computational condensed matter physics
tends to be simple: uniform grids of various dimensions and lists of atomic
neighbours, where the maximum sizes of the neighbourhood are easy to estimate
in advance and have a small variance. This means that once abstract objects are
defined, the object hierarchy tends to be rather flat, in contrast for example to
the situation in graphical user interface programming, where a strict OO model
is the only way to keep order among the thousands of interrelated objects. For
many applications, problems that involve such “spatially homogeneous” objects
are relatively easy to parallelize, and achieving reasonable load balance is at most
moderately difficult. While there are clearly situations where more sophisticated
parallelization is necessary and effective [1, 2], for less demanding systems each
processing unit simply has to get its equal-sized share of the atoms or the grid or
grids to work on. The number of operations that has to be carried out by each
unit and the relative time they take are easy to estimate.

The primary objective of good scientific programming, especially in super-
computing applications, is thus increasing the speed of execution which translates
into the optimization of relatively simple operations on arrays of floating point
numbers. Thus the enduring attraction of Fortran becomes apparent, with its
intrinsic multidimensional arrays and good compiler optimization properties for
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Expressive programming

tight loops. However, even despite these advantages compiled Fortran code can
be slower than well optimized libraries, for example Intel’s MKL and AMD’s
ACML. For code segments that contribute significantly to the run time, express-
ing algorithms in a linear algebraic form and calling an external library to carry
out the operations can, at a minimal loss of readability, maintain source code
simplicity while achieving optimal performance.

Recent revisions of Fortran have introduced a number of features, some that
simply remove legacy restrictions, but many that define higher level program-
ming constructs leading to abstract data types and OO design. The most es-
sential of these, added in the Fortran 90 standard, are dynamic memory allo-
cation (allocate() and deallocate()), modules, user defined types (type X
... end type X), and procedure and operator overloading (module procedure
and operator(X) ). These are sufficient for creating object-like entities and pro-
cedures that behave somewhat like object methods. Not essential from an OO
design point of view, but still very important in our view, are the programming
simplicity and computational efficiency of array syntax, and the removal of fixed
source format requirements that date back to the use of punched cards.

The Fortran 2003 standard added more explicitly OO design features, such
as inheritance, but most are not yet supported by any available compilers. How-
ever, a few of these new features, previously defined as extensions to the 95
standard [3], are very useful and are already implemented by some compilers.
The most important is the possibility of allocatable components in user defined
types. This greatly increases the flexibility of such constructs, making it possible
to encapsulate in a derived type an object (e.g. a collection of atoms) whose size
(i.e. the number of atoms) is not known at compile time. The Fortran 90/95
equivalent uses pointer type components, which can lead to memory leaks and
reduced optimizer efficiency. Another useful extension is allocatable function ar-
guments, which makes it possible to write routines that modify or extend the
memory allocation semantics, for example expanding the size of a previously al-
located array, or logging every instance of memory allocation to track memory
usage.

Expressive programming

We are proponents of the concept of expressive programming, a programming
style in which the structure and language of the top level code is as close as
possible to the abstract algorithm one is trying to implement. For example, in
the context of a molecular dynamics simulation, achieving this goal while main-
taining reasonable code speed means having objects of type Atoms and variables
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like Atoms%positions and Atoms%velocities so that the code which imple-
ments a time step integrator can resemble the corresponding mathematical for-
mula. However, one must walk a fine line here, because a full OO approach
would create a deeper object hierarchy, e.g. Container%atom%position and
Container%atom%velocity. This implementation can be very efficient for some
operations, as we show below, but the tradeoff is that producing an object re-
ferring to, for example, the full set of positions would require routines to gather
these values, leading to more unreadable code and unnecessary copying of data.
This tradeoff between code transparency and efficiency (and even portability in
case of more esoteric OO solutions) always exists and our view is that advance
knowledge of the critical code fragments is needed to make the correct choice.

Parallelization is another facet of the same tradeoff. With a single module
that implements distributed arrays, one gains transparent parallelization for col-
lections of three-vectors and matrices, and the level of the code which implements
physics algorithms can be entirely free of parallelization clutter.

A good example where the above approach has been carried through with
considerable care and attention to detail is the dft++ project, which implements
a plane wave pseudopotential density functional code in C++ [4]. This project
has been the source of inspiration for our own efforts in expressive programming.

Example: libAtoms
By way of an example, we show some code fragments from a freely available
molecular dynamics library called libAtoms [5]. It is a reusable library for ma-
nipulating a large number of atoms in the context of an atomistic simulation,
together with a collection of lower level utilities including function minimisa-
tion. In the following, we show simplified type definitions, with some auxiliary
components omitted for clarity.

The Linear Algebra module extends the already available Fortran intrinsics,
mostly by implementing multiplications between arrays considered as vectors and
matrices. It also wraps lapack routines by autogenerating the work arrays and
array sizes.

Other than simple scalars and arrays, the basic container for data is the
type(Table). It stores an arbitrary number of fields for an arbitrary number of
columns. Here we show only the source relevant for the storage of real fields. The
Table object is smart in the sense that it extends and shrinks its allocatable data
as necessary and figures out from the array sizes whether the caller to append()
wants to append rows or columns.

4



Example: libAtoms

Dynamical System

Atoms

Table

Linear Algebra

Minimisation

Figure 1: Dependencies of the main modules in libAtoms.

module Table_module

type Table

integer :: Nrows = 0, Ncols = 0

real(dp), allocatable :: real (:,:)

...

end type Table

contains

...

subroutine append(this , array)

type(Table), intent(inout) :: this

real(dp) :: array (:,:)

...

end subroutine append

The type(Atoms) uses a type(Table) component to keep the data about
every atom, where the columns of the table correspond to the different atoms,
and rows hold the components of the positions, velocities, accelerations, etc.
This arrangement means that data pertaining to any particular atom is localised
in memory, and consecutive rows can be passed to functions as arrays with a
given stride without creating temporaries. Such sets of rows corresponding to
physically meaningful variables are accessed via pointers defined in type(Atoms)
as shown below. The implications of this choice for code readability and speed
is discussed in more detail below.
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module Atoms_module

use Table_module

type Atoms

integer :: N = 0 ! Number of atoms

real(dp) :: lattice (3,3) ! periodic supercell vectors

type(Table) :: data ! actual data corresponding to each atom

integer :: Z(:) ! atomic number

! pointers into rows of this%data for frequently used fields

real(dp), pointer :: pos(:,:), vel(:,:), acc(:,:), mass (:,:)

end type Atoms

contains

...

subroutine Atoms_init(this , N)

type(Atoms), intent(inout) :: this

integer :: N ! number of atoms

call init(this%data , 10, N) ! initialise (10,N) table

! assign pointers

this%pos => this%data%real (1:3 ,:)

this%vel => this%data%real (4:6 ,:)

this%acc => this%data%real (7:9 ,:)

this%mass => this%data%real (10 ,:)

...

end subroutine Atoms_init

end module Atoms_module

Dynamics

The module DynamicalSystem module contains the types and procedures nec-
essary for propagating atomic configurations in time. The compact expressions
using array syntax make it quite easy to see how the velocity Verlet algorithm is
implemented in four lines of source code.

module DynamicalSystem_module

use Atoms_module

type DynamicalSystem

type(Atoms) :: atoms ! atoms in system

end type DynamicalSystem

contains
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Dynamics

...

subroutine AdvanceVerlet(this , dt , force)

type(DynamicalSystem), intent(inout) :: this

real(dp), intent(in) :: dt

real(dp), intent(in) :: force (:,:)

! implementation 1

this%atoms%pos = this%atoms%pos + dt * this%atoms%vel &

+ 0.5 _dp * dt * dt * this%atoms%acc

this%atoms%vel = this%atoms%vel + 0.5 _dp * dt * this%atoms%acc

forall (i=1: this%atoms%N) &

this%atoms%acc(:,i) = force(:,i) / ElementMass(this%atoms%Z(i))

this%atoms%vel = this%atoms%vel + 0.5 _dp * dt * this%atoms%acc

end subroutine AdvanceVerlet

end module DynamicalSystem_module

The choice of data structures for storing the atomic data influences both
source code readability and execution speed. As the AdvanceVerlet() example
shows, we can use array syntax to write readable code. The speed of this ap-
proach (implementation 1) was compared with two other implementations, one
using explicitly specified array slices rather than pointers, and the other using
an array of Atom objects.

type Atom_OO

real(dp) :: pos(3), vel(3), acc(3), ...

end type Atom_OO

type Atoms_OO

integer N

type(Atom_OO), allocatable :: at(:)

end type Atoms_OO

type(Atoms) at

type(Atoms_OO) :: at_oo (:)

.

.

allocate(at_oo%at(N))

.

.

! implementation 2: data table , explicitly specified array slices ,

! fused loops

do i=1, at%N

at%data (1:3,i) = at%data (1:3,i) + dt * at%data (4:6,i) + &

0.5 _dp * dt * dt * at%data (7:9,i)
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...

end do

! implementation 3: Deeper OO hierarchy

do i=1, N

at_oo%at(i)%pos = at_oo%at(i)%pos + dt * at_oo%at(i)%vel + &

0.5 _dp * dt * dt * at_oo%at(i)%acc

...

end do

We compared the timings for the velocity Verlet time propagation algorithm
(only fragments are shown here) using the Intel Fortran 90/95 compiler for Linux
version 9.1 with the -fast flag, on a 3.0 Ghz Pentium D, for N = 107. Imple-
mentations 2 and 3 took about 0.45 s, while implementation 1 took 1.7 s, a ratio
of about 4. A factor of two is attributable to replacing the four implicit loops
(update positions, update velocities, calculate accelerations, finish updating ve-
locities) in the array syntax with a single loop that fuses all four, and another
factor of two is attributable to the use of pointers to array slices. Both could,
in principle, be remedied by a more sophisticated optimizer, and indeed these
timings are expected to vary with the choice of compiler. This example is in some
ways a worst-case scenario, because the operations in the loop are so simple. In
practice, the loop fusion can not be accomplished in a more complex molecular
dynamics program with features such as constant temperature, constraints, or
rigid body dynamics. The overhead due to our implementation in this case is
only a factor of two, and even this factor may disappear if the operations in
the loop are more complex than the multiply-add of the simple velocity Verlet
shown above. Both of the faster implementations suffer from a proliferation of
loops, while in addition implementation 2 requires cumbersome constructs to
make the Atoms structure transparently accomodate run time selection of the
fields associated with each atom, while implementation three makes it difficult
to extract an object that encompasses all the positions, for example. Ultimately,
for most realistic atomistic calculation applications the speed advantages of im-
plementations two and three are too small to compensate for the readability
disadvantages: computing energies and forces will dominate the computational
expense, certainly for explicitly quantum-mechanical methods or interatomic po-
tential with long-range (Coulumb) terms, but even for physically realistic short
range potentials. A factor of four slowdown in a part of the code that takes a
negligible fraction of the total time is not significant.
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Minimisation

Minimisation

The idea of minimizing some function with respect to some arguments is a very
general one in computational physics. Many sophisticated algorithms are avail-
able, for example conjugate gradients, damped dynamics, and quasi-Newton just
to name a few. Since many of these algorithms can be complex to implement,
especially in a robust way, implementations that can be reused, and do not know
about the details of the quantity to be minimised, are very useful. A pure OO ap-
proach would be to use a class that defines all the methods that the minimisation
subroutine would use, for example adding a product of the search direction and
some scalar to the current value, and taking the norm of the argument vector.
Template functions or inheritance could then be used to provide these methods
as an interface that the minimisation subroutine actually calls. By avoiding true
OO design, we trade off this complexity for doing a bit more work ourselves,
namely manually packing the arguments of the function to be minimised into a
vector of real numbers.

The vector, as well as pointers to procedures that compute the function to
be minimised and its gradient, are passed to the minimisation procedure. The
transfer() intrinsic can be used to pack additional arbitrary data to be passed
to the function evaluation procedure.

module Minimisation_module

contains

function minim(x, func , dfunc , method , convergence_tol , max_steps ,&

extra_data)

real(dp), intent(inout) :: x(:)

character(len=*), intent(in) :: method

real(dp), intent(in) :: convergence_tol

integer , intent(in) :: max_steps

integer , intent(in) :: extra_data (:)

interface

function func(x, extra_data)

real(dp) :: x(:)

integer :: extra_data (:)

real(dp) :: func

end function func

end interface

interface

function dfunc(x, extra_data)

real(dp) :: x(:)

integer :: extra_data (:)

real(dp) :: dfunc(size(x)

end function dfunc
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end interface

real(dp) :: E0

real(dp), allocatable :: F0(:)

allocate(F0(size(x))

! find initial function value and gradient

E0 = func(x, extra_data)

F0 = dfunc(x, extra_data)

! do minimisation

...

end function minim

end module Minimisation_module

module minimise_energy_module

use Atoms_module

use Minimisation_module

contains

subroutine minimise_energy(at)

type(Atoms), intent(inout) :: at

integer :: at_packed(AT_PACKED_SIZE)

real(dp), allocatable :: pos_1d (:)

allocate(pos_1d(at%N*3)

pos_1d = reshape(at%pos , (/3*at%N/))

at_packed = transfer(at, at_packed)

call minim(pos_1d , calc_energy_1d , calc_forces_1d , "conjgrad", &

1.0e-6_dp , 100, at_packed)

at%pos = reshape(pos_1d , (/3,at%N/) )

end subroutine minimise_energy

function calc_energy_1d(pos_1d , at_packed)

real(dp), intent(in) :: pos_1d (:)

integer , intent(in) :: at_packed (:)

real(dp) :: calc_energy_1d

type(atoms) :: at

10



Conclusions

at = transfer(at_packed , at)

at%pos = reshape(pos_1d , (/3,at%N/) )

calc_energy_1d = calc_energy(at)

end function calc_energy_1d

...

end module minimise_energy_module

Conclusions
Recent revisions to the Fortran standard have greatly modernised this program-
ming language, enhancing it with very useful features for scientific computing.
A judicious use of OO design using array syntax, derived types with allocatable
components, and procedure overloading can be used to practice expressive pro-
gramming , where the top level code cleanly reflects the implemented algorithm,
without significantly sacrificing performance. We have implemented basic com-
ponents needed for atomistic simulations using these ideas in the freely available
libAtoms library.
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Computational Physics Group News

The Computational Physics Thesis Prize 2007
The Committee of the Institute of Physics Computational Group has endowed
an annual thesis prize for the author of the PhD thesis that, in the opinion of
the Committee, contributes most strongly to the advancement of Computational
Physics. A total prize fund of £1000 will be divided between the prize-winner
and the runners up. The number of awards is at the discretion of the Committee.

• The deadline for applications is March 1st, 2008.

• The submission format is a 4 page (A4) abstract together with a citation
(max. 500 words) from the PhD supervisor and a confidential report from
the external thesis examiner. Further details may be requested from short-
listed candidates.

• The submission address is:
Dr M Probert
Department of Physics
University of York
York, YO10 5DD
email: mijp1@york.ac.uk

• Please enclose full contact details, including an email address.

Applications are encouraged across the entire spectrum of Computational
Physics. The competition is open to all students who have carried out their
thesis work at a University in the United Kingdom or the Republic of Ireland,
and whose PhD examination has taken place in 2007.

The Computational Physics Thesis Prize 2005/2006
The computational physics thesis prize for 2005 and 2006 has been jointly awarded
to Alex Robinson and Zhongfu Zhou (£500 each). Congratulations!
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International Union of Pure and Applied Physics:
Young Scientist Prize in Computational Physics

Applications invited for 2007
The “International Union of Pure and Applied Physics Young Scientist Prize
in Computational Physics” (IUPAP Young Scientist Prize) can be awarded to
researchers who have a maximum of 8 years research experience following their
PhD. See http://c20.iupap.org/prizes.htm for details.

Winner 2006
The Computational Physics group congratulations the winner of the IUPAP
Young Scientist Prize 2006: Prof. Stefano Sanvito, of Trinity College Dublin.

IoP Computational Physics Group - Student Travel
Award
The Computational Physics Group (CPG) of the Institute of Physics (IoP) is
pleased to invite requests for partial financial support towards the cost of at-
tending scientific meetings relevant to the Group’s scope of activity, as outlined
on our web page: http://groups.iop.org/CP/. The aim of the scheme is to help
stimulate the career development of young scientists working in computational
physics to become future leaders in the field.

To be eligible the applicant should:

• be a full time PhD student;

• provide evidence of acceptance of a presentation (oral or poster) at the
meeting in question;

• give an itemised estimate of cost of attendance;

• provide a letter of support from their project supervisor which:

. confirms the applicant’s PhD student status;

. explains the relevance of the meeting;
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. details the source of the additional funds necessary to attend the meet-
ing.

Applications are invited at any stage in a given year, but will be reviewed by
the CPG Committee on a quarterly basis (1st March, 1st June, 1st September, 1st
December). Successful applicants will be notified as soon as possible thereafter.
Candidates are advised to make their submissions well in advance of the meeting
they wish to attend. The maximum support available to any applicant will be
£200. The CPG’s decision regarding financial support and its level will be final
and non-negotiable in all cases.

Successful applicants will be asked to provide a short written report of the
meeting suitable for publication in the CPG Newsletter.

For further details, please contact:
Dr D.G.Lewis
Department of Medical Physics
Velindre Hospital
Cardiff CF14 2TL
e-mail: dg.lewis@physics.org
Tel: 029 2019 6192

Reports on meetings

2006 Nuclear Science Symposium and Medical Imaging Con-
ference
San Diego, USA; 1 Nov 4 Nov 2006

Report by: Haval Kadhem (Biomedical Imaging Group, The Centre for Vision,
Speech and Signal Processing, University of Surrey)

The Medical Imaging Conference is the longest standing and most respected
international scientific meeting on the physics, engineering and mathematical
aspects of X-ray and nuclear medicine based imaging. It provides an opportunity
to present significant innovations in the field of medical and biomedical imaging.
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2006 Nuclear Science Symposium and Medical Imaging Conference

The event is well attended by scientists and engineers from industry providing
unique environment for researchers in the various biomedical imaging to interact
and exchange ideas directly with the specialists.

The Medical Imaging Conference, commenced on Wednesday November 1st
with two outstanding scientists invited as plenary speakers. The first plenary
talk given by Jan Schnitzer, director of the Sidney Kimmel Cancer Center in San
Diego. He presented his views on a systems biology approach to cancer therapy
and highlighted the importance intravital microscopy and SPECT imaging plays
in deciding what proteins to use for the delivery of endogenous molecules and
targeted drugs to reach specific tissue and tumour cells.

The second plenary talk given by Ron Nutt, chairman and CEO of Advanced
Biomarker Technologies in Tennessee. He spoke of the role PET and SPECT
play in molecular medicine and gave a review of the history of molecular imaging
emphasising on how successful and widespread PET/CT had become in clinical
settings. Similar to the first plenary talk he described how molecular imaging
was being applied to the field of drug development. The talk was concluded
by focusing on new technologies that were important to the development of
molecular imaging and the first published images of a PET insert operating
inside a whole body MRI system to perform simultaneous imaging were shown.

The Medical Imaging Conference consisted of twelve sessions of contributed
papers, and three substantial poster sessions, with the great emphasis on emis-
sion and transmission tomography. This year there was a number of posters
presentations on PET/MRI as well as a dedicated workshop to this emerging
technology.

The majority of the poster presentations were on a variety of Nuclear Imag-
ing related issues including image registration, attenuation, scatter and motion
correction for PET and SPECT. The poster presentations were split into 3 poster
presentation sessions, which was really good, as it enabled everyone to present
their posters and then get the chance to view other peoples posters in the re-
maining sessions.

This year, our group was very successful with five quality papers accepted to
the conference on various aspects of medical imaging. Two of the papers were
nominated for Best Student Paper Awards, one of which was my paper on Ul-
tra Low Dose CT Attenuation Correction Maps for PET/SPECT. The poster
presentation was very well received and attracted the attention of a variety of
people. I was flattered to have David Gilland, the poster session chair and a
distinguished researcher in my field show an interest in my poster and actually
spend a large part of the session discussing my research and providing useful
suggestions and areas for improvements. I was very conscious of the audience
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that had grouped around us and was very excited in having to explain my re-
search and finding to fellow researchers. This proved extremely educational and
had highlighted a number of possible extensions to my research that I had not
previously thought of.

The Conference Reception which was held on Wednesday evening on the hotel
grounds beside the swimming pools were very well attended and it proved an
excellent opportunity to meet fellow researchers and making new friendships and
contacts. I had thoroughly enjoyed the entertainment provided by a string octet
from the Holland-Moritz Ensembles in San Diego at the reception. San Diego
had proved to be a great location for a conference and I had thoroughly enjoyed
visiting the famous San Diego Zoo, Balboa Park and of course the amazing
SeaWorld marine Adventure Park, where we got to enjoy a relaxing time and see
the Shamu experience.

I had found the conference extremely rewarding and educational. I was ex-
tremely pleased to know that my research work had attracted a good level of
interest from distinguished fellow researchers in the same field. I am very grate-
ful to the Institute of Physics Computational Physics Group for partially funding
my attendance to such a major conference.

MMM/Intermag conference Jan 2007
Report by Giuliano Bordignon, University of Southampton

I went to the MMM/Intermag conference in Baltimore with other two people
from my group at University of Southampton: Matteo Franchin and Thomas
Fischbacher. We took the flight from London to Baltimore on Saturday evening
and at the destination the approach to the city was very nice, with a fast security
check, a mild temperature and a (missionary) taxi driver who told us about his
life and his youth in Europe.

The check-in at the Baltimore Marriott Waterfront was nice as well, with
a friendly welcome by the staff and a fascinating view on the waterfront from
our room. We spent most of the Sunday making the last decisions on the most
relevant talks to attend, hard work indeed, as the conference covered all the
possible topics and applications concerning the field of magnetism.

As my field of research is the micromagnetic simulations of patterned nanos-
tructures, I decided to attend the sessions on patterned structures and micro-
magnetics as general topics and I picked up some other talks which looked inter-
esting in the Joint Program booklet.
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All the three of us presented either a talk or a poster, and in the spare time
between the various sessions we had good fun practicing in the empty rooms of
the hotel and making the last corrections to our slides. At the poster session on
Tuesday morning, beside presenting our software for micromagnetic simulations,
there were a lot of opportunities to get in touch with people doing similar things,
and in general these sessions were long enough to have a relaxed look at all the
posters showed.

As the conference was sponsored by the AIP and the IEEE, the presentations
were a good mix of academic and industrial topics, with the introductory Tutori-
als on spin torque, the Plenary Session and the various Symposia very interesting
from both points of view.

Besides the poster session, the other networking appointments were the Bier-
stube events: evening informal drinks for all the participants where the main
activities were chatting and queueing for a beer. In those occasions it was in-
teresting to see how easy it was for young students to talk with experienced
researchers and professors, even the teetotal ones! On Thursday morning I had
my 10 minutes of celebrity giving a talk on Analysis of magnetoresistance in ar-
rays of connected nano-rings. Being the final day of the conference the audience
was not so numerous, even if my time slot was between two interesting talks by
M. J. Donahue and N. Benatmane. All went pretty well (I heard stories of bad
communication between laptops and projectors), and if we consider that if was
my first conference presentation, I must say that it was a good experience and
an excellent practice).

Since our flight back was on Friday evening, I used Friday morning to have a
taste and take some photos of the surroundings of the hotel. I particularly liked
the inner harbour with its 3d aquarium and enjoyed the local crab cakes, a must
for all the tourists visiting Baltimore.

International Workshop on Monte Carlo Codes and 13th UK
Monte Carlo User Group Meeting (MCNEG 2007)

Organised by: David Shipley and Alan DuSautoy

These two meetings were held back to back; the International Workshop on
Monte Carlo Codes was held on 26 - 27 March 2007 and the 13th UK Monte
Carlo User Group Meeting (MCNEG 2007) was held on 28 - 29 March 2007,
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both at National Physical Laboratory, Teddington, Middx, UK. Further infor-
mation is (and presentations will shortly be) available at the meeting website:
http://www.npl.co.uk/ionrad/training/montecarlo/

The meetings had a very international flavour with eight invited speakers:
Alex Bielajew (University of Michigan, USA) , Iwan Kawrakow (National Re-
search Council, Canada) , Michael James (Los Alamos National Laboratory,
USA) , Maria Grazia Pia (Istituto Nazionale di Fisica Nucleare, Italy), Francesc
Salvat (University of Barcelona, Spain), Andrey Berlizov (Institute for Nuclear
Research, Ukraine), Nick Reynaert (Ghent University, Belgium) and Bruce Fad-
degon (UCSF Comprehensive Cancer Center, San Francisco). There were 137
attendees from over 20 countries as far a field as Xian in China and Recife in
Brazil, with many European countries represented.

These events were kindly supported by: the Institute of Physics (Computa-
tional Physics Group and Medical Physics Group), Elekta, Maestro (see later),
The Panel on Gamma and Electron Irradiation, and Institute of Physics and En-
gineering in Medicine; and in cooperation with the International Atomic Energy
Agency. Hassan Ali Nedaie (Tehran University of Medical Sciences, Iran) was
awarded a travel bursary of £350 kindly provided by the Institute of Physics
Computational Physics Group.

The International Workshop on Monte Carlo Codes was devoted to some of
the most popular Monte Carlo radiation transport codes in use, and included
sessions by key code developers on the following codes: EGSnrc (developed by
Stanford University and NRCC), Geant4 (developed by INFN and CERN), MC-
NPX (developed by Los Alamos), and PENELOPE (developed by University of
Barcelona). Interspersed with these, teaching lectures were provided giving an
Overview of the Monte Carlo method for radiation transport, as well as topics
including Geometry modelling, Variance reduction and Advanced transport al-
gorithms. At the end of the first day, there was also an open-house session with
both delegates and developers displaying posters and demonstrating their codes
and applications on laptops.

The MCNEG meeting was aimed at users of all radiation transport codes. It
provided delegates with the opportunity to present and discuss their applications
and recent developments of the Monte Carlo method. We were delighted by the
quality and number of the presentations. There were 28 oral presentations and 18
posters including: Radiotherapy treatment planning, Microdosimetry, Radioac-
tivity, Radiotherapy in general, Radiation Protection, Low energy interaction
modelling, Brachytherapy, Neutrons and Nuclear safety, and Maestro. The Mae-
stro (Methods and Advanced Equipment for Simulation and Treatment in Radio
Oncology) project is a 10MEUR European Framework 6 funded project with 24
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International Workshop on Monte Carlo Codes and 13th UK Monte
Carlo User Group Meeting (MCNEG 2007)

collaborators (http://www.maestro-research.org/).
At the end of the first day there were tours around the new state-of the-

art ionising radiation facilities at NPL (http://www.npl.co.uk/ionrad/facilities)
with the MCNEG annual general meeting held at the end of the meeting.

There have been many positive comments from the delegates such as: ”I want
to thank You and Your colleagues for the wonderful conference. Everything was
perfect and high quality stuff: from the presentations to the food!” ”Excellent
course organisation, good timekeeping, interesting talks - many thanks to all
organisers!” Many thanks go to all those that made the meetings such a success.

The next MCNEG meeting for 2008 will be organised by British Nuclear
Fuels (BNFL). Details will be announced on the MCNEG website
(http://www.mcneg.org.uk/) in due course.
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UPCOMING EVENTS

Upcoming Computational Physics Events

Conference on Computational Physics 2007
The Conference on Computational Physics (CCP) 2007 continues the series of the
APS-EPS “Physics Computing”. It takes place from September 5 to September
8 2007 in Brussels.

The meeting is organised by the European Physical Society, and IoP members
qualify for member rates.

Web page: http://ccp2007.ulb.ac.be/Welcome.html

Non-Adiabatic Molecular Dynamics - A Discussion
This meeting will be held on 10 September 2007, at 76 Portland Place, and will
be a discussion on the subject of non-adiabatic molecular dynamics. Experts
representing various different methodologies will each give a talk explaining how
their particular method works, and how it relates to the other methods being
discussed. There will then be time for general discussions. There will also be a
poster session so that students and others can present specific results in some
detail obtained using the various methods.
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Computational Tools

In this part of the newsletter, we provide occasionally information on selected
software packages, tips and tricks relating to operating systems and other com-
putational tools. Contributions to the section are very welcome, and should be
emailed to the newsletter editor.

“reStructuredText” (rst) – convert ASCII to HTML and TEX

“reStructuredText” is a mark-up language which is intended to be easily readable
(you can study the document in the grey box to see whether this is the case).
This short introduction of the use of “reStructuredText” (rst) should be self
explaining. First, we show the ASCII source code. Then, in figures 1 and 2, we
use the “docutils” conversion tools to convert this ASCII source to HTML and
LATEX, respectively.

=========================================

ReStructuredText (rst): plain text markup

=========================================

What is reStructuredText?

~~~~~~~~~~~~~~~~~~~~~~~~~

An easy -to-read , what -you -see -is -what -you -get plaintext markup

syntax and parser system , abbreviated *rst*. In other words ,

using a simple text editor , documents can be created which

- are easy to read in text editor and

- can be *automatically* converted to

- html and

- latex (and therefore pdf)

What is it good for?

~~~~~~~~~~~~~~~~~~~~

reStructuredText can be used , for example , to write technical

documentation (so that it can easily be offered as a pdf file or

a web page), create html webpages without knowing html , or to to

document source code

Show me some formatting examples

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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You can highlight text in *italics* or , to provide even more

emphasis in **bold **. Often , when describing computer code , we

like to use a ‘‘fixed space font ‘‘ to quote code snippets.

We can also include footnotes [1]_. We could include source code

files (by specifying their name) which is useful when documenting

code. We can also copy source code verbatim (i.e. include it in

the rst document) like this::

int main ( int argc , char *argv[] ) {

printf (" Hello World\n");

return 0;

}

Where can I learn more?

~~~~~~~~~~~~~~~~~~~~~~~

reStructuredText is described at

http :// docutils.sourceforge.net/rst.html. This example (slightly

extended) is available in source code at

http ://www.soton.ac.uk/~ fangohr/tools/rst/rstwebpage.html.

-------------------------------------------------------------------

.. [1] although there isn ’t much point of using a footnote here.

After saving the text file shown above under the name of rst.txt, we use the
following command to convert it into an html document with name rst.html:

rst2html rst.txt rst.html

Figure 1 on page 23 shows a snap shot of the document displayed in a web
browser. Note that one can provide a css-style file to the rst2html command to
customise the formatting of the html output.

The conversion into latex is done quite similarly:

rst2latex rst.txt rst.tex

Figure 2 on page 24 shows the pdf file produced from rst.tex. The
rst2latex command takes a number of options to change the LaTeX layout.

The full example can be studied and downloaded from
http://www.soton.ac.uk/∼fangohr/tools/rst/rstwebpage.html. We have
shown a small set of the capabilities of reStructuredText that may be useful
for computational scientists and which – hopefully – convey the underlying idea
quickly.

(Hans Fangohr)
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“reStructuredText” (rst) – convert ASCII to HTML and TEX

04/06/2007 04:33 PMReStructuredText (rst): plain text markup

Page 1 of 1file:///Users/fangohr/Documents/Institute_of_Physics/Computational%20Physics%20Group/Newsletter/trunk/current/2007_1/rst/rst.html

ReStructuredText (rst): plain text markup

What is reStructuredText?

An easy-to-read, what-you-see-is-what-you-get plaintext markup syntax and parser system, abbreviated
rst. In other words, using a simple text editor, documents can be created which

are easy to read in text editor and
can be automatically converted to

html and
latex (and therefore pdf)

What is it good for?

reStructuredText can be used, for example, to write technical documentation (so that it can easily be
offered as a pdf file or a web page), create html webpages without knowing html, or to to document
source code

Show me some formatting examples

You can highlight text in italics or, to provide even more emphasis in bold. Often, when describing
computer code, we like to use a fixed space font to quote code snippets.

We can also include footnotes [1]. We could include source code files (by specifying their name) which
is useful when documenting code. We can also copy source code verbatim (i.e. include it in the rst
document) like this:

int main ( int argc, char *argv[] ) {

    printf("Hello World\n");

    return 0;

}

Where can I learn more?

reStructuredText is described at http://docutils.sourceforge.net/rst.html. This example (slightly extended)
is available in source code at http://www.soton.ac.uk/~fangohr/tools/rst/rstwebpage.html.

[1] although there isn't much point of using a footnote here.

Figure 1: Conversion result of translating rst.txt into html (displayed with
Safari).
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ReStructuredText (rst): plain text markup

What is reStructuredText?

An easy-to-read, what-you-see-is-what-you-get plaintext markup syntax and parser system, abbreviated
rst. In other words, using a simple text editor, documents can be created which

• are easy to read in text editor and

• can be automatically converted to

– html and
– latex (and therefore pdf)

What is it good for?

reStructuredText can be used, for example, to write technical documentation (so that it can easily be
offered as a pdf file or a web page), create html webpages without knowing html, or to to document
source code

Show me some formatting examples

You can highlight text in italics or, to provide even more emphasis in bold. Often, when describing
computer code, we like to use a fixed space font to quote code snippets.

We can also include footnotes1. We could include source code files (by specifying their name) which
is useful when documenting code. We can also copy source code verbatim (i.e. include it in the rst
document) like this:

int main ( int argc, char *argv[] ) {
printf("Hello World\n");
return 0;

}

Where can I learn more?

reStructuredText is described at http://docutils.sourceforge.net/rst.html. This example (slightly ex-
tended) is available in source code at http://www.soton.ac.uk/˜fangohr/tools/rst/rstwebpage.html.

1 although there isn’t much point of using a footnote here.

1Figure 2: Conversion result of translating rst.txt into LATEX (shown is the
compiled latex document).
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